CC theory for open shell nuclei

Titus Morris Progress in Ab-Initio@TRIUMF March 3rd, 2017

Collaborators

Michigan State University

- Scott Bogner
- Heiko Hergert
- Nathan Parzuchowski

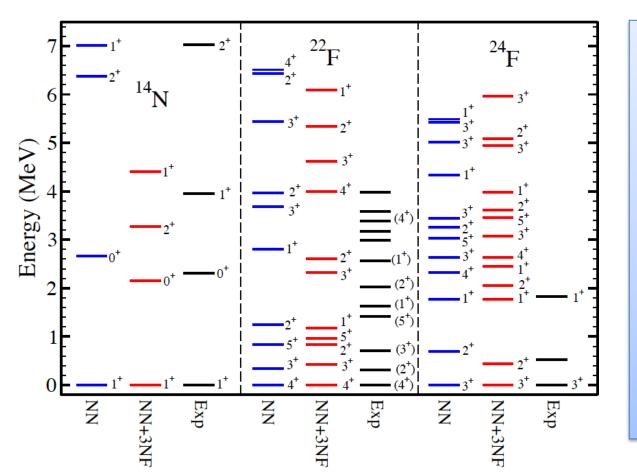
TRIUMF

- Jason Holt
- Ragnar Stroberg

Oak Ridge

- Gaute Hagen
- Thomas Papenbrock
- Gustav Jansen
- ZhongHao Sun

Outlook


Improving current CC results (EOM)

- How/why hybridizing CC-EOM further
- Results and Future
- Shell Model derived interactions
 - Framework
 - Preliminary results

Coupled cluster calculations of odd-odd nuclei

Diagonalize $\overline{H} = e^{-T} H_N e^T$ via a novel equation-of-motion technique:

$$R_{\nu} = \sum r_i^a p_a^{\dagger} n_i + \frac{1}{4} \sum r_{ij}^{ab} p_a^{\dagger} N_b^{\dagger} N_j n_i$$

- Compute spectra of daughter nuclei as beta decays of mother nuclei
- Level densities in daughter nuclei increase slightly with 3NF
- Predict several states in neutron rich Fluorine

• Hybrid plus Cl type • $\{\overline{H}R_{\nu}\}_{c} |\Phi_{0}\rangle = \omega_{\nu}R_{\nu} |\Phi_{0}\rangle$ (and L_{ν})

Nucleus	Typical $R_{ u}$	Iterative Cost	Neglected $\widetilde{R}_{ u}$	Iterative Cost
A-2	1p3h	0 ⁴ u ²	2p4h	0 ³ u ⁴
A-1	1p2h	0 ³ u ²	2p3h	0 ³ u ⁴
А	2p2h	o ² u ⁴	3p3h	0 ³ u ⁵
A+1	2p1h	OU ⁴	3p2h	0 ² u ⁵
A+2	3p1h	ou ⁵	4p2h	0 ² u ⁶

• Can we verify \tilde{R}_{ν} is small, account for its effect on ω_{ν}, o_{ν} , for each of these types?

• Hybrid plus CI type • $\{\overline{H}R_{\nu}\}_{c} |\Phi_{0}\rangle = \omega_{\nu}R_{\nu} |\Phi_{0}\rangle$ (and L_{ν})

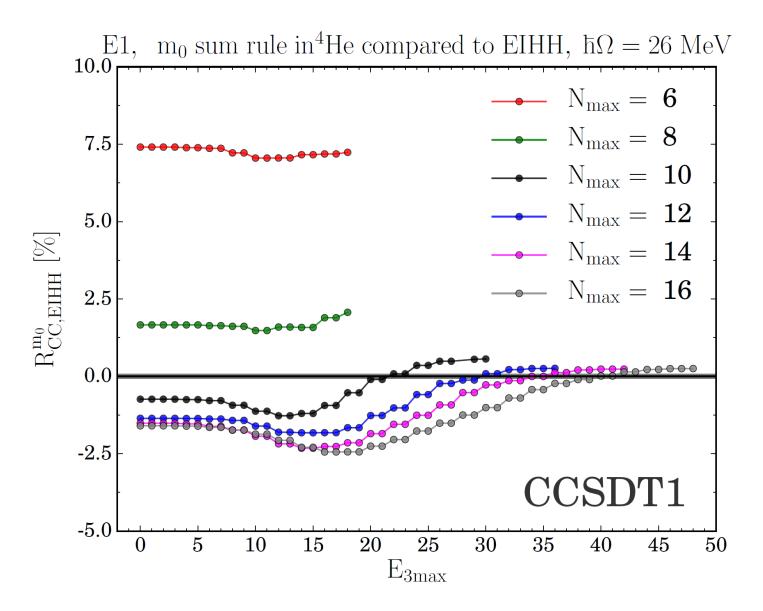
Nucleus	Typical $R_{ u}$	Iterative Cost	Neglected $\widetilde{R}_{ u}$	Iterative Cost
A-2	1p3h	0 ⁴ u ²	2p4h	0 ³ u ⁴
A-1	1p2h	0 ³ u ²	2p3h	0 ³ u ⁴
А	2p2h	o ² u ⁴	3p3h	0 ³ u ⁵
A+1	2p1h	OU ⁴	3p2h	0 ² u ⁵
A+2	3p1h	ou ⁵	4p2h	0 ² u ⁶

