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Towards a unified description of nuclei  

Open	
  issues	
  @	
  mid	
  masses	
  are:	
  
	
  

 	
  Need	
  of	
  good	
  nuclear	
  
Hamiltonians	
  (3N	
  forces	
  
mostly!)	
  

 	
  Structure	
  calcula=ons	
  
are	
  limited	
  to	
  closed-­‐shells	
  
or	
  A±1,	
  A±2	
  

 Ab-­‐Ini=o	
  link	
  between	
  
structure	
  and	
  reac=ons.	
   	
   	
  

	
   	
  	
  
(BUT	
  calcula=ons	
  are	
  GOOD!!!)	
  	
  

Green’s	
  func=ons	
  can	
  be	
  naturally	
  extended	
  to:	
  	
  	
  	
  	
  ScaPering	
  observable 	
  
	
   	
   	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  Open	
  shell	
  nuclei	
  #



neutron	
  
removal	


neutron	
  
addi.on	


sca1ering	


56Ni	


One-body Green’s function (or propagator) describes the motion of quasi- 
particles and holes: 
 
 
 
 
 …this contains all the structure information probed by nucleon transfer 
(spectral	
  func=on): 

Green’s functions in many-body theory 
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15]. The method has later been applied to atoms and
molecules [12, 16] and recently to 56Ni [17] and 48Ca [18].
The ab initio results of Ref. [18] are in good agreement
with (e, e′p) data for spectroscopic factors from Ref. [19]
and also show that the configuration space needed for the
incorporation of long-range (surface) correlations is much
larger than the space that can be utilized in large-scale
shell-model diagonalizations. In Ref. [20], the FRPA was
employed to calculate proton scattering on 16O and ob-
tain results for phase shifts and low-lying states in 17F.
However, the properties of the self-energy at larger scat-
tering energies which are now of great interest for the
developments of DOM potentials was not addressed. In
particular, one may expect to extract useful information
regarding the functional form of the DOM from a study
of the self-energy for a sequence of calcium isotopes. It
is the purpose of the present work to close this gap. We
have chosen in addition to 40Ca and 48Ca also to include
60Ca, since the latter isotope was studied with a DOM
extrapolation in Refs. [8, 9]. Some preliminary results of
these FRPA calculations for spectroscopic factors were
reported in Ref. [14] but the emphasis in the present work
is on the properties of the microscopically calculated self-
energies. The resulting analysis is intended to provide
a microscopic underpinning of the qualitative features of
empirical optical potentials. Additional information con-
cerning the degree and form of the non-locality of both
the real and imaginary parts of the self-energy will also
be addressed because it is of importance to assess the
current local implementations of the DOM method.
In Sec. II A we introduce some of the basic properties

for the analysis of the self-energy. The ingredients of the
FRPA calculation are presented in Sec. II C. The choice
of model space and realistic nucleon-nucleon (NN) inter-
action are discussed in Sec. III. We present our results
in Sec. IV and finally draw conclusions in Sec. V.

II. FORMALISM

In the Lehmann representation, the one-body Green’s
function is given by

gαβ(E) =
∑

n
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where α, β, ..., label a complete orthonormal basis set
and cα (c†β) are the corresponding second quantization
destruction (creation) operators. In these definitions,
|ΨA+1

n 〉, |ΨA−1
k 〉 are the eigenstates, and EA+1

n , EA−1
k

the eigenenergies of the (A ± 1)-nucleon isotope. The
structure of Eq. (1) is particularly useful for our pur-
poses. At positive energies, the residues of the first term,
〈ΨA+1

n |c†α|Ψ
A
0 〉, contain the scattering wave functions for

the elastic collision of a nucleon off the |ΨA
0 〉 ground state,

while at negative energies they give information on fi-
nal states of the nucleon capture process. Consequently,
the second term has poles below the Fermi energy (EF )
which carry information about the removal of a nucleon
and therefore clarify the structure of the target state |ΨA

0 〉
itself. Green’s function theory provides a natural frame-
work for describing physics both above and below the
Fermi surface in a consistent manner.
The propagator (1) can be obtained as a solution of

the Dyson equation,

gαβ(E) = g(0)αβ (E) +
∑

γδ

g(0)αγ (E)Σ%
γδ(E) gδβ(E) , (2)

in which g(0)(E) is the propagator for a free nucleon
(moving only with its kinetic energy). Σ%(E) is the irre-
ducible self-energy and represents the interaction of the
projectile (ejectile) with the target nucleus. Feshbach,
developed a formal microscopic theory for the optical po-
tential already in Ref. [21, 22] by projecting the many-
body Hamiltonian on the subspace of scattering states.
It has been proven that if Feshbach’s theory is extended
to a space including states both above and below the
Fermi surface, the resulting optical potential is exactly
the irreducible self-energy Σ%(E) [23] (see also Ref. [24]
and Ref. [25] for a shorter demonstration).
The above equivalence with the microscopic optical po-

tential is fundamental for the present study, since the
available knowledge from calculations based on Green’s
function theory can be used to suggest improvements of
optical models. In particular, in the DOM, the dispersion
relation obeyed by Σ%(E) is used to reduce the number of
parameters and to enforce the effects of causality. Thus
the DOM potentials can also be thought of as a repre-
sentation of the nucleon self-energy.

A. Self-Energy

For a J = 0 nucleus, all partial waves ($, j, τ) are
decoupled, where $,j label the orbital and total angu-
lar momentum and τ represents its isospin projection.
The irreducible self-energy in coordinate space (for ei-
ther a proton or a neutron) can be written in terms of
the harmonic-oscillator basis used in the FRPA calcula-
tion, as follows:

Σ%(x,x′;E) =
∑

&jmjτ

I&jmj
(Ω,σ)

×

[

∑

na,nb

Rna&(r)Σ
%
ab(E)Rnb&(r

′)

]

(I&jmj
(Ω′,σ′))∗, (3)

where x ≡ r,σ, τ . The spin variable is represented by
σ, n is the principal quantum number of the harmonic
oscillator, and a ≡ (na, $, j, τ) (note that for a J = 0 nu-
cleus the self-energy is independent ofmj). The standard
radial harmonic-oscillator function is denoted by Rn&(r),
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[CB,	
  M.Hjorth-­‐Jensen,	
  Pys.	
  Rev.	
  C79,	
  064313	
  (2009);	
  CB,	
  Phys.	
  Rev.	
  LeP.	
  103,	
  202502	
  (2009)]	
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Towards a global description exotic structures… 

??  terra incognita	
  



Calculating the spectral function: 
 

FRPA, ADC(3), and the like… 



Phys.Rev.C63,  
     034313 (2001) 
Phys.Rev.C65, 
    064313 (2002) 
Phys.Rev.A76, 
  　052503 (2007) 

“Extended”	
  
Hartree	
  Fock	
  

 ≥	
  2p1h/2h1p	
  configura=ons	
  	
  

Faddeev-RPA in two words… 
Faddeev-RPA:	
Self-energy  

(optical potential):	


•  A complete expansion requires all types of particle-vibration coupling: 
     gII(ω)  pairing effects, two-nucleon transfer 
  Π(ph)(ω)  collective motion, using RPA or beyond 
  Pauli exchange effects 
 

•  The Self-energy Σ(ω)　yields both single-particle states and scattering 
 

•  Finite nuclei: require high-performance computing 

R(2p1h) Σ(ω) = R(2h1p) 

≡	
  	
  
	
  par$cle	
  

≡	
  hole	
  



Faddeev-RPA in two words… 
Particle vibration coupling is the main cause driving the distribution of 
particle strength—a least close to the Fermi surface…	


n	
 p	


≡	
  	
  
	
  par$cle	
  

≡	
  hole	
  



•  Global picture of nuclear dynamics 
•  Reciprocal correlations among effective modes 
•  Guaranties macroscopic conservation laws 

gII(ω)	


pp/hh-RPA; two-nucleon transfer	


Π(ph)(ω)	

ph-RPA; response, giant resonances 

optical potential 

Dyson 
Eq.	


Single-
particle 
motion	


S(r,ω)	


Why self-consistency ??? 

Self-Consistent Green’s Function Approach 



gII(ω)	


Π(ph)(ω)	


Dyson 
Eq.	


Vlow-k
 , Λ=1.9 fm-1	


Binding energy 
benchmk, 4He	


[C. B., 
 arXiv:0909.0336] Ionization energies/ 

affinities, in atoms	

[CB, D. Van Neck, 
AIP Conf.Proc.1120,104 (‘09) & in prep] 

Isovector response 
for 32Ar, 34Ar	

Proton 
Pygmy 

[C. B., K. Langanke, et al., Phys Rev. C77, 024304 (2008)] 

IVGDR	


16O(p,γ)	


[C. B., B. K. Jennings 
 Nucl. Phys A758, 395c (2005) 
Phys Rev. C72, 014613 (2005)] 
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16O(e,e’pn)14N @ MAINZ	


[C. B., C. Giusti, et al. 
Phys Rev. C70, 014606 (2004) 
D. Middelton, et al. 
arXiv:0907.1758; EPJA in print] 

Self-Consistent Green’s Function Approach 
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Dyson equation 
✺ Propagators solves the Dyson equations 

✺ (Hole) single particle spectral function 
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✺ Koltun sum rule (for 2N interactions): 



Accuracy of FRPA – 4He binding energy 

FRPA/sc0 FRPA/sc	
 Exact: 
Vlow-k: -29.00(2) -29.2 ±0.15	
 -29.19(5)   (Fadd.-Yak.) 

self-consistency in the 
mean field only  

estimates from different approx. to 
self-consistency 

 Self-consistent FRPA compares well with 
benchmark calculations on 4He 

[Nogga et al.,  Phys. Rev. C70, 061002 (2004)]	


[C. B., arXiv:0909.0336; 
 CERN Conf. Proc. -2010-001, Vol. 1, p. 137 ] 



Accuracy of FRPA – simple atoms/molecules 

[M. Degroote, D. van Neck, C. B. 
 Phys. Rev. A 83, 042517 (2011);  
85, 012501 (2012)] 

4.2.
M

olecular
results

63

FTDA FTDAc FRPA FRPAc CCSD(T) FCI Expt.

H2

E0 −1.170 −1.161 −1.170 −1.161 −1.164 −1.164 −1.175
rH−H 0.769 0.757 0.770 0.757 0.761 0.741

I 16.16 16.03 16.16 16.03 16.12 16.08
BeH2

E0 −15.855 −15.831 −15.856 −15.832 −15.835 −15.836 -
rBe−H 1.374 1.337 1.383 1.337 1.339 1.340

I 11.89 11.78 11.84 11.76 11.89 -
HCl

E0 −460.295 −460.256 −460.293 −460.255 −460.254 -
rH−Cl 1.314 1.297 1.314 1.293 1.290 1.275

I 12.44 12.24 12.44 12.24 12.26 -
HF

E0 −100.175 −100.224 −100.173 −100.228 −100.228 −100.231 -
rH−F 0.904 0.916 0.897 0.913 0.920 0.917

I 15.70 15.70 15.56 15.54 15.42 16.12
H2O

E0 −76.248 −76.240 −76.243 −76.236 −76.241 -
rH−O 0.986 0.964 0.981 0.962 0.967 0.958

ΛO−H−O 101 102 100 102 102 104
I 12.07 12.15 12.25 12.21 11.94 12.61

Table 4.6: FRPA results for a set of small molecules with a correlation energy up to 200 mH in a cc-pVDZ basis set. The ground-state

energy E0 is given in Hartree, the ionization energy I in electronvolt, equilibrium bond distances are in Angstrom and the

equilibrium angles in degrees. FRPA and FTDA refer to the calculations after the first iteration, while FRPAc and FTDAc

refer to the calculations where consistency at the Hartree-Fock level was applied. The calculated data are compared to the

Coupled Cluster method at the level of CCSD(T) and to experimental data or exact calculations taken from Ref. [CCC10].

