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Outline

History: HO shell model can provide a linear trial function for a
variational calculation of few-body systems (energies, etc.)

Review: How to extrapolate to infinite number of terms, based on
functional analysis theorems

Effective Field Theory concepts applied to a discrete basis suggest an
alternative extrapolation approach respecting ultraviolet (UV) and
infrared (IR) running of the results as the basis is extended.

Examples:Two alternate proposals for IR running, two soft NN
potentials (Idaho N3LO and JISP16), light nuclei A=2-6

Conclusion: Extrapolation method is successful for ground state
energies.



2.1.2. Linear Trial Functions

We next consider a trial function in the form of a linear expansion:

N

Yr= Y, a;p; (2.10)

i=1

In (2.10) the a; are parameters to be varied and the ¢; is a set of known
functions. The ¢; may also contain parameters f8;, which will be varied, but
it transpires that for fixed 3; the choice of the optimum a; is very straight-
forward, and we do not display the f; explicitly here. With the form (2.10)
for wyp, equation (2.4) for E, can be written

E, — atHya/a*Na (2.11)

where Hy and Ny are the N x N Hamiltonian and normalization matrices
in the representation {¢p;}:

([{N)ij e ((pz's HQS’J) (MV)-U ST (qji: qgj) f: J = 1 3 vy N

and a is the vector of coefficients a;. Hy and Ny are Hermitian matrices,
and Ny is positive definite. From (2.11) or directly from (2.6) with dyy/da;
— @;, we obtain the defining equation for a and E,:

(Hy — E,Ny)a=0 (2.12)

Equation (2.11) has a number of attractive properties which help to make
expansions of the form (2.10) popular. First, the minimum of E, with
respect to the parameter a always exists, since a finite eigenvalue problem
of the form (2.12) is guaranteed to have N real eigenvalues E;(N), i =
1 — N and N independent eigenvectors. Second, as is well known, we
obtain from (2.12) not only a bound on the lowest eigenvalue E, but also
on the higher eigenvalues E,, ..., Ey_; of H; indeed we can show that

E(N>E, i=0,...,N—1 (2.13)
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Fig. 8. Convergence rates for variational calculations with a harmonic oscillator basis.
(&) Deuteron, Yamaguchi potential; x triton, Yamaguchi potential; and A\ deuteron,
Reid potential. Results taken from (JLS 70). The solid line has a slope of —2.0.

“These results are independent of the dimensionality of the problem, that is, of the number of
particles, provided that the appropriate N__ is used. ... The extrapolated results of these authors

have been used for E. On the logarithmic scale used, these differences are predicted by our
crude theory to lie on a straight line of slope 2 for the Reid potential; it is not clear to what extent
we should expect the nonlocal [separable] Yamaguchi potential to be "smooth'.”



Variational energy as a function of oscillator energy hw for fixed number of quanta
Number of quanta increases by two for each curve

1969 H atom up to 10 quanta
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FiG. 1. Energy of the ground state of the H atom as a function of the parameter & for the
variational analysis discussed in Section 3. This energy E,(e), p = 0,1, 2, 3, 4, 5 is associated
with a trial wave function w, = X2_, al? | n00}, where | #00) is a harmonic-oscillator state
of frequency hw = (me*|2k*)e>.

2009 deuteron up to 20 quanta
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ALPHA PARTICLE MODEL CALCULATIONS FOR '2C AND ¢0OF
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Abstract: Spectra and form factors of 12C and *°O are calculated in the «-particle model. Empirical
«-0¢ interactions are used in a variational calculation in a translationally invariant harmonic
oscillator basis. The validity of the x-particle model is discussed in view of the results, which
show some nice qualitative features and fail quantitatively in some points.
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Fig. 2. Ground state energy of *C for the potential A2 at 8, 10, 12, 14 and 16 guanta as a function
of the oscillator width «.
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The Variational Approach

* One can view a shell model calculation as a
variational calculation, and is thus expanding
the configuration space merely serves to
improve the trial wavefunction.

* The traditional shell-model calculation
involves trial wavefunctions which are linear
combinations of Slater determinants.

Irvine, J. M. et al. “Nuclear Shell-Model Calculations and Strong Two-Body Correlations”

2.1.2. Linear Trial Functions

We next consider a trial function in the form of a linear expansion:

N
— ¥ ag; (2.10)

!r,'l_?»