Doesn't this already exist for

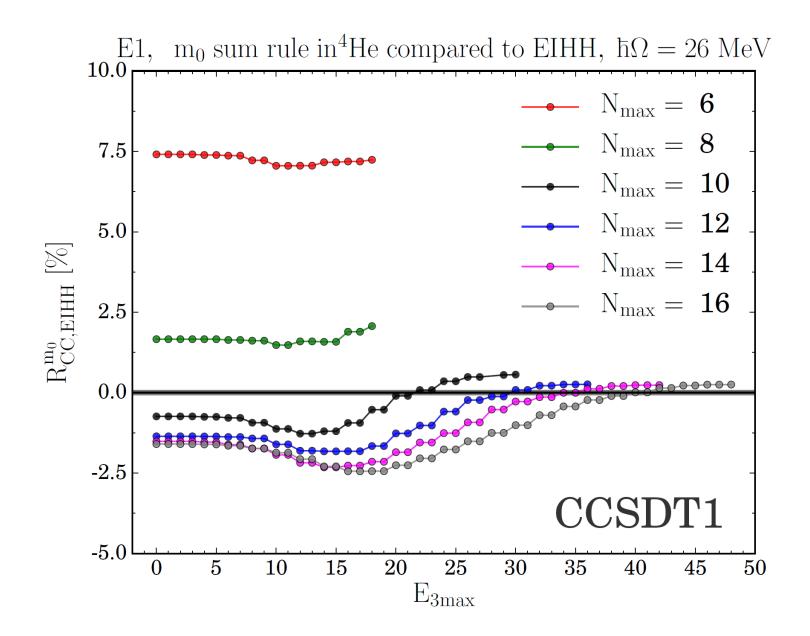
• Can we vert for its effect on ω_{ν}, o_{ν} , for each of these types?

EOM-ACCSD(T)

Invoke energy functional


$$\langle \Phi_0 | L_{\nu} \{ \overline{H} R_{\nu} \}_c | \Phi_0 \rangle = \omega_{\nu} \langle \Phi_0 | L_{\nu} R_{\nu} | \Phi_0 \rangle = \omega_{\nu}$$

Expand ω_{ν} into its CCSD, and leading order (HF) MBPT expression


$$\Delta \omega_{\nu}^{[4]} \subset \langle \Phi_0 | L_{CCSD} V \, \mathsf{M} \, \{ VR_{CCSD} \}_c | \Phi_0 \rangle \quad \mathcal{M} = \frac{| \Phi_{ijk}^{abc} \rangle \left\langle \Phi_{ijk}^{abc} | \frac{\Phi_{ijk}^{abc}}{\epsilon_i + \epsilon_j + \epsilon_k - \epsilon_a - \epsilon_b - \epsilon_c} \right\rangle}$$

- Uses only knowledge of HF
- Is not suitable for other observables
- Exceedingly difficult to derive for A±1,2

Observables?

Observables?

Generalizing EOM-CC PT

• Partition \overline{H} into P,Q spaces

- Feasible R_{ν} , L_{ν} calculation lives in P, (Zeroth order)
- $\overline{H}^{[1]} = \overline{H} P\overline{H}P \Delta^q |\Phi_q\rangle \langle \Phi_q | \Delta^q = \langle \Phi_q | \overline{H} | \Phi_q \rangle$

Expand \widetilde{R}_{ν} , \widetilde{L}_{ν} around CCSD

$$\widetilde{R}_{\nu,q}^{[1]} = \frac{\langle \Phi_q | \{ \overline{H}^{[1]} R_{\nu}^{[0]} \}_c | \Phi_0 \rangle}{\omega_{\nu}^{[0]} - \Delta^q} \qquad \qquad \widetilde{L}_{\nu,q}^{[1]} = \frac{\langle \Phi_q | L_{\nu}^{[0]} \overline{H}^{[1]} | \Phi_0 \rangle}{\omega_{\nu}^{[0]} - \Delta^q}$$

$$\begin{split} \Delta o_{\nu}^{[2]} &= \langle \Phi_0 | \, \widetilde{L}_{\nu}^{[1]} \{ \overline{O}^{[1]} R_{\nu}^{[0]} \}_c \, | \Phi_0 \rangle + \langle \Phi_0 | L_{\nu} \{ \overline{O}^{[1]} \, \widetilde{R}_{\nu}^{[1]} \}_c \, | \Phi_0 \rangle \\ &- \widetilde{L}_{\nu,q}^{[1]} (\Delta o_{\nu}^{[0]} - \langle \, \Phi_q \big| \overline{O} \big| \Phi_q \big\rangle) \, \widetilde{R}_{\nu,q}^{[1]} \end{split}$$

- $\omega_{\nu}^{[0]} \Delta^q$ not based on HF
- Correction appropriate for \overline{O}
- General for A±1,2

 $< \widetilde{R}_{\nu,q}^{[1]} \widetilde{L}_{\nu,q}^{[1]} >$ measures whether \widetilde{R}_{ν} , \widetilde{L}_{ν} are perturbative

EOM-CR-CCSD(T)

• Implemented and benchmarked 3p2h $\tilde{R}_{\nu,q}^{[1]}, \tilde{L}_{\nu,q}^{[1]}$

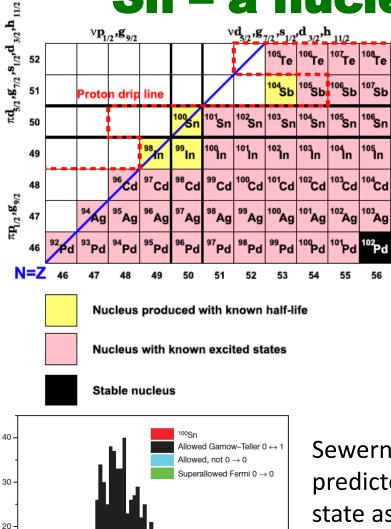
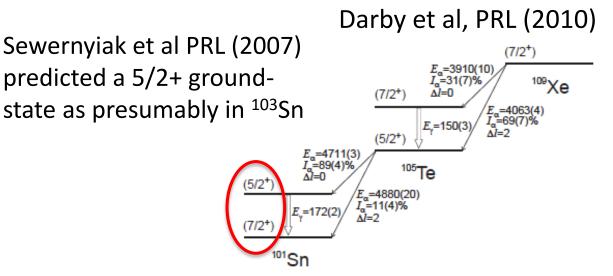