The FCI energies were calculated at the FRPAc geometry.
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TABLE IV. Ionization energies obtained with Hartree-Fock, second-order perturbation theory for the self-energy (plus the CHF term),
FTDA, and the full Faddeev RPA (in hartrees). All results are extrapolated from the cc-p(C)VQZ and cc-p(C)V5Z basis sets (see Table III).
The deviations from the experiment (indicated in parentheses) and the rms errors are given in mhartrees. The experimental energies are from
Refs. [62–64].

Second Experiment
Hartree-Fock order FTDA FRPA [63,64]

He 1s 0.918(+14) 0.9012(−2.5) 0.9025(−1.2) 0.9008(−2.9) 0.9037
Be2+ 1s 5.6672(+116) 5.6542(−1.4) 5.6554(−0.2) 5.6551(−0.5) 5.6556
Be 2s 0.3093(−34) 0.3187(−23.9) 0.3237(−18.9) 0.3224(−20.2) 0.3426

1s 4.733(+200) 4.5892(+56) 4.5439(+11) 4.5405(+8) 4.533
Ne 2p 0.852(+57) 0.752(−41) 0.8101(+17) 0.8037(+11) 0.793

2s 1.931(+149) 1.750(−39) 1.8057(+24) 1.7967(+15) 1.782
Mg2+ 2p 3.0068(+56.9) 2.9217(−28.2) 2.9572(+7.3) 2.9537(+3.8) 2.9499

2s 4.4827 4.3283 4.3632 4.3589
Mg 3s 0.253(−28) 0.267(−14) 0.272(−9) 0.280(−1) 0.281

2p 2.282(+162) 2.117(−3) 2.141(+21) 2.137(+17) 2.12
Ar 3p 0.591(+12) 0.563(−16) 0.581(+2) 0.579(≈ 0) 0.579

3s 1.277(+202) 1.111(+36) 1.087(+12) 1.065(−10) 1.075
3s 1.840 1.578 1.544

σrms [mH] 81.4 29.3 13.7 10.6

FRPA explains at least 99% of the correlation energies, and
all calculations, including CCSD, agree with the experiment
within the uncertainty expected from basis extrapolation. For
Z ! 10, the inclusion of RPA correlations predicts about 5 mH
more binding than the corresponding FTDA. The atom of Be
is the only exception to this trend, as already noted above. In
this case the 9 mH difference between FRPA and CCSD is
seen also in the basis limit. Based on the agreement between
FCI and CCSD in Table I, the remaining discrepancy with the
experiment (≈15 mH) may be due to the basis set employed,
which is probably not capable of accommodating the relevant
correlation effects. We have attempted FRPA calculations with
the aug-cc-pVXZ bases to allow for a better description of
the valence orbits but without any appreciable change in the
results.

The Ne atom was also computed in the FRPA approach by
using a Hartree-Fock basis with a discretized continuum [36].
The basis set was chosen to be as large as possible to approach
the basis-set limit for IEs and EAs but was not optimized for
treating core orbits. The total binding energy obtained was
128.888 H, away from both the basis-set limit of Table III and
the experiment.

Ionization energies are shown in Table IV, together with
the predictions from Hartree-Fock theory and the second-order
self-energy [obtained by retaining only the first two diagrams
of Fig. 1(b)]. Second-order corrections account for a large part
of correlations but still lead to sizable errors. The additional
correlations included in the present calculations appear to
reduce this error substantially. The FTDA [i.e. ADC(3)]
results give a measure of the importance of a treatment
that is consistent with at least third-order perturbation theory
[13]. Corrections are particularly large for states with higher
ionization energies, where the density of 2h1p states is
increased. Since configuration mixing among these states
is not introduced by strict second-order perturbation theory,
calculations at least at the level of FTDA are required in these
cases. Configuration mixing among the 2h1p states reduces

the errors in the 1s state in Be by a factor of 5. Another
effect is the fragmentation of the 3s orbit of Ar. Second-order
calculations predict this as a quasiparticle state 36 mH away
from the empirical energy and carrying 0.81 of the total orbit’s
intensity. A small satellite state with relative intensity of 0.10
is calculated at larger separation energies. The mixing with
2h1p configurations corrects the energies of both peaks and
redistributes their strengths more correctly. For the FRPA
calculation the peak at 1.065 H has intensity of 0.61, close
to the experimental values (peak at 1.075 H with intensity
0.55 [62]). The second peak is obtained at 1.544 H and carries
the remaining strength of the original quasiparticle.

Adding the effects of RPA excitations has a larger impact
on ionization than on correlation energies. Almost all the
calculated IEs shift closer to the experimental values by a
few millihartree. The only exceptions are the two-electron He
atom, where the RPA approach tends to overestimate correla-
tions, and the first ionization of Be, where soft excitations tend
to invalidate the RPA. In general, the rms error for the valence
orbits of Table IV decreases from 13.7 to 10.6 mH, passing
from FTDA to FRPA.

The FRPA first and second IEs of the Ne atom computed
using the discretized continuum basis of Ref. [36] are 0.801
and 1.795 H. These are in good agreement with the extrapo-
lations of Table IV and give us further confidence in applying
Eq. (7) also for quasiparticle states.

IV. CONCLUSIONS AND DISCUSSION

We have performed microscopic calculations of total and
ionization energies in order to assess the accuracy of the Fad-
deev RPA approach for light atoms. The FRPA is an expansion
of the many-body self-energy that makes explicit the coupling
between particles and collective excitations arising from
interacting electrons and holes. This formalism completely
includes the ADC(3) theory and retains all contributions from
perturbation theory up to third order, which is crucial for a
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The radial functions Y (r) and T (r) are the Yukawa and
tensor functions, respectively, the tensor operator is defined
as Sij = 3(σ i · r̂ ij )(σ j · r̂ ij ) − σ i · σ j , where r̂ ij is the unit
vector of the distance between particles i and j . To determine
the overall strength of the TBF and the relative strength
between the two terms two parameters are present (A < 0
and U > 0), to be tuned to reproduce the saturation properties
of symmetric nuclear matter. Since different NN potentials
lead to different saturation curves one should expect these
parameters to depend on the particular choice of the two-body
force.

The three-body interaction depends on the spatial, spin,
and isospin coordinates of the three nucleons, and in such
a form cannot be used in the calculations. We then need to
introduce some approximation and derive an effective two-
particle potential. This can be done by averaging the action of
the third nucleon, resulting in a mean field felt by the other
two:

V 3
eff(q, q ′) =

∑

στ

∫
d3k

(2π )3
n(k) V 3(k, q, q ′), (11)

where V 3(k, q, q ′) is the Fourier transformed form of Eq. (7)
and

n(k) =
∫

dω

2π
G<(k,ω) (12)

is the particle momentum distribution. The sum over spin
and isospin degrees of freedom just reminds us that V 3 has
a nontrivial structure in the σ and τ spaces which has to be
taken care of (we did not write explicitly spin and isospin
indices).

This average has to be performed for each of the three
nucleons and over all their possible permutations, resulting in
nine different terms. One has to pay particular attention to the
spin-isospin and tensor dependence of the various averages
and finally get, for each of the nine permutations, an effective
potential of the form

V 3
eff(q,q ′) = V R

s (q,q ′) + V 2π
s (q,q ′) + V 2π

στ (q, q ′)σ · σ ′τ · τ ′

+V 2π
Sτ (q, q ′)S(q, q ′) τ · τ ′, (13)

where V R
s , V 2π

s , V 2π
στ , and V 2π

Sτ are now scalar functions.
Once we have obtained V 3

eff (density dependent) we add it
to the two-body potential in Eq. (3)

V −→ V ′ = V + V 3
eff, (14)

and perform the T -matrix iteration.

IV. BINDING ENERGY AND SINGLE PARTICLE
PROPERTIES

We perform calculations with two different parametriza-
tions of the NN interaction, the CD-Bonn [49], and
the Nijmegen [50] potentials. For both of them we compute
the energy per particle directly from the expectation value
of the interaction Hamiltonian, for symmetric and for pure
neutron matter, with and without TBF. In the case of three-body
forces we have tuned the parameters A and U in Eqs. (8) and
(10) in the symmetric case in order to reproduce the saturation
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FIG. 1. (Color online) Energy per particle in symmetric nuclear
matter as a function of density (in units of the nuclear saturation
density ρ0 = 0.16 fm−3). T -matrix calculations are compared to the
variational [2] and BHF [9] approaches, both including TBF.

density ρ0 and binding energy E0. Since the averaging over
the third nucleon in TBF terms represents a rather crude
approximation, the resulting numerical values of the parame-
ters of the TBF are different than in other approaches.

A. Symmetric nuclear matter

The energy per particle as a function of density for sym-
metric nuclear matter is shown in Fig. 1. The calculations with
only two-body forces fail to reproduce the correct saturation
behavior, predicting a saturation density ρ = 1.47 ρ0 in the
case of the Nijmegen potential and ρ = 1.79 ρ0 for CD-Bonn.
After the inclusion of three-nucleon interactions the situation
is significantly improved, with both curves saturating around
the phenomenological value ρ0 = 0.16 fm−3 and yielding a
correct binding energy1 (Nijmegen EB = −16.4 MeV and
CD-Bonn EB = −16.3 MeV).