Delves, L. M. Advances in Nuclear Physics



The No-Core Shell Model (NCSM)

Starting Hamiltonian is translationally invariant.

1A (p; — p)? A NCSM has two parameters:
H,=— ’ 77 | A Nmax and Q
474 ; 2m ; NN,
. N=5 s
N4\ 7
Provided interaction is “soft” we don't need to do N=3 _\ QO /
any renormalization of interaction, ﬁi%] s ?

It's that “simple”.

If we now use a single-particle basis, we have to remove the spurious CM states.

Advantage in m-scheme: Antisymmetry is easy to implement.
Disadvantage in m-scheme: Number of basis states is much larger than JT basis

Slide from Michael Kruse



Each Slater determinant
corresponds to a
configuration of A particles
distributed over A single-

particle states.

Irvine, J. M. et al. “Nuclear Shell-Model
Calculations and Strong Two-Body
Correlations”

The picture to the left is for
Li-6 (3 protons + 3

neutrons).

Shows Nmax=2
configuration

Two units of energy
distributed among the six
particles.



Extrapolating with N

Challenge: achieve numerical convergence for no-core Full Configuation
calculations using finite model space calculations

® Perform a series of calculations with increasing Nmax truncation
(while keeping everything else fixed)

® Extrapolate to infinite model space — exact results
» binding energy: exponential in Nmax

N
Epinding = Ebinding T @1 eXp(—a2Nmax)

» use 3 or 4 consecutive Nmax values to determine ng’nding

® use hw and Nmax dependence
to estimate numerical error bars
Maris, Shirokov, Vary, Phys. Rev. C79, 014308 (2009)

Slide by Pieter Maris



Ab Initio No-Core Shell Model

H and other observables, O, l
act in their full infinite Hilbert Space

H.y & Oy of finile subspace

This truncation/extrapolation scheme is essentially that of the earlier few-body variational studies
Assumes that the boundary of finite subspace is defined only by N __
implication:

X

hw is an inessential complication

Not the case! The use of HO single particle orbitals means that the many-fermion
system is limited to a region whose size is governed by the parameter of the HO
basis: hw

The finite model space is characterized by two parameters:
N and hw

max




Current Method is Unsatisfactory...

 ...from an effective field theory point of view.
* Results are oscillator frequency dependent.

* No clear control of ultra-violet or infra-red
nuclear physics.

* The goal is to investigate an alternate way
from a more formal view point.

Slide by Matthew Avetian



Effective Field Theory (EFT)

In a field theory one never has access to the “full” Hilbert space.
Interactions are only defined in the context of a model space-

a truncation to exclude states with energies beyond those a
physicist can access.

The parameter of the projection operator P onto the excluded states must have a dimension.
Call the parameter A, the ultraviolet cutoff and take it to be a momentum.

Model space can be arbitrary but observables calculated within it cannot.

The Hamiltonian operator of the model space must depend on A in such a way that
observables at momenta Q<<A are independent of how P is chosen, and in particular,
independent of A.

Arizona program: formulate a nuclear EFT in an HO basis as an efficient way of reaching
larger nuclei. Must deal with all interactions consistent with symmetries of problem, learn
what is perturbative and what is not, arrange an organizational principle for perturbation
theory (“power counting”) etc etc.  van Kolck, Barrett, Stetcu, Rotureau, Yang

My more modest goal: can EFT motivate and shape an extrapolation to the
infinite basis limit for the HO basis calculations called NCSM or NCFC which utilize
“realistic” nuclear interactions fit to data, not in a clearly defined model space,

but in free space?
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P ‘
arger nuciet: number of accessible one-nucleon states

Stetcu, Barrett +v.K., '06
No-Core Shell Model! Stetcu, Barrett, Vary + v.K., 07

Stetcu, Rotureau, Barrett + v.K., in progress

O basis :
. For lattice cutoffs:
\ / Mueller, Koonin, Seki + v.K. '00
\ / cutoffs Lee et al.'03...
\ [ v
\ / v L=\ij(Nmax+3/2]W
\ ./
L. ./

trategy: at any given order, for each pair of cutoffs, fit parameters to
inding energies of lightest nuclei, then predict other binding energies