Phys. Rev. Lett. 101, 052501 (UTK remote access down)

TABLE I. Binding energies (in MeV) of ⁵⁵Ni and ⁵⁷Ni relative to the corresponding reference energies $\langle \Phi_0^{(A)}(j)|H|\Phi_0^{(A)}(j)\rangle$, A =55 and 57, respectively, as functions of the shell gap shift ΔG (in MeV). $S_0^{(A)}(j)$ is defined as $|\langle \Phi_0^{(A)}(j)|\Psi_{0,A}^{\text{full-CI}}(j)\rangle|$.

TABLE II. Excitation energies (in MeV) of the low-lying states of ⁵⁷Ni as functions of the shell gap shift ΔG (in MeV). $S_0^{(A)}(j)$ is defined as $|\langle \Phi_0^{(A)}(j)|\Psi_{0,A}^{\text{full}-\text{CI}}(j)\rangle|$.

MeV). $S_0^{(n)}(j)$ is	s ucificu a	$13 \mid \Psi_0 \rangle$	1) 1 0,A	())/1.		ΔG	-2	-1	0	1	2
ΔG	-2	-1	0	1	2	$(5/2)^{-}$					
⁵⁵ Ni						EOMCC(2p-1h)	0.658	0.819	0.895	0.937	0.961
EOMCC(2h-1p)	-3.649	-2.459	-1.884	-1.542	-1.313	EOMCC(3p-2h)	0.625	0.771	0.856	0.908	0.939
EOMCC(3h-2p)	-3.844	-2.567	-1.951	-1.587	-1.344	CI(2p-2h)	0.812	0.856	0.897	0.927	0.948
CI(2p-2h)	-2.505	-2.013	-1.672	-1.427	-1.244	CI(3p-3h)	0.781	0.827	0.878	0.917	0.944
CI(3p-3h)	-3.295	-2.449	-1.922	-1.580	-1.344	CI(4p-4h)	0.692	0.776	0.852	0.904	0.937
CI(4p-4h)	-4.457	-2.967	-2.150	-1.693	-1.406	CI(6p-6h)	0.360	0.658	0.832	0.904	0.936
CI(6p-6h)	-6.397	-3.519	-2.262	-1.723	-1.417	· · ·	-0.118	0.008	0.832	0.900	0.936
Full CI	-9.091	-3.920	-2.279	-1.725	-1.417	$S_0^{(57)}(\frac{5}{2})$	0.0193	0.402	0.823	0.900	0.930
$S_0^{(55)}(\frac{7}{2})$	0.0362	0.4023	0.8015	0.8919	0.9287	$S_0^{-1}(\frac{1}{2})$	0.0195	0.2640	0.7445	0.8390	0.907
⁵⁷ Ni						$(1/2)^{-}$					
EOMCC(2p-1h)	-3.868	-2.671	-2.080	-1.721	-1.476	EOMCC(2p-1h)	1.259	1.494	1.639	1.739	1.813
EOMCC(3p-2h)	-4.295	-2.871	-2.186	-1.783	-1.516	EOMCC(3p-2h)	0.669	1.071	1.366	1.562	1.694
CI(2p-2h)	-2.692	-2.192	-1.840	-1.584	-1.389	CI(2p-2h)	1.279	1.451	1.592	1.699	1.781
CI(3p-3h)	-3.622	-2.717	-2.146	-1.772	-1.513	CI(3p-3h)	1.009	1.218	1.426	1.588	1.706
CI(4p-4h)	-4.697	-3.217	-2.370	-1.884	-1.575	CI(4p-4h)	0.763	1.021	1.312	1.530	1.676
CI(6p-6h)	-6.534	-3.768	-2.493	-1.918	-1.588	CI(6p-6h)	0.395	0.739	1.211	1.499	1.665
Full CI	-9.391	-4.151	-2.511	-1.921	-1.588	Full CI	0.050	0.434	1.184	1.496	1.665
$S_0^{(57)}(\frac{3}{2})$	0.0335	0.4062	0.7802	0.8774	0.9182	$S_0^{(57)}(\frac{1}{2})$	0.0293	0.2561	0.6577	0.8049	0.8701