1We estimate the numerical error on all the energy calculations to
be ±0.5 MeV, for details see [26].
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FIG. 2. (Color online) Spectral function at zero momentum for
CD-Bonn interaction and symmetric nuclear matter, at ρ0, 2ρ0, and
3ρ0.
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FIG. 2: Single-particle energies of the neutron d5/2, s1/2 and
d3/2 orbitals measured from the energy of 16O as a function of
neutron number N . (a) SPE calculated from a G matrix and
from low-momentum interactions Vlow k. (b) SPE obtained
from the phenomenological forces SDPF-M [14] and USD-
B [15]. (c,d) SPE including contributions from 3N forces due
to∆ excitations and chiral EFT 3N interactions at N2LO [26].
The changes due to 3N forces based on ∆ excitations are
highlighted by the shaded areas.

sures N = 8, 14, 16, and 20. The evolution of the SPE
is due to interactions as neutrons are added. For the
SPE based on NN forces in Fig. 2 (a), the d3/2 orbital
decreases rapidly as neutrons occupy the d5/2 orbital,
and remains well-bound from N = 14 on. This leads
to bound oxygen isotopes out to N = 20 and puts the
neutron drip-line incorrectly at 28O. This result appears
to depend only weakly on the renormalization method
or the NN interaction used. We demonstrate this by
showing SPE calculated in the G matrix formalism [11],
which sums particle-particle ladders, and based on low-
momentum interactions Vlow k [12] obtained from chiral
NN interactions at next-to-next-to-next-to-leading order
(N3LO) [13] using the renormalization group. Both cal-
culations include core polarization effects perturbatively
(including diagram Fig. 3 (d) with the ∆ replaced by a
nucleon and all other second-order diagrams) and start
from empirical SPE [14] in 17O. The empirical SPEs con-
tain effects from the core and its excitations, including
effects due to 3N forces.
We next show in Fig. 2 (b) the SPE obtained from the

phenomenological forces SDPF-M [14] and USD-B [15]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2 (a): As neutrons occupy the d5/2 orbital,
with N evolving from 8 to 14, the d3/2 orbital remains
almost at the same energy and is not well-bound out to
N = 20. The dominant differences between Figs. 2 (a)
and (b) can be traced to the two-body monopole compo-
nents, which determine the average interaction between
two orbitals. The monopole components of a general two-
body interaction V are given by an angular average over
all possible orientations of the two nucleons in orbitals lj
and l′j′ [16],

V mono
j,j′ =

∑

m,m′

〈jm j′m′|V |jm j′m′〉
/

∑

m,m′

1 , (1)

where the sum over magnetic quantum numbers m and
m′ can be restricted by antisymmetry (see [17, 18] for
details). The SPE of the orbital j is effectively shifted by
V mono
j,j′ multiplied by the occupation number of the orbital

j′. This leads to the change in the SPE and determines
shell structure and the location of the drip-line [17–20].
The comparison of Figs. 2 (a) and (b) suggests that the

monopole interaction between the d3/2 and d5/2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction
on the d3/2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [21].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repul-
sive monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion princi-
ple. Figure 3 (a) depicts the leading contribution to NN
forces due to the excitation of a ∆, induced by the ex-
change of pions with another nucleon. Because this is
a second-order perturbation, its contribution to the en-
ergy and to the two-neutron monopole components has
to be attractive. This is part of the attractive d3/2-d5/2
monopole component obtained from NN forces.
In nuclei, the process of Fig. 3 (a) leads to a change of

the SPE of the j,m orbital due to the excitation of a core
nucleon to a ∆, as illustrated in Fig. 3 (b) where the ini-
tial valence neutron is virtually excited to another j′,m′

orbital. As discussed, this lowers the energy of the j,m
orbital and thus increases its binding. However, in nuclei
this process is forbidden by the Pauli exclusion princi-
ple, if another neutron occupies the same orbital j′,m′,
as shown in Fig. 3 (c). The corresponding contribution
must then be subtracted from the SPE change due to
Fig. 3 (b). This is taken into account by the inclusion

Chiral EFT for nuclear forces: 
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FIG. 6. (Color online) (Data points) CCSD results (taken at the
h̄ω minima) for the binding energy of 4He with 3NFs as a function of
the number of oscillator shells. (Dashed lines) Exponential fit to the
data and asymptote of the fit. (Full line) Exact result.

due to the sharp cutoff in Vlow k . This might be improved by
using low-momentum interactions with smooth cutoffs [58].
Using the minima of the CCSD results with 3NFs, we make
an exponential fit of the form E(N ) = E∞ + a exp (−bN ) to
the data points. The result is shown in Fig. 6. The extrapolated
infinite model space value is E∞ = −28.09 MeV, which is
very close to the exact result E = −28.20(5) MeV.

It is interesting to analyze the different contributions "E
to the binding energy E. The individual contributions are
given in Fig. 7 for a model space of N = 4 oscillator shells
and h̄ω = 20 MeV. The main contribution stems from the
low-momentum NN interaction. The contributions from 3NFs
account only for about 10% of the total binding energy. This
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FIG. 7. (Color online) Relative contributions |"E/E| to the
binding energy of 4He at the CCSD level. The different points denote
the contributions from (1) low-momentum NN interactions, (2) the
vacuum expectation value of the 3NF, (3) the normal-ordered one-
body Hamiltonian due to the 3NF, (4) the normal-ordered two-body
Hamiltonian due to the 3NF, and (5) the residual 3NFs. The dotted
line estimates the corrections due to omitted three-particle/three-hole
clusters.

is consistent with the chiral EFT power-counting estimate
〈V3N〉 ∼ (Q/#χ )3〈Vlow k〉 ≈ 0.1〈Vlow k〉 [50] (see also Table I
in Ref. [52]). The second, third, and fourth largest contribution
are due to the first, second, and third term on the right-hand
side of Eq. (2). These are the density-dependent zero-, one-,
and two-body terms, which resulted from the normal ordering
of the three-body Hamiltonian in coupled-cluster theory.
The contributions from the residual three-body Hamiltonian,
Eq. (3), are very small and are represented by the last point
in Fig. 7. Recall that the residual 3NF contributes to the
energy directly through Eq. (12) and indirectly through a
modification of the cluster amplitudes via Eqs. (15) and (16).
Apparently, both contributions are very small. In addition and
independent of the result that low-momentum 3N interactions
are perturbative for cutoffs # <∼ 2 fm−1 [50], we find here that
the contributions of 3NFs decrease rapidly with increasing
rank of the normal-ordered terms.

The small contribution from the residual three-body Hamil-
tonian is the most important result of our study. It suggests that
one can neglect the residual terms of the 3NF when computing
binding energies of light nuclei. This is not unexpected
and has been anticipated in several earlier studies. Mihaila
and Heisenberg [19] computed the charge form factor for
16O within coupled-cluster theory and found a very good
agreement with experimental data by considering only the
density-dependent one- and two-body parts of 3NFs. Similarly,
Navrátil and Ormand [59] observed in no-core shell-model
calculations that density-dependent two-body terms are the
most significant contributions of effective three-body forces.
Our finding also support Zuker’s [60] idea that monopole
corrections to valence-shell interactions are due to the density-
dependent terms of 3NFs. Note finally that the modeling of
three-body interactions in terms of density-dependent two-
body Hamiltonians has a long history, see, e.g., Ref. [61].
Note that all these examples and the present study employ
sufficiently “soft” or “effective” interactions. We expect
that the smallness of residual 3NFs is a property of such
interactions. We will study the cutoff dependence of this
finding in future work. Finally, the smallness of residual
3NFs is also encouraging for future improved nuclear matter
calculations, which currently include low-momentum 3NFs
through density-dependent NN interactions [51].

The smallness of the residual three-body terms is also for
coupled-cluster calculations a most welcome result. This is
attractive for two reasons. First, the inclusion of the residual
three-nucleon Hamiltonian, as described in subsection II B,
is computationally expensive. It exceeds the cost of a CCSD
calculation for two-body Hamiltonians by a factor of order
O(nu) + O(n2

o) and is therefore significant for a large number
of unoccupied orbitals and/or large number of nucleons.
Second, the omission of the residual three-body Hamiltonian
will allow us to treat 3NFs within the standard coupled-cluster
theory developed for two-body Hamiltonians (after normal
ordering). As a result, we can take the CCSD calculations
one step further and include perturbative corrections of three-
particle/three-hole clusters [62].

Let us neglect the residual 3NF terms of Eq. (3) and
perform CCSD(T) calculations for the binding energy of 4He.
The approximate inclusion of three-particle/three-hole clusters
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due to the sharp cutoff in Vlow k . This might be improved by
using low-momentum interactions with smooth cutoffs [58].
Using the minima of the CCSD results with 3NFs, we make
an exponential fit of the form E(N ) = E∞ + a exp (−bN ) to
the data points. The result is shown in Fig. 6. The extrapolated
infinite model space value is E∞ = −28.09 MeV, which is
very close to the exact result E = −28.20(5) MeV.

It is interesting to analyze the different contributions "E
to the binding energy E. The individual contributions are
given in Fig. 7 for a model space of N = 4 oscillator shells
and h̄ω = 20 MeV. The main contribution stems from the
low-momentum NN interaction. The contributions from 3NFs
account only for about 10% of the total binding energy. This
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vacuum expectation value of the 3NF, (3) the normal-ordered one-
body Hamiltonian due to the 3NF, (4) the normal-ordered two-body
Hamiltonian due to the 3NF, and (5) the residual 3NFs. The dotted
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is consistent with the chiral EFT power-counting estimate
〈V3N〉 ∼ (Q/#χ )3〈Vlow k〉 ≈ 0.1〈Vlow k〉 [50] (see also Table I
in Ref. [52]). The second, third, and fourth largest contribution
are due to the first, second, and third term on the right-hand
side of Eq. (2). These are the density-dependent zero-, one-,
and two-body terms, which resulted from the normal ordering
of the three-body Hamiltonian in coupled-cluster theory.
The contributions from the residual three-body Hamiltonian,
Eq. (3), are very small and are represented by the last point
in Fig. 7. Recall that the residual 3NF contributes to the
energy directly through Eq. (12) and indirectly through a
modification of the cluster amplitudes via Eqs. (15) and (16).
Apparently, both contributions are very small. In addition and
independent of the result that low-momentum 3N interactions
are perturbative for cutoffs # <∼ 2 fm−1 [50], we find here that
the contributions of 3NFs decrease rapidly with increasing
rank of the normal-ordered terms.

The small contribution from the residual three-body Hamil-
tonian is the most important result of our study. It suggests that
one can neglect the residual terms of the 3NF when computing
binding energies of light nuclei. This is not unexpected
and has been anticipated in several earlier studies. Mihaila
and Heisenberg [19] computed the charge form factor for
16O within coupled-cluster theory and found a very good
agreement with experimental data by considering only the
density-dependent one- and two-body parts of 3NFs. Similarly,
Navrátil and Ormand [59] observed in no-core shell-model
calculations that density-dependent two-body terms are the
most significant contributions of effective three-body forces.
Our finding also support Zuker’s [60] idea that monopole
corrections to valence-shell interactions are due to the density-
dependent terms of 3NFs. Note finally that the modeling of
three-body interactions in terms of density-dependent two-
body Hamiltonians has a long history, see, e.g., Ref. [61].
Note that all these examples and the present study employ
sufficiently “soft” or “effective” interactions. We expect
that the smallness of residual 3NFs is a property of such
interactions. We will study the cutoff dependence of this
finding in future work. Finally, the smallness of residual
3NFs is also encouraging for future improved nuclear matter
calculations, which currently include low-momentum 3NFs
through density-dependent NN interactions [51].

The smallness of the residual three-body terms is also for
coupled-cluster calculations a most welcome result. This is
attractive for two reasons. First, the inclusion of the residual
three-nucleon Hamiltonian, as described in subsection II B,
is computationally expensive. It exceeds the cost of a CCSD
calculation for two-body Hamiltonians by a factor of order
O(nu) + O(n2

o) and is therefore significant for a large number
of unoccupied orbitals and/or large number of nucleons.
Second, the omission of the residual three-body Hamiltonian
will allow us to treat 3NFs within the standard coupled-cluster
theory developed for two-body Hamiltonians (after normal
ordering). As a result, we can take the CCSD calculations
one step further and include perturbative corrections of three-
particle/three-hole clusters [62].