............. ’ K. Nuclear QCD 21
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NCSM: Nax =6 configuration

Harmonic Oscillator with mQ2/2 = 1
"6RQ" configuration

configuration
i R
Min(N..)=0
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Ultraviolet cutoff

A Excluded due to finite N
and lack of computer
power

2 Low-energy
physics content of
the nucleus

Content of the nucleus investigated by
““ab-initio” no-core shell model methods

\ /
\ /

Excluded due to the
discrete energy levels of
v the harmonic oscillator
and/or finite N

Momentum scale in Mev/c

Infrared cutoff

Define a UV momentum cutoff A equivalent to continuum A in which the particles are not confined:

= \/mN(NMM + 3/2)hw

Interpret behavior of variational energy of system as more basis states are added as
the running of an observable with the variation (increase) of the UV cutoff of model space

Confinement means the energy levels are quantized. The associated momenta cannot
take on continuous values so that the model space necessarily has an infrared (IR)

momentum cutoff A.

Define N = \/(mN hw) which discretizes momentum

A is an artifact of the HO basis and must be removed as one extrapolates to an infinite basis



Another discretization scheme: QCD on a 4-dimensional lattice

Continuum QCD simulated on a lattice has a model space with two cutoffs
UV cutoff  A~1/a where a is lattice spacing
IR cutoff A~1/L where L is the size of the lattice
a must be small enough to simulate the continuum
L must be large enough to contain the system

Suggests another possible IR cutoff for a HO basis

;'\Er'{'_'.-’ — \/('n'ﬁﬁ"hw)/’(imrﬂfaw = 3/2}

This IR cutoff corresponds to the rms radius of the highest single particle state
in the basis, i.e. the maximal radial extent needed to encompass the system

Asc = 1/(\/Nuraz +3/2b) where p = (mNﬁw)—l/Q

Nyeax=0 \ Q

configuration \

A
A .
SO S~

|

Which IR cutoff is it to be?

Note 1 )\SC:/\Q/A

Note 2 NMaz + 3/2 = A?/)\?

=N

Mixes up two dimensionful cutoffs



Ground State Energy (MeV)

Test model space cutoffs with deuteron
calculation done with defined N__and hw

convergence is clear as N__ goes to 238
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)\IRE)\ acts as an IR cutoff should!

A =700 MeV/c
2
01. H JISP16 o A= 97MeV/c
o A = 119MeV/c
0.01-
A A = 137MeV/c
AE/E| 0.001-
* A = 168 MeV/c
0.0001 - u A = 194MeV/c
oooooid A\ A N @& 9 = A = 217MeV/c
0.000001

I I I I I I
0 500 1000 1500 2000 2500 3000 3500

A MeV /c)

As the ultraviolet cutoff increases, the fractional difference between calculated E(A, A) and an accepted-as-converged E,
lessens.

Alternatively, the plot can be read the other way, where if we fix the UV A, the results improve as we lower the IR cutoff
A.



A acts as an UV cutoff should!

5 A=700MeV/c
H JISP16
Ml = A ~ 712MeV/c
0.0 ) A ~ 1054 MeV /c
A A ~ 1363 MeV/c
|AE/E| 0.001- = A ~ 2000 MeV/c
A ~ 2157TMeV/c
0.0001 -
0.00001 -
0.000001 | . —
0.012 0.01 0.008 0.006 0.004

1/A

small A large A



Result scales with  1/A,. = A/}F , almost a universal behavior

-
2H JISP16
0.1
0 A= 711 (MeV/c)
0.01- Py A= 1054 (MeV/c)
- 3 A= 1358 (MeV/c)
AE/E | o | A=~ 1996 MeV/c)
0.0001 A = 3052 (MeV/c)
0.00001 -
0.000001 .

| | J | | 1
0.08 0.07 006 005 0.04 003 0.02 0.01 0

1/ Asc



Success! UV and IR cutoffs identified as Nmax—>238
Asc = A2/A

Are cutoffs of any use for approachable Nmax?

