

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Microscopic optical potentials derived from nucleon-nucleon chiral potentials

Matteo Vorabbi

Progress in Ab Initio Techniques in Nuclear Physics

March 3, 2017

- 1. Introduction
- 2. Statement of the problem & approximations
- 3. Comparison with experimental data
- 4. Summary & outlook

Purpose

Study the domain of applicability of microscopic two-body chiral potentials in the construction of an optical potential

Optical potentials

Phenomenological

Many adjustable parameters set up fitting a large amount of experimental data

Microscopic

Built in terms of the underlying NN scattering amplitudes

Applications

- Nucleon-nucleus elastic scattering
- Inelastic scattering
- Other nuclear reactions

Why a microscopic approach?

- Microscopic optical potentials do not contain adjustable parameters
- We expect a **greater predictive power** when applied to situations where experimental data are not yet available

Study of unstable nuclei

The Scattering of Fast Nucleons from Nuclei

RIUMF

A. K. Kerman

Massachusetts Institute of Technology, Cambridge, Massachusetts

H. McManus

Chalk River Laboratory, Chalk River, Ontario, Canada

and

R. M. Thaler

Los Alamos Scientific Laboratory, Los Alamos, New Mexico

Received May 27, 1959

PHYSICAL REVIEW C	VOLUME 30, NUMBER 6	DECEMBER 1984
Momentum space appro	bach to microscopic effects in ela	astic proton scattering
	A. Picklesimer	
Department of Physics and	Astronomy, University of Maryland, College	e Park, Maryland 20742
and Los Alamo	os National Laboratory, Los Alamos, New M	Texico 87545
	P. C. Tandy	
Departmen	t of Physics, Kent State University, Kent, Oh	io 44242
and Los Alama	os National Laboratory, Los Alamos, New M	lexico 87545
	R. M. Thaler	
Department of Phy.	sics, Case Western Reserve University, Clevel	and, Ohio 44106
and Los Alama	os National Laboratory, Los Alamos, New M	lexico 87545
	D. H. Wolfe	
Departmen	t of Physics, Kent State University, Kent, Oh	io 44242
- 1	(Received 6 August 1984)	

Lippmann-Schwinger (LS) equation for nucleon-nucleus scattering $T = V + V G_0(E) T$

Separation of the LS equation

$$T = U + UG_0(E)PT$$
$$U = V + VG_0(E)QU$$

Transition operator for the elastic scattering

$$T_{\rm el} \equiv PTP = PUP + PUPG_0(E)T_{\rm el}$$

Free propagator	Free Hamiltonian	External interaction
$G_0(E) = \left(E - H_0 + i\epsilon\right)^{-1}$	$H_0 = h_0 + H_A$	$V = \sum_{i=1}^{A} v_{0i}$

The spectator expansion

The spectator expansion for the optical potential operator

$$U = \sum_{i=1}^{A} \tau_i + \sum_{i,j\neq i}^{A} \tau_{ij} + \sum_{i,j\neq i,k\neq i,j}^{A} \tau_{ijk} + \cdots$$

The single-scattering approximation

The single-scattering approximation

The single-scattering approximation

Optical potential operator

$$U = \sum_{i=1}^{A} \tau_i$$

The first-order term

 $\tau_i = v_{0i} + v_{0i}G_0(E)Q\tau_i$

The impulse approximation

We neglect the coupling of the struck target nucleon with the residual nucleus. The interaction between the two nucleons is considered as free: $au_i \approx t_{0i}$

The free NN t matrix

$$t_{0i} = v_{0i} + v_{0i}g_i t_{0i}$$

The free two-body propagator

$$g_i = \frac{1}{E - h_0 - h_i + i\epsilon}$$

Optical potential operator

$$U = \sum_{i=1}^{A} t_{0i}$$

Useful approximation for the intermediate-energy regime

Only two-particle integral equations

The first-order optical potential

Elastic scattering amplitude

$$T_{\rm el}(\mathbf{k}', \mathbf{k}; E) = U(\mathbf{k}', \mathbf{k}; \omega) + \int d^3p \frac{U(\mathbf{k}', \mathbf{p}; \omega) T_{\rm el}(\mathbf{p}, \mathbf{k}; E)}{E(k_0) - E(p) + i\epsilon}$$

The first-order optical potential

$$\begin{split} U(\boldsymbol{q},\boldsymbol{K};\omega) &= \frac{A-1}{A} \sum_{N=n,p} \int d^{3}P \; \eta(\boldsymbol{P},\boldsymbol{q},\boldsymbol{K}) \; t_{pN} \left[\boldsymbol{q}, \frac{A+1}{A}\boldsymbol{K} - \boldsymbol{P}; \omega \right] \\ &\times \rho_{N} \left[\boldsymbol{P} - \frac{A-1}{A} \frac{\boldsymbol{q}}{2}, \boldsymbol{P} + \frac{A-1}{A} \frac{\boldsymbol{q}}{2} \right] \end{split}$$