Let us neglect the residual 3NF terms of Eq. (3) and
perform CCSD(T) calculations for the binding energy of 4He.
The approximate inclusion of three-particle/three-hole clusters
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
φn

α

)∗
φn

β

ω − εIMP
n + iη

+
∑

k∈F
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k − iη

, (14)

064313-5

Σ∗ +
1
2

+

QUASIPARTICLE AND QUASIHOLE STATES OF NUCLEI . . . PHYSICAL REVIEW C 79, 064313 (2009)

+

+−

=

=g II

Π

g

Π(ph)

(pp/hh)II

(ph)

(pp/hh)

FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
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µ′′ν ′′λ′′,µνλ(ω)
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(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
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µ′′ν ′′λ′′,µνλ(ω)
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µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],
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αβγ,µνλ(ω) = G0>
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]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
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µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
φn

α

)∗
φn

β

ω − εIMP
n + iη

+
∑

k∈F

φk
α

(
φk

β

)∗

ω − εIMP
k − iη

, (14)

064313-5

Ṽ
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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tion method up to third order in the the perturbation

theory (PT): ADC(3). Here the contribution of 2p − 1h
and 2h−1p are consistently included and the interaction

between pp/hh or ph are modeled with a TDA scheme.

The same level of both accuracy and consistency can be

obtained using Fadeev-TDA in a re-phrased formulation

that has been fully described in several papers in the case

of two-body interaction only [3]. The inclusion of 3NF

effects can be done passing from T , V operators, to the

effective T̃ ,Ṽ : the new equations concerning polarization

and particle-particle (hole-hole) propagator in TDA ap-

proximation are shown diagrammatically in fig. (4) to-

gether with the effective the two-body potential (see fig.

3). In the FTDA approach then we still need to add them

consistently to shape the (2p − 1h − 2h − 1p)irreducible

propagator R(w) (see for example [4]), whose contribu-

tion to the s-p self energy in the 2p-1h channel, is drawn

in (3) (the 2h-1p is straightforward). Moreover, in (3)

we show how the new arising 3NF effective terms can be

summed up using slightly modified FTDA integral equa-

tion. The need to separate one and two-body contribu-

tion of 3NF is clear and lays on the difference between the

combinatorial factors in the two cases. All the properties

of these equations still remain: they include the effect

of ph and pp/hh motion allowing interferences between

them, and at the same time giving the right combinato-

rial factor to the second order diagrams without the need

of spurious subtraction.

B. Iterative methods

The SCGF approach has been fully described in previ-

ous papers[3, 4] although they were limited to 2NF only

. The self-energy matrix Σ
�

ββ� is expanded in term of the

dressed propagator up to the order and the level of ac-

curacy required. All the lines in Σ
�

should be thought

as dressed, this means that the actual degrees of freedom

are the excitations of the fully correlated system. The ef-

fects of the fragmentation are already included in the self-

consistency calculation. In practical case, we need an in-

put propagator to start with, we choose the HF propaga-

tor to construct the dynamical part �Σ�
(ω) of self-energy

in (5). The g1st
iteration

(ω) solution of Dyson equation in

(4) is then employed to evaluate the self-energy for sec-

ond cycle. This procedure is iterated up to convergence.

The inclusion of 3NF does not modify this scheme, never-

theless the two-body potential is now density-dependent.

This increases sharply the computational time required

since �T , �V should be re-built at each step. We discuss in

a different section, several approximations aimed to limit

the computational time.

C. Evaluation of �W �

The mean value of �W �, in eq. (14), can be estimated

at several orders in PT thanks to the perturbative ex-

pansion of ppp/hhh propagator in eq. (??). It is an aim

of the present work to investigate which approximations

are required to achieve a proper level of accuracy. The

dominant contribution comes from the HF term

�W �0−HF ≡ 1

6
Wαβγ,µνξ ρ0

µα
ρ0

ν,β
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ξ,γ
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄
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(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
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+
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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Ṽ

Ṽ
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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Ṽ

QUASIPARTICLE AND QUASIHOLE STATES OF NUCLEI . . . PHYSICAL REVIEW C 79, 064313 (2009)

+

+−

=

=g II

Π

g

Π(ph)

(pp/hh)II

(ph)

(pp/hh)

FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
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µ′′ν ′′λ′′,µνλ(ω)
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(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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n#∈F

(
φn

α

)∗
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β
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+
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where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄
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µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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tion method up to third order in the the perturbation

theory (PT): ADC(3). Here the contribution of 2p − 1h
and 2h−1p are consistently included and the interaction

between pp/hh or ph are modeled with a TDA scheme.

The same level of both accuracy and consistency can be

obtained using Fadeev-TDA in a re-phrased formulation

that has been fully described in several papers in the case

of two-body interaction only [3]. The inclusion of 3NF

effects can be done passing from T , V operators, to the

effective T̃ ,Ṽ : the new equations concerning polarization

and particle-particle (hole-hole) propagator in TDA ap-

proximation are shown diagrammatically in fig. (4) to-

gether with the effective the two-body potential (see fig.

3). In the FTDA approach then we still need to add them

consistently to shape the (2p − 1h − 2h − 1p)irreducible

propagator R(w) (see for example [4]), whose contribu-

tion to the s-p self energy in the 2p-1h channel, is drawn

in (3) (the 2h-1p is straightforward). Moreover, in (3)

we show how the new arising 3NF effective terms can be

summed up using slightly modified FTDA integral equa-

tion. The need to separate one and two-body contribu-

tion of 3NF is clear and lays on the difference between the

combinatorial factors in the two cases. All the properties

of these equations still remain: they include the effect

of ph and pp/hh motion allowing interferences between

them, and at the same time giving the right combinato-

rial factor to the second order diagrams without the need

of spurious subtraction.

B. Iterative methods

The SCGF approach has been fully described in previ-

ous papers[3, 4] although they were limited to 2NF only

. The self-energy matrix Σ
�

ββ� is expanded in term of the

dressed propagator up to the order and the level of ac-

curacy required. All the lines in Σ
�

should be thought

as dressed, this means that the actual degrees of freedom

are the excitations of the fully correlated system. The ef-

fects of the fragmentation are already included in the self-

consistency calculation. In practical case, we need an in-

put propagator to start with, we choose the HF propaga-

tor to construct the dynamical part �Σ�
(ω) of self-energy

in (5). The g1st
iteration

(ω) solution of Dyson equation in

(4) is then employed to evaluate the self-energy for sec-

ond cycle. This procedure is iterated up to convergence.

The inclusion of 3NF does not modify this scheme, never-

theless the two-body potential is now density-dependent.

This increases sharply the computational time required

since �T , �V should be re-built at each step. We discuss in

a different section, several approximations aimed to limit

the computational time.

C. Evaluation of �W �

The mean value of �W �, in eq. (14), can be estimated

at several orders in PT thanks to the perturbative ex-

pansion of ppp/hhh propagator in eq. (??). It is an aim

of the present work to investigate which approximations

are required to achieve a proper level of accuracy. The

dominant contribution comes from the HF term

�W �0−HF ≡ 1

6
Wαβγ,µνξ ρ0

µα
ρ0

ν,β
ρ0

ξ,γ
, (16)
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
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+
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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(
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄
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µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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tion method up to third order in the the perturbation

theory (PT): ADC(3). Here the contribution of 2p − 1h
and 2h−1p are consistently included and the interaction

between pp/hh or ph are modeled with a TDA scheme.

The same level of both accuracy and consistency can be

obtained using Fadeev-TDA in a re-phrased formulation

that has been fully described in several papers in the case

of two-body interaction only [3]. The inclusion of 3NF

effects can be done passing from T , V operators, to the

effective T̃ ,Ṽ : the new equations concerning polarization

and particle-particle (hole-hole) propagator in TDA ap-

proximation are shown diagrammatically in fig. (4) to-

gether with the effective the two-body potential (see fig.

3). In the FTDA approach then we still need to add them

consistently to shape the (2p − 1h − 2h − 1p)irreducible

propagator R(w) (see for example [4]), whose contribu-

tion to the s-p self energy in the 2p-1h channel, is drawn

in (3) (the 2h-1p is straightforward). Moreover, in (3)

we show how the new arising 3NF effective terms can be

summed up using slightly modified FTDA integral equa-

tion. The need to separate one and two-body contribu-

tion of 3NF is clear and lays on the difference between the

combinatorial factors in the two cases. All the properties

of these equations still remain: they include the effect

of ph and pp/hh motion allowing interferences between

them, and at the same time giving the right combinato-

rial factor to the second order diagrams without the need

of spurious subtraction.

B. Iterative methods

The SCGF approach has been fully described in previ-

ous papers[3, 4] although they were limited to 2NF only

. The self-energy matrix Σ
�

ββ� is expanded in term of the

dressed propagator up to the order and the level of ac-

curacy required. All the lines in Σ
�

should be thought

as dressed, this means that the actual degrees of freedom

are the excitations of the fully correlated system. The ef-

fects of the fragmentation are already included in the self-

consistency calculation. In practical case, we need an in-

put propagator to start with, we choose the HF propaga-

tor to construct the dynamical part �Σ�
(ω) of self-energy

in (5). The g1st
iteration

(ω) solution of Dyson equation in

(4) is then employed to evaluate the self-energy for sec-

ond cycle. This procedure is iterated up to convergence.

The inclusion of 3NF does not modify this scheme, never-

theless the two-body potential is now density-dependent.

This increases sharply the computational time required

since �T , �V should be re-built at each step. We discuss in

a different section, several approximations aimed to limit

the computational time.

C. Evaluation of �W �

The mean value of �W �, in eq. (14), can be estimated

at several orders in PT thanks to the perturbative ex-

pansion of ppp/hhh propagator in eq. (??). It is an aim

of the present work to investigate which approximations

are required to achieve a proper level of accuracy. The

dominant contribution comes from the HF term

�W �0−HF ≡ 1
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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Ṽ

QUASIPARTICLE AND QUASIHOLE STATES OF NUCLEI . . . PHYSICAL REVIEW C 79, 064313 (2009)

+

+−

=

=g II

Π

g

Π(ph)

(pp/hh)II

(ph)

(pp/hh)

FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of
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Ṽ

QUASIPARTICLE AND QUASIHOLE STATES OF NUCLEI . . . PHYSICAL REVIEW C 79, 064313 (2009)

+

+−

=

=g II

Π

g

Π(ph)

(pp/hh)II

(ph)

(pp/hh)

FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)
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(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)
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(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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tion method up to third order in the the perturbation

theory (PT): ADC(3). Here the contribution of 2p − 1h
and 2h−1p are consistently included and the interaction

between pp/hh or ph are modeled with a TDA scheme.