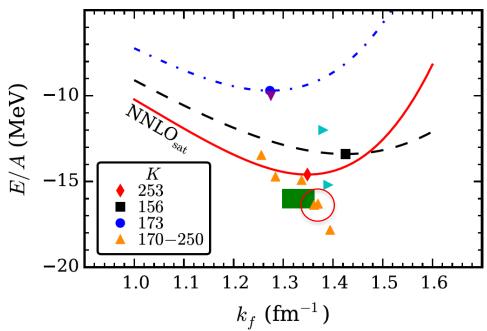
¹⁰⁰Sn – a nucleus of superlatives

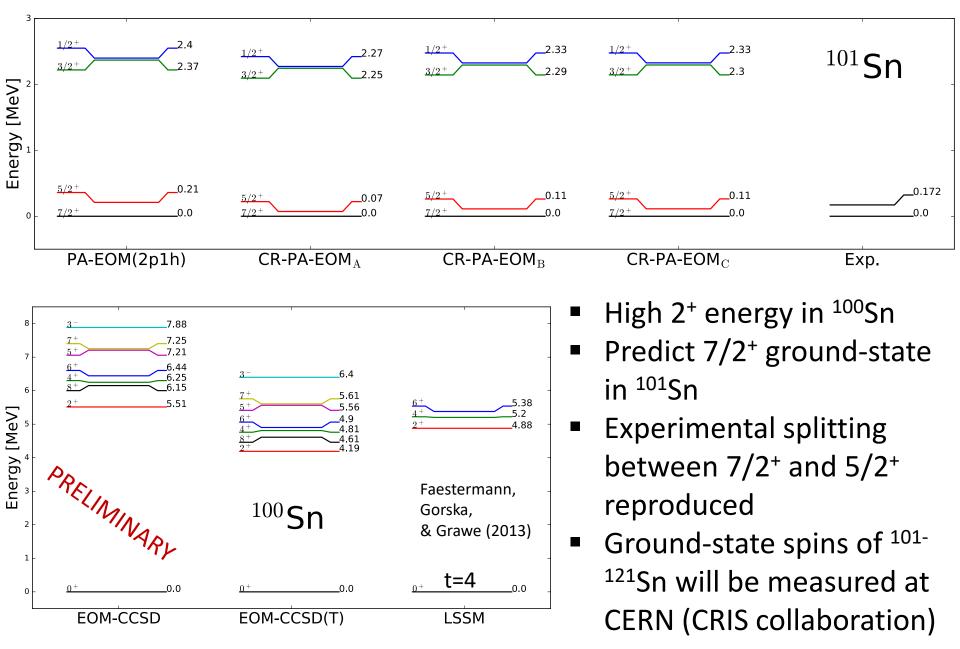


10.

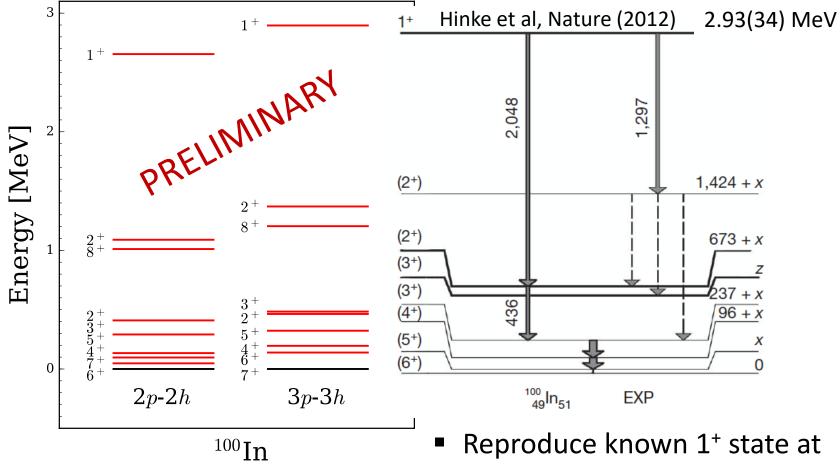
5

Hinke et al, Nature (2012)


- Heaviest self-conjugate doubly magic nucleus
- Largest known strength in allowed nuclear β-decay
- In the closest proximity to the proton dripline
- At the endpoint of the rapid proton capture process (Sn-Sb-Te cycle)
- Unresolved controversy regarding s.p. structure of ¹⁰¹Sn


Accurate BEs from light \rightarrow heavy \rightarrow infinite matter from a chiral interaction -61.8/2.0 (EM) E/A (MeV) -9 10 160⁴⁰Ca ⁴⁸Ca ⁵⁶Ni ⁹⁰Zr ¹⁰⁰Sn 4 He

1.8/2.0 (EM) from K. Hebeler *et al* PRC (2011) The other chiral NN + 3NFs are from Binder et al, PLB (2014)

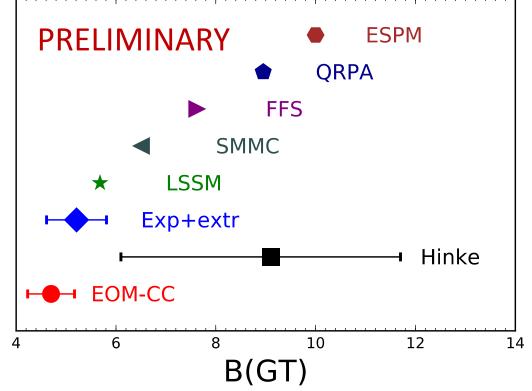

- Accurate binding energies up to mass 100 from a chiral NN + 3NF
- Fit to nucleon-nucleon scattering and BEs and radii of A=3,4 nuclei
- Reproduces saturation point in nuclear matter within uncertainties
- Deficiencies: Radii are less accurate

Structure of the ligthest tin isotopes

¹⁰⁰In from a novel charge exchange coupledcluster equation-of-motion method

New method: 3p-3h charge-exchange EOM

$$\overline{H}_N R_\mu |\Phi_0\rangle = E_\mu R_\mu |\Phi_0\rangle$$


- Reproduce known 1⁺ state at 2.93(34) MeV
- Predict a 7⁺ ground-state for ¹⁰⁰In
- Ground-state spin of ¹⁰⁰In can be measured by CRIS collab. at CERN

Superallowed Gamow-Teller transition

- Prediction for the Gamow-Teller transition consistent with data
- Towards understanding the quenching of g_A
- Important implications for computations of 0vββ decay