Momentum transfer

 $m{q}=m{k}'-m{k}$

Total momentum

$$oldsymbol{K}=rac{1}{2}(oldsymbol{k}'-oldsymbol{k})$$

Optimum factorization approximation

Expansion of the t matrix in a Taylor series in
$$\boldsymbol{P}$$

 $\eta(\boldsymbol{P}) t_{pN}(\boldsymbol{P}) = \eta(\boldsymbol{P}_0) t_{pN}(\boldsymbol{P}_0) + (\boldsymbol{P} - \boldsymbol{P}_0) \partial_{\boldsymbol{P}_0} \Big[\eta(\boldsymbol{P}_0) t_{pN}(\boldsymbol{P}_0) \Big] + \cdots$

Time-reversal invariance of the ground state density matrix

$$\int d^3 P \, \boldsymbol{P} \, \rho_N \left[\boldsymbol{P} - \frac{A-1}{A} \frac{\boldsymbol{q}}{2}, \boldsymbol{P} + \frac{A-1}{A} \frac{\boldsymbol{q}}{2} \right] = 0$$

Neutron and proton density profiles

TRIUMF

$$\rho_N(q) = \int d^3 P \,\rho_N \left[\boldsymbol{P} - \frac{A-1}{A} \frac{\boldsymbol{q}}{2}, \boldsymbol{P} + \frac{A-1}{A} \frac{\boldsymbol{q}}{2} \right]$$

A factorized form of the potential is obtained choosing $P_0 = 0$

Optimum factorization approximation

The optimum factorized optical potential

$$U(\boldsymbol{q}, \boldsymbol{K}; \omega) = \frac{A-1}{A} \eta(\boldsymbol{q}, \boldsymbol{K}) \sum_{N=n,p} t_{pN} \left[\boldsymbol{q}, \frac{A+1}{A} \boldsymbol{K}; \omega \right] \rho_N(\boldsymbol{q})$$

Basic ingredients
1. Nucleon-nucleon interaction
2. Neutron and proton densities

Chiral potential up to N³LO

- QCD symmetries are consistently respected
- Systematic expansion (order by order we know exactly the terms to be included)
- Theoretical errors. Order by order in a power expansion, the uncertainties are of order of $\mathcal{O}(Q/\Lambda_{\chi})^{\nu}$
- Two- and many-body forces belong to the same framework

Chiral potential up to the fourth order Only the two-body part

Chiral potentials up to N³LO

Machleidt et al. (EM)

- Three possible choices for the LS cut-off: $\Lambda = 450, 500, 600 \text{ MeV}$
- Dimensional regularization of the two-pion exchange term in the potential

Phys. Rev. C 68, 041001 (2003)
Phys. Rev. C 75, 024311 (2007)
Phys. Rev. C 87, 014322 (2013)
Phys. Rev. C 88, 054002 (2013)

Epelbaum et al. (EGM)

- Three possible choices for the LS cut-off:
 Λ = 450, 550, and 600 MeV
- Spectral function representation $\Lambda' = 500, 600, and 700 \text{ MeV}$
- Available choices

 (∧,∧') = (450, 500), (450, 700),
 (550, 600), (600, 600), (600, 700)

Nucl. Phys. A 747, 362 (2005)

M. Vorabbi, P. Finelli, and C. Giusti, Phys. Rev. C 93, 034619 (2016)

M. Vorabbi, P. Finelli, and C. Giusti, Phys. Rev. C 93, 034619 (2016)

M. Vorabbi, P. Finelli, and C. Giusti, Phys. Rev. C 93, 034619 (2016)

M. Vorabbi, P. Finelli, and C. Giusti, Phys. Rev. C 93, 034619 (2016)

M. Vorabbi, P. Finelli, and C. Giusti, Phys. Rev. C 93, 034619 (2016)

M. Vorabbi, P. Finelli, and C. Giusti, Phys. Rev. C 93, 034619 (2016)

Chiral potentials up to N⁴LO

Inclusion of density-dependent corrections to the bare NN force J. W. Holt, N. Kaiser, W. Weise, Phys. Rev. C **81**, 024002 (2010)

Density-dependent NN chiral potentials

Equation for the optical potential

$$U = V + VG_0(E)QU$$

$$V = \sum_{i=1}^{A} \tilde{v}_{0i}$$

DDNN chiral potential operator $\tilde{v}_{0i}(\rho) = v_{0i} + v_{0i}^{med}(\rho)$ Effective density-dependent in-medium NN interaction derived from the LO chiral 3N force Bare NN interaction

Summary and outlook

Conclusions

- Close results and a good description of the experimental cross sections are obtained for proton energies up to about 135 MeV
- A better agreement with empirical data is obtained at 200 MeV with higher values of the LS cut-off
- EGM-600 potential provides a better description of experimental data with the SFR cut-off = 600 MeV

Future improvements

- Improve the inclusion of density-dependent corrections
- Computation of the folding integral
- Inclusion of medium effects

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

Follow us at TRIUMFLab