The same level of both accuracy and consistency can be

obtained using Fadeev-TDA in a re-phrased formulation

that has been fully described in several papers in the case

of two-body interaction only [3]. The inclusion of 3NF

effects can be done passing from T , V operators, to the

effective T̃ ,Ṽ : the new equations concerning polarization

and particle-particle (hole-hole) propagator in TDA ap-

proximation are shown diagrammatically in fig. (4) to-

gether with the effective the two-body potential (see fig.

3). In the FTDA approach then we still need to add them

consistently to shape the (2p − 1h − 2h − 1p)irreducible

propagator R(w) (see for example [4]), whose contribu-

tion to the s-p self energy in the 2p-1h channel, is drawn

in (3) (the 2h-1p is straightforward). Moreover, in (3)

we show how the new arising 3NF effective terms can be

summed up using slightly modified FTDA integral equa-

tion. The need to separate one and two-body contribu-

tion of 3NF is clear and lays on the difference between the

combinatorial factors in the two cases. All the properties

of these equations still remain: they include the effect

of ph and pp/hh motion allowing interferences between

them, and at the same time giving the right combinato-

rial factor to the second order diagrams without the need

of spurious subtraction.

B. Iterative methods

The SCGF approach has been fully described in previ-

ous papers[3, 4] although they were limited to 2NF only

. The self-energy matrix Σ
�

ββ� is expanded in term of the

dressed propagator up to the order and the level of ac-

curacy required. All the lines in Σ
�

should be thought

as dressed, this means that the actual degrees of freedom

are the excitations of the fully correlated system. The ef-

fects of the fragmentation are already included in the self-

consistency calculation. In practical case, we need an in-

put propagator to start with, we choose the HF propaga-

tor to construct the dynamical part �Σ�
(ω) of self-energy

in (5). The g1st
iteration

(ω) solution of Dyson equation in

(4) is then employed to evaluate the self-energy for sec-

ond cycle. This procedure is iterated up to convergence.

The inclusion of 3NF does not modify this scheme, never-

theless the two-body potential is now density-dependent.

This increases sharply the computational time required

since �T , �V should be re-built at each step. We discuss in

a different section, several approximations aimed to limit

the computational time.

C. Evaluation of �W �

The mean value of �W �, in eq. (14), can be estimated

at several orders in PT thanks to the perturbative ex-

pansion of ppp/hhh propagator in eq. (??). It is an aim

of the present work to investigate which approximations

are required to achieve a proper level of accuracy. The

dominant contribution comes from the HF term

�W �0−HF ≡ 1

6
Wαβγ,µνξ ρ0

µα
ρ0

ν,β
ρ0

ξ,γ
, (16)
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
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+
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)

(ph)

(pp/hh)

ΠΠ
II

Π(ph)

gII (pp/hh)

(ph)

Π(ph)

g

FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
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α

)∗
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β
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+
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)

(ph)

(pp/hh)

ΠΠ
II

Π(ph)

gII (pp/hh)

(ph)

Π(ph)

g

FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
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φn

β

ω − εIMP
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+
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =
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+
∑

k∈F

φk
α

(
φk

β

)∗

ω − εIMP
k − iη

, (14)

064313-5
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
φn

α

)∗
φn

β

ω − εIMP
n + iη

+
∑

k∈F

φk
α

(
φk

β

)∗

ω − εIMP
k − iη

, (14)
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ ,µνλ(ω) = G0>

αβγ ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)

+ R̄
(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ ,µνλ(ω) = Uαβγ ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †

µ′′ν ′′λ′′,µνλ, (13)
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
φn

α

)∗
φn

β

ω − εIMP
n + iη

+
∑

k∈F
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α

(
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β
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k − iη
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FIG. 1. (Color online) Diagrammatic equations for the polar-
ization (top) and the two-particle (bottom) propagators in the
RPA approach. Dashed lines are matrix elements of the effective
nucleon-nucleon interaction, Eq. (8). The solid lines represent the
independent-particle model propagator gIPM(ω), which is employed
instead of the fully dressed one. See the text for details.

where G0>(ω) is the 2p1h propagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63],

R̄
(i)
αβγ,µνλ(ω) = G0>

αβγ,µ′ν ′λ′(ω)'(i)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)

[
R̄

(j )
µ′′ν ′′λ′′,µνλ(ω)
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(k)
µ′′ν ′′λ′′,µνλ(ω) + G0>

µ′′ν ′′λ′′,µνλ(ω)

−G0>

ν ′′µ′′λ′′,µνλ(ω)
]
, i = 1, 2, 3, (12)

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction vertices '(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagator R(ω) which we employ in Eq. (3) is finally
obtained by

R
(2p1h)
αβγ,µνλ(ω) = Uαβγ,µ′ν ′λ′R̄

(2p1h)
µ′ν ′λ′,µ′′ν ′′λ′′ (ω)U †
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FIG. 2. (Color online) Example of one of the diagrams that
are summed to all orders by means of the Faddeev random phase
approximation Eqs. (12) (left). The corresponding contribution to the
self-energy, obtained upon insertion into Eq. (3), is also shown (right).

where the matrix U has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to the third order.
The explicit formulas of the matrices '(i)(ω) and U are given
in terms of the propagators of Eqs. (9), (10), and (14) and the
interaction Vαβ,γ δ . They are discussed in detail in Ref. [51]. The
calculation of the 2h1p component of R(ω) follows completely
analogous steps.

The present formalism includes the effects of ph and pp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams like the one displayed
in Fig. 2. The Faddeev equations also ensure that the Pauli
principle is correctly taken into account at the 2p1h and
2h1p level. In addition, one can in principle employ dressed
single-particle propagators in these equations to generate a
fully self-consistent solution, as done in Refs. [29] and [31]
for valence orbits around 16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
)MF part of the self-energy and the polarization propagator
R(ω) are expressed directly in terms of the exact single-particle
propagator g(ω). The lines in Figs. 1 and 2 should thus
represent the fully dressed propagator obtained by solving the
Dyson equation. Because the degrees of freedom contained
in Eq. (1) are excitations of the fully correlated system,
the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an
approximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iterated
to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation of both
microscopic and macroscopic properties [64,65]. Intuitively,
the self-consistency requirement becomes important whenever
dynamical correlations modify substantially the response with
respect to the Hartree-Fock mean field (an example is the
band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point for
any application of perturbation theory and other many-body
techniques. However, the self-consistent approach requires
using correlated quasiparticle energies and wave functions [the
poles and residues of Eq. (1)]. These degrees of freedom form
an optimal starting point for studies of many-body dynamics
at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation
increases the computational load as one moves to larger
nuclei and model spaces. In this situation it is convenient to
expand R(ω) in terms of an independent-particle model (IPM)
propagator. This should approximate the dressed one but with
a limited number of poles. Thus, we solve Eqs. (12) in terms
of

gIPM
αβ (ω) =

∑

n#∈F

(
φn

α

)∗
φn

β

ω − εIMP
n + iη

+
∑

k∈F
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β

)∗
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tion method up to third order in the the perturbation

theory (PT): ADC(3). Here the contribution of 2p − 1h
and 2h−1p are consistently included and the interaction

between pp/hh or ph are modeled with a TDA scheme.

The same level of both accuracy and consistency can be

obtained using Fadeev-TDA in a re-phrased formulation

that has been fully described in several papers in the case

of two-body interaction only [3]. The inclusion of 3NF

effects can be done passing from T , V operators, to the

effective T̃ ,Ṽ : the new equations concerning polarization

and particle-particle (hole-hole) propagator in TDA ap-

proximation are shown diagrammatically in fig. (4) to-

gether with the effective the two-body potential (see fig.

3). In the FTDA approach then we still need to add them

consistently to shape the (2p − 1h − 2h − 1p)irreducible

propagator R(w) (see for example [4]), whose contribu-

tion to the s-p self energy in the 2p-1h channel, is drawn

in (3) (the 2h-1p is straightforward). Moreover, in (3)

we show how the new arising 3NF effective terms can be

summed up using slightly modified FTDA integral equa-

tion. The need to separate one and two-body contribu-

tion of 3NF is clear and lays on the difference between the

combinatorial factors in the two cases. All the properties

of these equations still remain: they include the effect

of ph and pp/hh motion allowing interferences between

them, and at the same time giving the right combinato-

rial factor to the second order diagrams without the need

of spurious subtraction.

B. Iterative methods

The SCGF approach has been fully described in previ-

ous papers[3, 4] although they were limited to 2NF only

. The self-energy matrix Σ
�

ββ� is expanded in term of the

dressed propagator up to the order and the level of ac-

curacy required. All the lines in Σ
�

should be thought

as dressed, this means that the actual degrees of freedom

are the excitations of the fully correlated system. The ef-

fects of the fragmentation are already included in the self-

consistency calculation. In practical case, we need an in-

put propagator to start with, we choose the HF propaga-

tor to construct the dynamical part �Σ�
(ω) of self-energy

in (5). The g1st
iteration

(ω) solution of Dyson equation in

(4) is then employed to evaluate the self-energy for sec-

ond cycle. This procedure is iterated up to convergence.

The inclusion of 3NF does not modify this scheme, never-

theless the two-body potential is now density-dependent.

This increases sharply the computational time required

since �T , �V should be re-built at each step. We discuss in

a different section, several approximations aimed to limit

the computational time.

C. Evaluation of �W �

The mean value of �W �, in eq. (14), can be estimated

at several orders in PT thanks to the perturbative ex-

pansion of ppp/hhh propagator in eq. (??). It is an aim

of the present work to investigate which approximations

are required to achieve a proper level of accuracy. The

dominant contribution comes from the HF term

�W �0−HF ≡ 1

6
Wαβγ,µνξ ρ0

µα
ρ0

ν,β
ρ0

ξ,γ
, (16)

Then:	
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where ρ0
means the one-body density matrix calculated

in HF approximation. This states the energy scale the

value �W � is fixed to. Beyond the first order, we now

include correlations among particles. In the first step

we use a two-body density matrix ρ(II)RPA
evaluated in

Ladder-RPA approximation,

�W �0−RPA ≡ Wαβγ,µνξ

�
1

4
ρ0

µα
ρ(II)RPA

νξ,βγ
+ (17)

−1

3
ρ0

µα
ρ0

ν,β
ρ0

ξ,γ

�
.

This expression takes into account contributions coming

from the correlation between 1
st−2

nd, 2nd−3
rd

and 1
st−

3
rd

particles in Ladder-RPA approximation. The second

term of lhs provides for the right combinatorial factor

in PT. Nevertheless we are still using the first order HF

propagator disregarding higher-order contribution in the

self-energy coming from the dynamical part. We, first,

substituted the HF ρ0
with its dressed version ρD

but

keeping the same approximation for ρ(II)RPA

�W �D−RPA ≡ Wαβγ,µνξ

�
1

4
ρD

µα
ρ(II)RPA

νξ,βγ
+ (18)

−1

3
ρ0

µα
ρ0

ν,β
ρ0

ξ,γ

�
,

and then we use one-body dressed density matrix ρD

only:

�W �D−HF ≡ 1

6
Wαβγ,µνξ ρD

µα
ρD

ν,β
ρD

ξ,γ
. (19)

To figure out the general trend of �W � we plot the

last three approximations in fig. (5), solving the Dyson

in ADC(3) approximation described in section (IV B 1).