Hinke et al, Nature (2012)

Model	Ref	unquenched	quenched
ESPM	[30]	17.78	10.00
MCSM	[8]	10.3	6.5
QRPA	[9]	8.95	
FFS	[9]	7.63	
extrapol.	[10]	9.8	5.2
SM+corr.	[7]	14.2	
LSSM	this work	~ 13.90	~ 7.82
LSSM			
(only 1_1^+)	this work	10.10	5.68

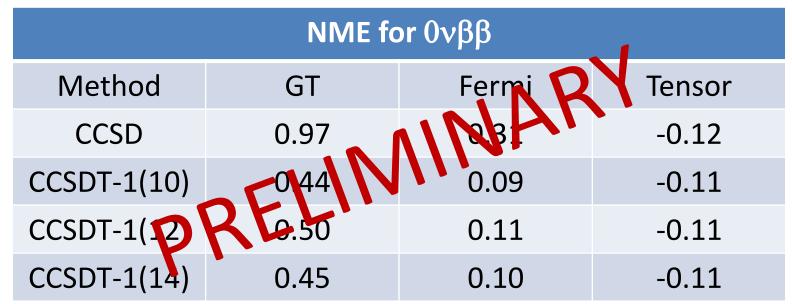
- Coupled-cluster computations predict a B(GT) of 4.7(5)
- B(GT) is currently targeted by upcoming precision measurements

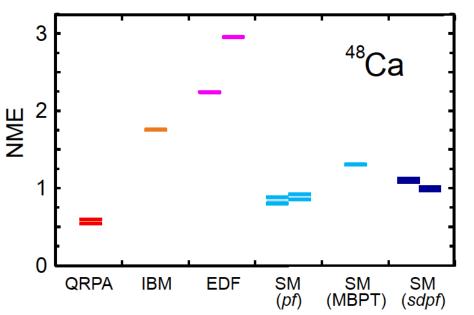
Neutrinoless ββ-decay of ⁴⁸Ca

$$|\langle {}^{48}\mathrm{Ti}|O|{}^{48}\mathrm{Ca}\rangle|^2 = \langle {}^{48}\mathrm{Ti}|O|{}^{48}\mathrm{Ca}\rangle\langle {}^{48}\mathrm{Ca}|O^{\dagger}|{}^{48}\mathrm{Ti}\rangle$$

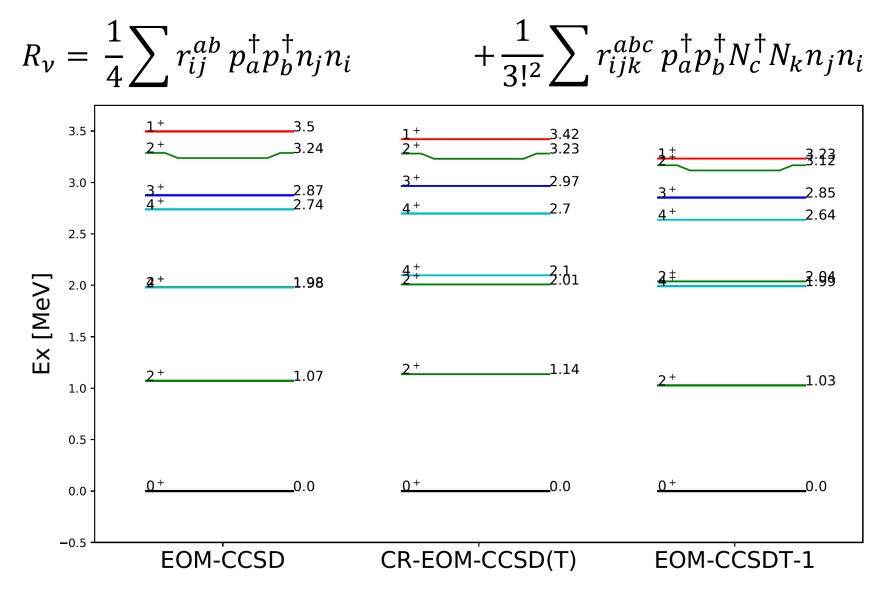
Closure approximation with Gamow-Teller, Fermi and Tensor $M_{GT}^{0\nu} + \left(\frac{g_V}{g_A}\right)^2 M_F^{0\nu} + M_T^{0\nu}$ contributions:

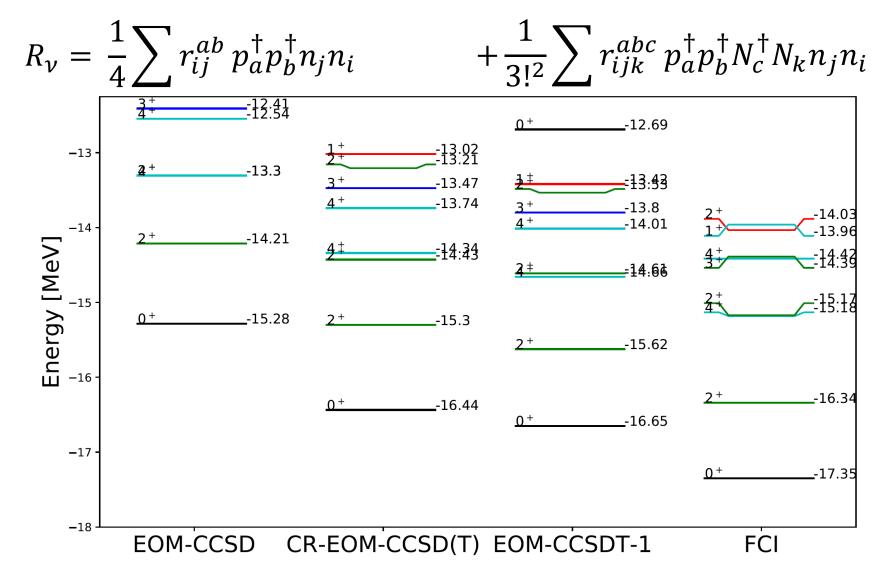
The ground-state of ⁴⁸Ca is computed in the CCSD approximation:

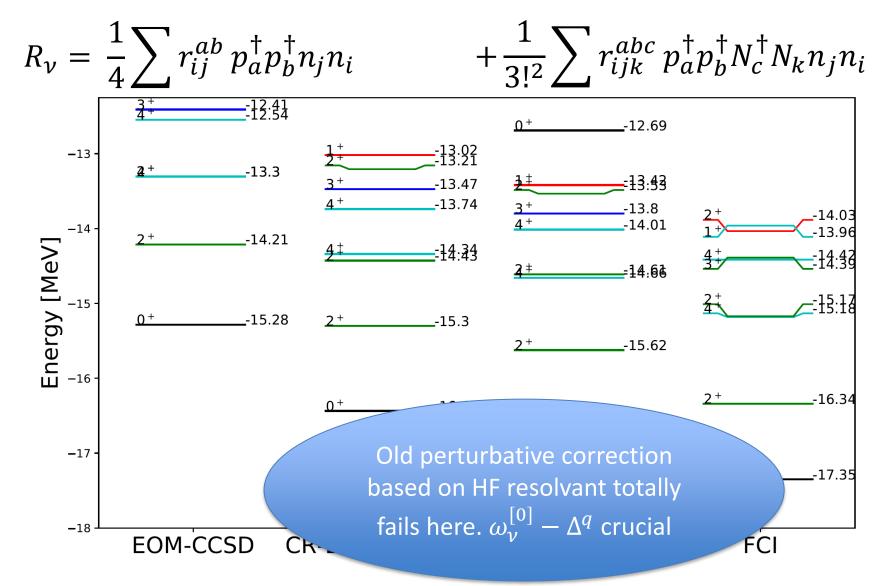

$$\overline{H}_N |\Phi_0\rangle = E_0 |\Phi_0\rangle, \ \overline{H}_N = e^{-T} H_N e^T, \ T = T_1 + T_2$$

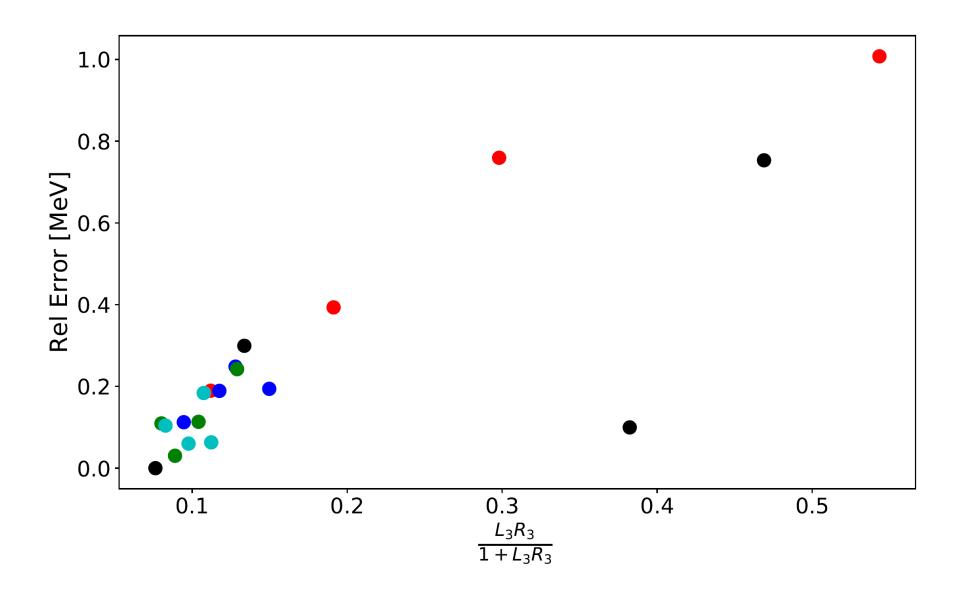

The CC energy functional is expressed in term of left/right ground-states

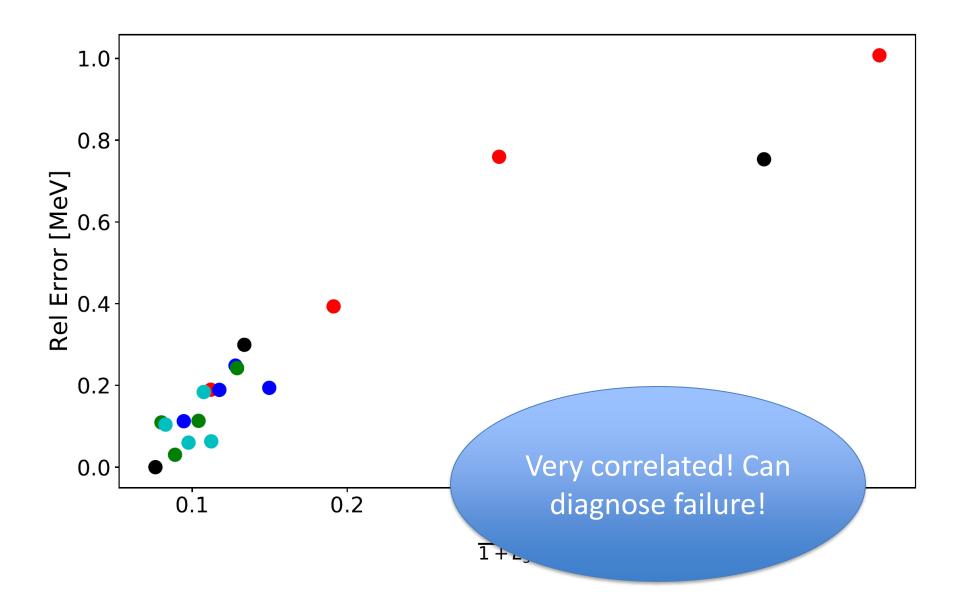
$$\langle \Phi_0 | (1+\Lambda) \overline{H}_N | \Phi_0 \rangle = E_0, \ \langle \Phi_0 | (1+\Lambda) | \Phi_0 \rangle = 1.$$

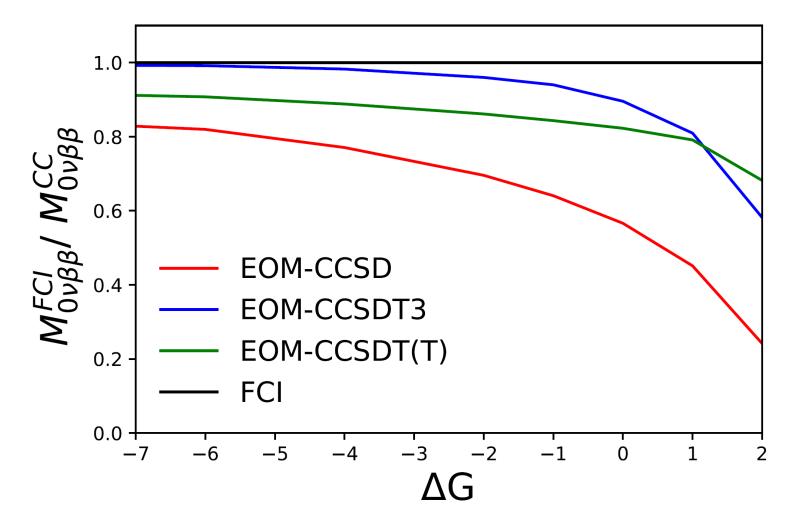

$$\Lambda = \sum_{ia} \lambda_a^i a_a a_i^{\dagger} + \frac{1}{2} \sum_{ijab} \lambda_{ab}^{ij} a_b a_a a_i^{\dagger} a_j^{\dagger}$$

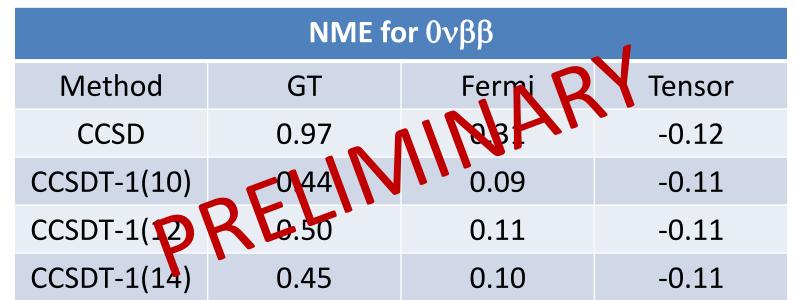

Neutrinoless ββ-decay of ⁴⁸Ca

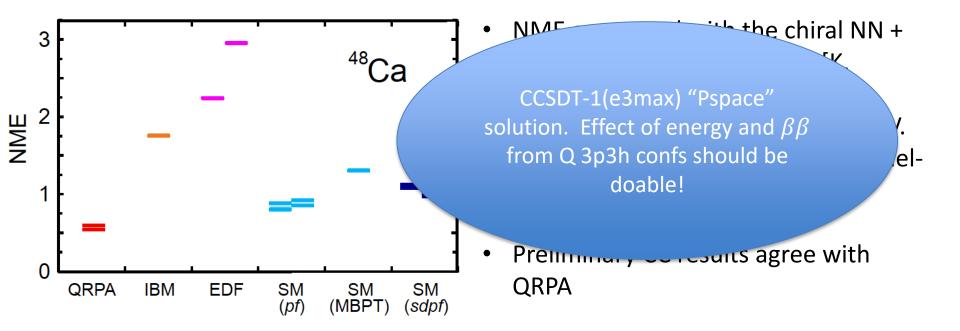





- NME computed with the chiral NN + 3N interaction 1.8/2.0 (EM) [K. Hebeler *et al* PRC (2011)]
- Model-space N_{max} =10, hw = 22MeV.
- Not converged with respect to modelspace or truncation in 3p3h amplitudes
- Preliminary CC results agree with QRPA



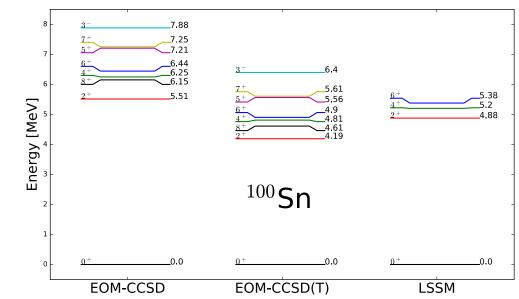

EOM-CR-CCSD(T)