The figure concerns two isotopes only,
16,24O.

IV. CONVERGENCE AND APPROXIMATION
FOR B.E.

A. HF Result

In this section we neglect the energy-dependent part

of self-energy arising from order in PT beyond the first.

Consequently, looking at 1st order in PT, we have the

same accuracy in evaluating �V �, �W � and �T �. The ex-

tended Koltum sum rules equations (14-15) give the same

result and we don’t need any further approximations.

Correlations among particles are neglected since they ap-

pear at 2
nd

order in PT. Ground state energies for
16,24O

are plotted in figure (1) with both full and induced 3NF.

B. ADC(3)/sc0 result

As already stated in section (III B), the effective po-

tentials �V , �T are not fixed quantities. Their dependence

�

�

�
�

� �

�

�

�
�

�
�

� �
� � � � � �

�
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FIG. 5: Average value of 3NF potential in several approxima-
tions using 3NF full interaction

on local particle density come up explicitly in eq. (20).

This means that, as far as gαβ is modified, they wuold

change consequently leading to a sharp increase in com-

putational time. We now present different approxima-

tions we use, in order to handle this issue.

1. Fixed eT in Σ∞

In this paragraph we fix them at the 1
st

order in PT

without change them any more,

�Vαβ,µν = Vαβ,µν + Wαβγ,µνξ ρ0
ξγ

�Tαµ = Tαµ +
1

2
Wαβγ,µνξ ρ0

ξγ
ρ0

νβ
(20)

where ρ0
) is again the HF density matrix. The trend of

Υ (see eq. (14)) is shown in figure 2 for
16,24O nuclei.

Together with that, the figure (5) show the mean value

of �W � according to different approximations described

in section (III C). They are gathered together and com-

pared in the case of fully NNN potential for
16,24O again.

Moreover In figure 6 we present the evaluation of
16O

and
24O ground state energy using both induce and full

3NF. The most ”convergent” approximation is used to

model �W � coming from fig. 5, in formula

�H�0−RPA � Υ − 1

2
��W �0−RPA,

(21)

A similar calculation has been performed with 2NF only

and is shown in 6 as well.

2. Improved self-con/0

We now allow one propagator to be re-calculated at

each step, modifying the formula for �T as

�Tαµ = Tαµ +
1

2
Wαβγ,µνξ ρD

ξγ
ρ0

νβ

3

(SRG) transformation [6]. The SRG evolution is an uni-
tary rotation that allows to transform an initial bare
hamiltonian to a low-momentum softer interaction liable
of a perturbative approach. Two different initial hamil-
tonians based on chiral PT have been tested: a two-body
potential calculated up to N3LO and a N3LO two-body
plus a N2LO three-body potential [7]. The flow param-
eter α characterizing the evolution, has been fixed to
α = 0.8fm

−4 and we retain all the evolved terms up
to the three-body level, getting an induced 3NF induce
from the former case and a full 3N interaction from the
latter.

We will use a slight different version of hamiltonian in
(7), where we gather all the operators acting physically in
the same way on the particle system. We can split three-
body part in purely one, two and three-body operator
depending on how many particles are actually involved
in the specific process under study, so forth

�H = �T + �V + W (8)

=
�

αβ

�Tαβa
†
αaβ +

1
4

�

αβγδ

�Vαβ,γδa
†
αa

†
βaδaγ+

+
1
36

�

αβγδ�ζ

Wαβγ,δ�ζa
†
αa

†
βa

†
γaδa�aζ ,

where now the operators �T and �V include automatically
the screening of 3NF on fewer-body forces. These terms
are now made up of many-body density-dependent op-
erators shown previously in eq (6). In a diagrammatic
language, we are contracting one or two lines of 3NF
with the propagator, in formulas

�Vαβ,α�β� = Vαβ,α�β� + Wαβγ,α�β�γ� ργ�γ

�Tαα� = Tαα� +
1
4
Wαβγ,α�β�γ� ρ

II
β�γ�,βγ , (9)

Starting from �H in (8) we can take into account irre-
ducible diagrams only. It is worthy stressing that the
hamiltonian in (8) is exactly equivalent to (7), in the
section (IIIA) we will present our approach aiming to
discard the contribution of pure three-body irreducible
diagrams. The importance of these last diagrams, up to
third order, has been critically reviewed in [5].

C. Koltum sum rule

The direct evaluation of ground state energy from eq
(7) involves several issues in SCGF formalism. In princi-
ple the knowledge of high-order propagators is needed to
average multi-particle operators lead to a sharp increase
of computational effort. The Koltum sum rule provides
an easy way to simplify the evaluation of binding energy
basing on the fact that H is the same operator through
which we are evolving the system. The starting point is
the evolution of annihilation operators that in the Heisen-

berg picture reads

i
d

dt
aα(t) = [aα(t), H]. (10)

Defining the time-derivative of (1) at equal time as

dgαβ(t)
dt

����
t→0−

= i�Ψ0|a†α(0)
daβ(t)

dt

����
t→0+

|Ψ0�

=
1

2πi

�

C↑
dωωgαβ(ω), (11)

and using the relations
�

α

a
†
α[aα, T ] = T,

�

α

a
†
α[aα, V ] = 2V,

�

α

a
†
α[aα, W ] = 3W, (12)

one obtains

�T + 2V + 3W � =
�

α

�Ψ0|a†α[aα, H]|Ψ0�

=i

�

α

�Ψ0|a†α(0)
daα(t)

dt

����
t=0+

|Ψ0�

=
�

α

1
2πi

�

C↑
dω ω gαα(ω). (13)

Eq. (10) together with (12) lead to eq. (13). This is the
extended Kultum sum rule in the case 3NF is included.
The C ↑ means we must close the contour in the upper
half-plane in order to extract the residue of quasi-hole
poles. Ground state energy �H� = �T +V +W � can now
be evaluated in two different way,

�H� =
�

αβ

1
4πi

�

C↑
dω [Tαβ + ω δαβ ] gαβ(ω)

� �� �
Υ

−1
2
�W �

(14)
averaging independently 3NF or

�H� =
�

αβ

1
6πi

�

C↑
dω [ 2Tαβ + w δαβ ] gαβ(ω) +

1
3
�V �

(15)
evaluating �V �. These relations provide a good starting
point for carrying out the energy, once the last terms
are subtracted. In section (III C) we discuss some ap-
proximations for �W � referring to the first of these two
formulas. Indeed, the 3NF matrix elements are usually
about the 10% of 2NF.

III. CALCULATION

A. ADC(3)(to be improved)

All the following result are performed using a slight
different version of the algebraic diagrammatic construc-



Oxygen isotopes with evolved chiral 3NF 

Binding energy	
  

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (1.8fm-1) 
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (1.8fm-1)	
  

 A. Cipollone, CB, P. Navratil	
  

CB,	
  A.	
  Cipollone,	
  	
  et	
  al.,	
  arXiv:1211.3315	
  [nucl-­‐th]	
  

�

�

��

�
�

�
� ��

� �
� �

�

�

�

��

�
�

�
� �� � � � �

�

�

�

�

�
�

�
� � � � �

14O 16O 22O 24O 28O
�180

�160

�140

�120

�100

�80

�60

E g
.s.
�MeV

� Exp
2N�3N�full�2N�3N�ind�

2s1�2

1p1�2

1p3�2

1d5�2

1d3�2

14O 16O 22O 24O 28O

�8

�6

�4

�2

0

2

4

6

ne
ut
ro
n
s.
p.
st
at
e
�MeV

� 2N�3N�full�2N�3N�ind�



Oxygen isotopes with evolved chiral 3NF 

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces  
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved 	
  

 A. Cipollone, CB, P. Navratil	
  

�

�

�
�

�

�

� �
��

�

�

�

�

�

�

�

�
�

�

�

� �
��

�

�

�
�

�
�

�

�
�

�
�

� �
��
�

�

�
�

�

�

�

�

�
�

� �
�
�

�
�

14O 16O 22O 24O 28O
5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

BE
�A�M

eV
�

Exp

VΛ�1.88
�Ω�20 �FULL�VΛ�2.0
�Ω�20 �FULL�VΛ�2.0
�Ω�24 �FULL�

 hω = 20  24 MeV 
  λ   = 1.88  2.0 1/fm 
 
   ΔE < 100 keV / A	
  



Overlap functions and spect. factors in 14O 

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces  
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved 	
  

3

14O and 18O and deduced the corresponding values of r0.
The same calculation was done with other Skyrme in-
teractions, always in fair agreement with the 16O(e,e

�
p)

results, from which we deduced a variance for r0.
The calculated angular distributions were normalized

to the data by a factor C2Sexp, which defines a so-called
experimental SF. C2Sexp are mainly sensitive to the most
forward angles, and so little sensitive to the details of the
nuclear potentials. C2Sexp strongly depend on radii with
∆SF/SF ≈ 6∆rrms/rrms in the 14O(d,t) analysis.

We first re-analyzed published data for single nucleon
pick-up reactions at about the same incident energy in
direct kinematics [29–31] on 16O and 18O targets. The
angular distributions were well reproduced in all cases
by CRC calculations. For 16O(d,3He) at 14 and 26
MeV/nucleon, we obtained same C2Sexp, which confirms
the energy-independence of the analysis. For the 14O
(d,3He) and 14O (d,t) transfers, the shape of the angular
distributions is nicely reproduced (Fig. 2) by the CRC
calculations assuming a ∆l = 1 transferred angular mo-
mentum, as expected from the transfer of a 0p nucleon.

In the second approach, we employed ab initio SFs and
OFs obtained from the single-particle Green’s function
in the third order algebraic diagrammatic construction
method [ADC(3)] [14, 32]. Calculations were based on
chiral two-body N3LO [33] plus three-body N2LO [34]
interactions evolved to a cutoff λ = 1.88 fm−1, as in-
troduced in Ref. [35]. All microscopic OFs were further
rescaled in coordinate space by the same factor (i.e., in-
troducing only one phenomenological correction) to ac-
count for differences of predicted [27] and experimental
r.m.s. radius of 16O. The OFs corresponding to the re-
moval of main peaks at large and small nucleon separa-
tion energies are shown in Fig 3 a) and b), respectively,
and compared to the Wood-Saxon prescription. We note
very little radial difference in the removal of the strongly
bound neutron in 14O.