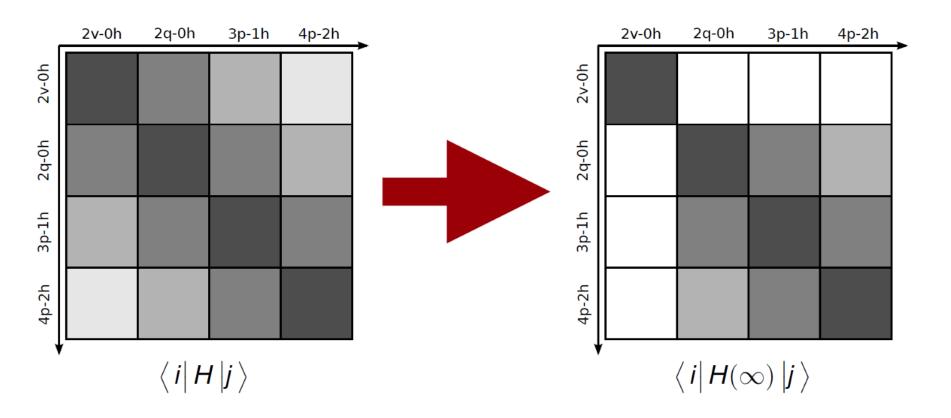

• Implemented and benchmarked 3p2h $\tilde{R}_{\nu,q}^{[1]}$, $\tilde{L}_{\nu,q}^{[1]}$

Phys. Rev. Lett. 101, 052501 (UTK remote access down)

Neutrinoless ββ-decay of ⁴⁸Ca

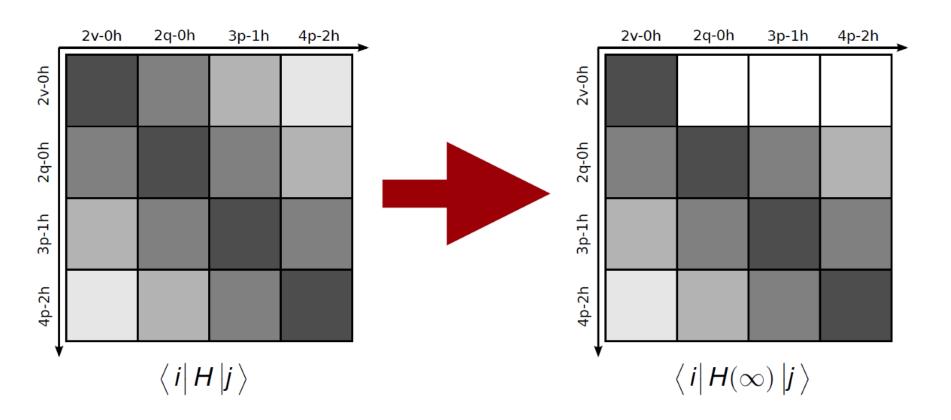
Coupled Cluster Shell Model


ZhongHao Sun University of Tenn. Oak Ridge Natl. Lab


IMSRG and CC

- Real difference is that CC does not attempt to conserve norm i.e. $\langle \Phi_0 | e^{-T^{\dagger}} e^{-T} | \Phi_0 \rangle \neq 1$
 - Leads to many fewer total diagrams/simple transformation
 - Must then appeal to left eigenstates
- Would the ease of analyzing diagrams make CC shell model a viable path?

 Answer why IMSRG sometimes produces EOM-CCSD quality results?



IMSRG Shell Model

change definition of off-diagonal Hamiltonian: $\left\{H^{od}\right\} = \left\{f_{h'}^{h}, f_{p'}^{\rho}, f_{h}^{\rho}, f_{v}^{q}, \Gamma_{hh'}^{\rho\rho'}, \Gamma_{hv}^{\rho\rho'}, \Gamma_{vv'}^{\rhoq}\right\} \& \text{H.c.}$

CC Shell Model

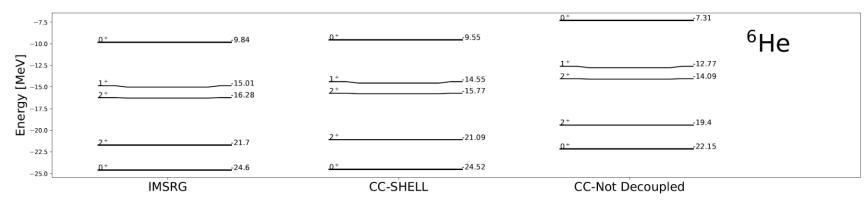
change definition of off-diagonal Hamiltonian: $\left\{H^{od}\right\} = \{f_{h'}^{h}, f_{p'}^{p}, f_{h}^{p}, f_{v}^{q}, \Gamma_{hh'}^{pp'}, \Gamma_{hv}^{pp'}, \Gamma_{vv'}^{pq}\}$

CC Shell Model

Decouple ground state first, obtaining H _{CCSD} Introduce a secondary transformation

$$\overline{\overline{H}} = \mathbf{e}^{Z} \overline{H}_{CCSD} \, \mathbf{e}^{-Z} \qquad \qquad \dot{Z} = \eta(\overline{\overline{H}})$$

OR


$$\overline{\overline{H}}_{k} = \mathbf{e}^{\mathbf{Z}_{k}} \overline{H}_{CCSD} \, \mathbf{e}^{-\mathbf{Z}_{k}} \qquad \qquad Z_{k+1} = Z_{k} + \delta s \, \eta(\overline{\overline{H}}_{k})$$

- Use same generators as IMSRG
- Iterate until $\eta(\overline{\overline{H}}_k)$ vanishes
- Hermitize in order to feed to large scale SM

CC Shell Model

Preliminary Results!

P-shell, emax=4, NN EM N3LO 2.0, M-Scheme

Still benchmarking, and investigating 3b-forces
Promising!