We give in Table I the normalizations C2Sexp for the
two kinds of OFs. From theoretical SFs inputs, either
microscopic ab initio SFs [27] or shell model SFs, we ob-
tain a theoretical value σth(θ) and the reduction factor
Rs = σexp(θ)/σth(θ). For shell model SFs, we performed
two calculations with different valence space and inter-
action: i) in the 0p+2�ω valence space with Oxbash [36]
and the WBT interaction [37] shown in Table I. Here
the active orbitals are 0p3/2 and 0p1/2 and only 2p2h ex-
citations towards the sd orbitals are allowed; ii) in the
0p1s0d valence space with Nushellx [38] and a new in-
teraction [39]. With the WBT interaction, we find good
agreement for the energies of the listed states, while with
the new interaction the energies of excited states in 13N
and 15N disagree by several MeV. Finally, we show the
reduction factor Rs, also plotted in Fig. 4 a) and b),
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in the 0p + 2�ω valence space; b) a microscopic (SCGF) form

factor [27]. The detail of error bars is given in text.

for WS and microscopic OFs, respectively. In the to-
tal uncertainty, we set apart in a box the uncertainties
originating from the analysis: i) imperfect knowledge of
entrance and exit potentials; ii) the variance in the cal-
culation of rms radii (and consequently of r0) due to dif-
ferent Skyrme interactions, provided the rms radii of 15N
extracted from (e,e

�
p) [5] are reproduced. All the other

experimental uncertainties are accounted for by the er-
ror bars displayed on Fig. 4. A rather flat trend is found
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TABLE 1. Predicted matter radii (in fm) for 16O and 44Ca form SRG evolved 2N-
only interactions and by including induced and full 3NF. Experiment are charge radii.

2NF only 2+3NF(ind.) 2+3NF(full) Experiment
16O: 2.10 2. 41 2.38 2.718±0.210 [19]

44Ca: 2.48 2.93 2.94 3.520±0.005 [20]

v
(3NF)
αβ ,γδ = ∑

µ ν

1
2πi

�

C↑
dω wαβ µ,γδν gνµ(ω) . (2)

These definition extend the normal ordering approach of Ref. [11] by contracting with
fully correlated propagators, as opposed to a mean-field reference state. The matrix
elements u

(3NF)
αβ and v

(3NF)
αβ ,γδ are then added to the existing 1N and 2N forces with

the caveat that only interaction irreducible diagrams are retained to ensure the correct
symmetry factors in the diagrammatic expansion [15].

After obtaining the sp propagator g(ω) the total binding energy can be calculated as
usual through the Koltun sum rule which—due the the presence of 3NF—acquires the
corrected form

E
A

0 = ∑
α β

1
4πi

�

C↑
dω

�
uαβ +ωδαβ

�
gβα(ω) − 1

2
�ΨA

0 |Ŵ |ΨA

0 � . (3)

Eq. (3) is still an exact equation. However, it requires to evaluate the expectation value
of the 3NF part of the hamiltonian < Ŵ > which is calculated here to first order in Ŵ .

Calculations for closed sub-shell oxygen isotopes were performed for the chiral N3LO
2NF [16] and N2LO 3NF [17] with the cutoff of 400 MeV as introduced in Ref. [11].
These were evolved to a cutoff λ = 1.88 fm−1 using free-space similarity renormaliza-
tion group (SRG) [18]. We employed large model spaces of up to 12 harmonic oscillator
shells with frequency h̄ω=20 MeV. Results for the induced 3NF are obtained from the
SRG evolution of the original 2NF only and are indicated by red squares in Fig. 1. These
are to be considered analogous to predictions of the sole N3LO 2NF and systematically
under bind the oxygen isotopes. Adding full 3NFs, that include in particular the two-
pion exchange Fujita-Miyazawa contribution, reproduces experimental binding energies
throughout the isotopic chain and the location of the neutron dripline. Table 1 shows that
although SRG evolved 2NFs alone underestimate the nuclear radii, results improve with
the inclusion of 3NFs.

Gorkov formalism for open-shell isotopes. The Gorkov’s approach handles intrinsic
degeneracies of open shell systems by allowing the breaking of particle number sym-
metry. One considers the grand canonical hamiltonian Ωint = Hint − µpẐ − µnN̂ and
constrains expectation values of proton and neutron number operators to the expected
values. This allows defining a superfluid state which already accounts for pairing corre-
lation and can be used as reference for Green’s function diagrammatic expansion. The
formalism for Gorkov self-consistent Green’s function (Gorkov-SCGF) theory up to sec-
ond order in the self-energy has been worked out in full in Ref. [12], for 2N interactions
only. First results are reported in [13].
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B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (15)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (20a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (20b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (20c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (20d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (21a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (21b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
N,N ± 2, N ± 4, ... particles in the case of G11 and G22

G11
ab(t, t

′) = −i 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G11 (N,N)
ab (t, t′) , (22)

G22
ab(t, t

′) = −i 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

ā†a(t)āb(t
′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G22 (N,N)
ab (t, t′) , (23)
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In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known
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gators Gg1g2

ab carry two additional labels g1 and g2 that
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in the block of b̄). Green’s functions G11 and G22 are
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and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through
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′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (20b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{
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Gorkov Green’s functions and equations 
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Gorkov equations
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1st & 2nd order diagrams 

✺	
  1st	
  order	
  ➟	
  energy-­‐independent	
  self-­‐energy	
  

✺	
  2nd	
  order	
  ➟	
  energy-­‐dependent	
  self-­‐energy	
  

✺	
  Gorkov	
  equa=ons	
   eigenvalue	
  problem	
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Gorkov equations 

with the normalization condition 

Energy independent eigenvalue problem 
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Lanczos reduction of self-energy  



Application of Lanczos (example) 

-200 -100 0 100 200
E - !F [MeV]

0

50

100

150

200

| J
W

 / 
A

 | 
[M

eV
 fm

3 ]
-200 -100 0 100 200

E - !F [MeV]
0

500

1000

1500

2000

N
um

be
r o

f S
ta

te
s

    200 vectors 
    600 vectors     
 8,837 vectors (full basis)	
  

D
en

si
ty

 o
f 

st
at

es
 f

or
 40

Ca
 ±

 n
	
  

Volume integral of 40Ca ± n   
optical potential in f7/2 part. wave	
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Binding energies 
✺ Systematic along isotopic/isotonic chains has become available 

➟ Systematic along isotopic/isotonic chains has become possible 

➟ Accuracy is good (close to CCSD and FRPA) and improvable 

➟ Of course, need proper interactions and (at least) NNN forces… 
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Binding energies 

✺ Systematic along 
isotopic/isotonic 
chains has become 
possible 

➟ Overbinding with A: traces need for (at least) NNN forces 

➟ Effect of self-consistency is relevant; i.e. less bound than MBPT2 
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FIG. 1. (Color online) Binding energy for 44Ca (upper panel) and
74Ni (lower panel) as a function of the harmonic oscillator spacing
�ω and for an increasing size Nmax ≡ max (2n + l) of the single-
particle model space. Results are from (sc0) second-order Gorkov-
SCGF calculations. The inserts show a zoom on the most converged
results.

methods. Overall, convergence is well attained for Nmax = 13.
In 44Ca, going from Nmax = 11 to Nmax = 13 lowers the min-
ima by just a few keV. Also, the binding energy calculated for
Nmax = 13 varies by less than 200 keV over a wide range of �ω
values. In 74Ni, going from Nmax = 11 to Nmax = 13 yields an
additional 600 keV, while scanning a large range of oscillator
frequencies only changes the binding energy by about 1 MeV.

Table I lists the results obtained for various observables
of interest in the ground state of 44Ca and 74Ni. The values
quoted are extrapolated to infinite oscillator basis size using
the method proposed in Ref. [28]. At this point, results are
mostly illustrative because of the lack of 3N forces. The lat-
ter play a key role in the saturation of nuclear matter such
that omitting it generates too much binding and too small nu-
clei when using soft 2N interactions [18]. The neglect of 3N
forces also induces too small pairing gaps as a result of the
too low density of states in the nucleon addition and removal
spectra (see below). It is our short-term objective to add 3N
forces to the present theoretical scheme.

Figure 2 displays one-neutron addition and removal spec-
tral strength distributions (SSD) in 44Ca. Results are shown
over a large range of final states in 43Ca and 45Ca characterized
by spectroscopic factors as small as 2.10−3 (i.e. 0.2%). One
observes a fragmentation of the spectroscopic strength that is
characteristic of correlated many-body systems. Overall the
pattern is similar to the one found in doubly-magic nuclei [3].
Close to the Fermi energy, however, one notices a feature that
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FIG. 2. (Color online) One-neutron addition and removal spec-
tral strength distributions in 44Ca obtained from second-order (sc0)
Gorkov-SCGF calculations. For each final state in 43Ca (left to the
dashed line) and in 45Ca (right to the dashed line), the spectroscopic
factor is plotted as a function of its separation energy to the ground
state of 44Ca. Energies above 0 MeV correspond to n+44Ca scatter-
ing states [26]. Final states with different J

π values are separated for
clarity. Results correspond to the minimum of the convergence plots
shown in Fig. 1. Although center of mass motion is subtracted by
using Hint, the variation of that correction going from A to A±1 is
neglected. The associated error is small in such medium-mass nu-
clei [21].

is unique to open-shell nuclei, i.e. the 7/2− strength is equally
fragmented into additional and removal channels, which re-
sults in the fact that both 43Ca and 45Ca ground-states have an-
gular momentum and parity J

π = 7/2−. Such a fragmentation
reflects static pairing correlations that manifest themselves as
a result of emerging degeneracies in the ground state of open-
shell nuclei. It is the main strength of Gorkov-SCGF theory
to explicitly handle such degeneracies and resulting pairing
correlations.

The right column in the upper panel of Fig. 3 supplies a
zoom of Fig. 2 around the Fermi energy for states with spec-
troscopic factors larger than 10−1 (i.e. 10%). The left column
provides the same quantities for first-order (i.e. HFB) calcula-
tions. Last but not least, the center column displays effective
single-neutron energies. The same information is provided for
74Ni in the lower panel of Fig. 3.

The main fragmentation of the strength is absent from first-
order calculations, i.e. it is due to dynamical correlations that
come in at second order and that are qualitatively the same as
for closed-shell nuclei. Contrarily, the fragmentation of the
strength in the vicinity of the Fermi energy into two peaks
of (essentially) equal strength is qualitatively accounted for
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Spectral distribution 

➟   Gorkov-GF at 2nd 
order [or ADC(2)]  

 

3

!" #$ ## #% #& #" '$ '#
(&)$

(&&$

(&*$

(&%$

(&'$

+,
-.
/0
1

%%23
45#6$,78(!

!" #$ ## #% #& #" '$
(&&96)
(&&96#
(&&"6)

!" #$ ## #% #& #" '$ '#

(!#&$

(!#%$

(!##$

(!#$$

(!!"$

(!!&$

(!!%$

)*+,-.
)*+,-/
)*+,-0
)*+,-!!
)*+,-!'12

34
56
7

89234567

/%):
;-#<$2=*(!

#$ ## #% #& #" '$
(!#/$
(!#&"
(!#&&
(!#&%

FIG. 1. (Color online) Binding energy for 44Ca (upper panel) and
74Ni (lower panel) as a function of the harmonic oscillator spacing
�ω and for an increasing size Nmax ≡ max (2n + l) of the single-
particle model space. Results are from (sc0) second-order Gorkov-
SCGF calculations. The inserts show a zoom on the most converged
results.

methods. Overall, convergence is well attained for Nmax = 13.
In 44Ca, going from Nmax = 11 to Nmax = 13 lowers the min-
ima by just a few keV. Also, the binding energy calculated for
Nmax = 13 varies by less than 200 keV over a wide range of �ω
values. In 74Ni, going from Nmax = 11 to Nmax = 13 yields an
additional 600 keV, while scanning a large range of oscillator
frequencies only changes the binding energy by about 1 MeV.

Table I lists the results obtained for various observables
of interest in the ground state of 44Ca and 74Ni. The values
quoted are extrapolated to infinite oscillator basis size using
the method proposed in Ref. [28]. At this point, results are
mostly illustrative because of the lack of 3N forces. The lat-
ter play a key role in the saturation of nuclear matter such
that omitting it generates too much binding and too small nu-
clei when using soft 2N interactions [18]. The neglect of 3N
forces also induces too small pairing gaps as a result of the
too low density of states in the nucleon addition and removal
spectra (see below). It is our short-term objective to add 3N
forces to the present theoretical scheme.

Figure 2 displays one-neutron addition and removal spec-
tral strength distributions (SSD) in 44Ca. Results are shown
over a large range of final states in 43Ca and 45Ca characterized
by spectroscopic factors as small as 2.10−3 (i.e. 0.2%). One
observes a fragmentation of the spectroscopic strength that is
characteristic of correlated many-body systems. Overall the
pattern is similar to the one found in doubly-magic nuclei [3].
Close to the Fermi energy, however, one notices a feature that
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FIG. 2. (Color online) One-neutron addition and removal spec-
tral strength distributions in 44Ca obtained from second-order (sc0)
Gorkov-SCGF calculations. For each final state in 43Ca (left to the
dashed line) and in 45Ca (right to the dashed line), the spectroscopic
factor is plotted as a function of its separation energy to the ground
state of 44Ca. Energies above 0 MeV correspond to n+44Ca scatter-
ing states [26]. Final states with different J

π values are separated for
clarity. Results correspond to the minimum of the convergence plots
shown in Fig. 1. Although center of mass motion is subtracted by
using Hint, the variation of that correction going from A to A±1 is
neglected. The associated error is small in such medium-mass nu-
clei [21].

is unique to open-shell nuclei, i.e. the 7/2− strength is equally
fragmented into additional and removal channels, which re-
sults in the fact that both 43Ca and 45Ca ground-states have an-
gular momentum and parity J

π = 7/2−. Such a fragmentation
reflects static pairing correlations that manifest themselves as
a result of emerging degeneracies in the ground state of open-
shell nuclei. It is the main strength of Gorkov-SCGF theory
to explicitly handle such degeneracies and resulting pairing
correlations.

The right column in the upper panel of Fig. 3 supplies a
zoom of Fig. 2 around the Fermi energy for states with spec-
troscopic factors larger than 10−1 (i.e. 10%). The left column
provides the same quantities for first-order (i.e. HFB) calcula-
tions. Last but not least, the center column displays effective
single-neutron energies. The same information is provided for
74Ni in the lower panel of Fig. 3.

The main fragmentation of the strength is absent from first-
order calculations, i.e. it is due to dynamical correlations that
come in at second order and that are qualitatively the same as
for closed-shell nuclei. Contrarily, the fragmentation of the
strength in the vicinity of the Fermi energy into two peaks
of (essentially) equal strength is qualitatively accounted for
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Evolved chiral 3NF  and  the Ca isotopes 

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1) 
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (2.0fm-1)	
  

 A. Cipollone, CB, V.Somà, P. Navratil	
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TABLE 1. Predicted matter radii (in fm) for 16O and 44Ca form SRG evolved 2N-
only interactions and by including induced and full 3NF. Experiment are charge radii.

2NF only 2+3NF(ind.) 2+3NF(full) Experiment
16O: 2.10 2. 41 2.38 2.718±0.210 [19]

44Ca: 2.48 2.93 2.94 3.520±0.005 [20]

v
(3NF)
αβ ,γδ = ∑

µ ν

1
2πi

�

C↑
dω wαβ µ,γδν gνµ(ω) . (2)

These definition extend the normal ordering approach of Ref. [11] by contracting with
fully correlated propagators, as opposed to a mean-field reference state. The matrix
elements u

(3NF)
αβ and v

(3NF)
αβ ,γδ are then added to the existing 1N and 2N forces with

the caveat that only interaction irreducible diagrams are retained to ensure the correct
symmetry factors in the diagrammatic expansion [15].

After obtaining the sp propagator g(ω) the total binding energy can be calculated as
usual through the Koltun sum rule which—due the the presence of 3NF—acquires the
corrected form

E
A

0 = ∑
α β

1
4πi

�

C↑
dω

�
uαβ +ωδαβ

�
gβα(ω) − 1

2
�ΨA

0 |Ŵ |ΨA

0 � . (3)

Eq. (3) is still an exact equation. However, it requires to evaluate the expectation value
of the 3NF part of the hamiltonian < Ŵ > which is calculated here to first order in Ŵ .

Calculations for closed sub-shell oxygen isotopes were performed for the chiral N3LO
2NF [16] and N2LO 3NF [17] with the cutoff of 400 MeV as introduced in Ref. [11].
These were evolved to a cutoff λ = 1.88 fm−1 using free-space similarity renormaliza-
tion group (SRG) [18]. We employed large model spaces of up to 12 harmonic oscillator
shells with frequency h̄ω=20 MeV. Results for the induced 3NF are obtained from the
SRG evolution of the original 2NF only and are indicated by red squares in Fig. 1. These
are to be considered analogous to predictions of the sole N3LO 2NF and systematically
under bind the oxygen isotopes. Adding full 3NFs, that include in particular the two-
pion exchange Fujita-Miyazawa contribution, reproduces experimental binding energies
throughout the isotopic chain and the location of the neutron dripline. Table 1 shows that
although SRG evolved 2NFs alone underestimate the nuclear radii, results improve with
the inclusion of 3NFs.

Gorkov formalism for open-shell isotopes. The Gorkov’s approach handles intrinsic
degeneracies of open shell systems by allowing the breaking of particle number sym-
metry. One considers the grand canonical hamiltonian Ωint = Hint − µpẐ − µnN̂ and
constrains expectation values of proton and neutron number operators to the expected
values. This allows defining a superfluid state which already accounts for pairing corre-
lation and can be used as reference for Green’s function diagrammatic expansion. The
formalism for Gorkov self-consistent Green’s function (Gorkov-SCGF) theory up to sec-
ond order in the self-energy has been worked out in full in Ref. [12], for 2N interactions
only. First results are reported in [13].

exp. neutron Fermi energy EF	
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radii still remain a challenge	
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Conclusions 
•  Self-Consistent Green’s Functions (SCGF), is a microscopic ab-initio method 
applicable to medium mass nuclei. Greatest advantage is the link to several 
(experimentally accessible) information. 

•  Proof of principle calculations Gorgov theory  are successful at 2nd order. This de 
facto show that the approach is viable and opens a whole new path: 

 Open-shell nuclei (many, not previously approachable otherwise!). 
 Reactions at driplines. 
 structure of next generation EDF. 
 

•  Addition of  three nucleon forces (3NF) are 
feasible and underway. 

 This implies a step up in the accuracy 
of “ab-initio” calculations.  
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EA
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n (A) rrms
44Ca −669.6(1) 1.16 2.48
74Ni −1269.7(2) 1.17(1) 2.75

TABLE I. Binding energy (MeV), neutron pairing gap (MeV) and
matter root mean square radius (fm). Results are from second-order
(sc0) Gorkov-SCGF calculations and are extrapolated to infinite os-
cillator basis size using the method of Ref. [28]. The extrapolation
error is indicated only when it is bigger than the last digit shown.

at first order and thus relates predominantly to static pairing
correlations. Quantitatively, the energy spacing between the
two low-lying 7/2− states in the SSD of 44Ca is increased by
second-order effects. This is in contrast to the behavior of 74Ni
where the separation of the low-lying 9/2+ states is instead
decreased. Given that such a spacing is equal to (twice) the
pairing gap, one concludes that the coupling of Cooper pairs
to non-collective fluctuations may already affect pairing cor-
relations in open-shell nuclei in either way. A detailed study
of such a feature is left to a forthcoming publication 4. Back
to the overall spectrum, one observes that the position of the
dominant peak of a given Jπ value is significantly modified by
second-order effects such that the corresponding spectrum is
more compressed than at first order. However, it is still signif-
icantly too spread out compared to experiment due to missing
3N forces and the lack of coupling to collective fluctuations.

Effective single-particle energies recollect the fragmented
strength [11, 19, 20] from both one-nucleon addition and re-
moval channels. Many-body correlations are largely screened
out from ESPEs, which picture the averaged single-nucleon
dynamics inside the correlated system. Two different features
are identifiable in the ESPE spectrum ecent

a when compared
to observable one-nucleon addition and removal spectra E±k .
The ESPE ecent

1 f7/2
(ecent

1g9/2
) located at the Fermi energy recollects

the strength of the two equally important 7/2− (9/2+) states.
Other ESPEs recollect the strength of a low-lying dominant
peak and of a highly fragmented strength distributed at higher
excitation energies such that they move away from the Fermi
energy to closely match first-order, i.e. HFB, peaks. This is
consistent with the fact that ESPEs inform on the averaged,
mean-field-like, one nucleon dynamics.

Conclusions. - We have presented the results of the first-
ever ab-initio calculations of medium-mass (truly) open-shell
nuclei. Such calculations are based on the implementation
of self-consistent Gorkov Green’s function theory on the ba-
sis of realistic nuclear interactions. Taking 44Ca and 74Ni as
test cases, we have demonstrated the good convergence of the
results with respect to the basis size and discussed several

4 A quantitative treatment of nuclear superfluidity through ab-initio ap-
proaches requires to treat the coupling of the Cooper pair to collective
density, spin and isospin fluctuations [13, 29]. In the present context,
this necessitates the implementation of the (generalized) FRPA expansion
scheme [15, 16].

! "! #!!

$"!

$%!

$&!

$'!

$#!

!

( )
* +
,-
./
0

! "! #!!

$"!

$%!

$&!

$'!

$#!

!

#1'2

&1'2

31'$

&1'$

"1'2

"1'$
#1'$

%%45

657.89

! !"# $

% &
' (
)*
+,
-

! !"# $

./!

.0!

.1!

.$!

!

./!

.0!

.1!

.$!

!

234
'

$51.

#51.

6517

#517

051.

$517
0517

234
'

8/9:

8517

851.

FIG. 3. (Color online) Left: One-neutron addition and removal spec-
tral strength distribution obtained from first-order (HFB) Gorkov-
SCGF calculations. Right: same as left panel for second-order (sc0)
calculations. Center: Baranger ESPEs reconstructed from second-
order (sc0) Gorkov-SCGF calculations. Upper panel: 44Ca. Lower
panel: 74Ni.

quantities of experimental interests including ground-state
energies, pairing gaps and particle addition/removal spec-
troscopy. Such calculations increase the reach of ab-initio cal-
culations in the mid-mass region tremendously and are now
being performed systematically over long isotopic and iso-
tonic chains [21]. The short-term objectives are to incor-
porate three-nucleon interactions into the framework and to
extend state-of-the-art Faddeev-random-phase-approximation
truncation scheme from doubly-closed shell nuclei to open-
shell nuclei, i.e to the present Gorkov context.
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