E(Xse) = Aexp(—B/Ag) + E(Ase =0)

-1.60
3 A =524 -526 MeV/cE(Asc=0)is -2.2243 MeV

41704 2
< e H JISP16 @ A =702-719 MeV/cE(Asc=0)is -2.2185 MeV
S -1.80 1 Nawx < 30 A A =763-T78 MeV/cE(Asc=0)is -2.2234 MeV
S-1.90- i ” A =848-856 MeV/cE(Asc=0)is -2.2153 MeV
o !
5 .5 0o ] | A =957-1053 MeV /c E(Asc =0)is -2.2221 MeV
T
& -2.10 - 4
= 4 average E(Asc =0)is -2.221 MeV
e R el
c% = =.=—--:-/ E(converged) s -2.224574 MeV

-2.30 -

-2.40 | | ! T | | |

0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00
1/ Asc
Note: This is not the usual extrapolation in N__ (with some prescription for hw) because
2
1/’\3;‘. = A/'\
= v/ (Nimaz + 3/2)/ (mah) N __and hw on an equal footing

X \/Nmm/(myﬁw)



Idaho-N3LO potential

A acts as an IR cutoff should

4He Idaho - N3LO

= A =150 (MeV/c)
. = 4 =162 (MeV/c)
A A=173 (MeV/c)
AE/E|
0.01 * A =184 (MeV/c)
A =194 (MeV/c)
0.001 , I,
500 600 T00 800 900 1000

A MeV/c)

Replotted from calculations of Navratil and Caurier 2004



Idaho-N3LO potential

A\ acts as an UV cutoff should

4He Idaho- N3LO

] A= 679 (MeV/c)
A= TI8(MeV/c)
Iﬁb:‘rh| 0.1- A= ?ﬁﬁ(Mf:v."lﬂ)
A= B12(MeV/c)

i\

0.01 -
0.0065 0.006 0.0055 0.005

1/A

Replotted from calculations of Navratil and Caurier 2004
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AE/E |

For fixed A__ result does NOT improve with increasing A if A=2700 MeV/c !

0.1

0.001
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Why?

We need dedicated calculations

Binning and replotting archival calculations is not enough!
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Fix UV regulator and take IR regulator toward zero
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For a large enough ultraviolet cutoff, the fractional difference between calculated E(A, A) and an accepted-as-converged
E, lessens as the IR cutoff goes toward zero.

Slide by Michael Kruse

For a large enough UV cutoff, A__displays

an almost universal scaling behavior



One can use this universal scaling behavior
to make an extrapolation which is
independent of particle number
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Data points are fit to y = Aexp (—B/As.)



Fix IR regulator and take UV regulator to infinity

AIR = A
1 : k\\
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As the ultraviolet cutoff increases, the fractional
difference between calculated E(A, A) and an
accepted-as-converged E, lessens.

Alternatively, the plot can be read the other
way, where if we fix the UV A, the results
improve as we lower the IR cutoff A.
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For fixed A__ result does NOT improve with increasing A,
if A=800 MeV/c !

Small fixed )\SC linked to small A,
as N<36 and hw/N must be constant



For fixed A__ result does NOT improve with increasing A, if A2800 MeV/c !

Result independent of nucleus
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Fix A, and increase /\ (each are scaled by binding momentum Q)
y axis is logarithmic on left, linear on right
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FIG. 9: (Color online) Dependence of the ground-state energy of three s-shell nuclei (compared
to a converged wvalue-see text) upon the uv momentum cutoff A = -‘/mm(N+:i,:' Qhw for Ase =
V' (myfw) /(N + 3/2) below the A, = 36 MeV /c set by the NN potential. The data are fit to Gaussians.




Extrapolations with A__

E(Xse) = Aexp(—B/Ag) + E(Aee =0)
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If UV cutoff is large enough, all extrapolations agree with each other and with
the accepted value of -7.85 MeV



Extrapolations with A
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We fit the ground state energy with three adjustable parameters using the relation Eg.{hw) =
aexp(—b/hw) + E,.(hw = 0) five times, once for each “fixed” value of A. It is readily seen that
one can indeed make an ir extrapolation by sending fiw — 0 with fixed A as first advocated in Ref.
[33] and that the five ir extrapolations are consistent. The spread in the five extrapolated values is

about 500 keV or about 2% about the mean of —28.78 MeV. The standard deviation is 200 ke,



Extrapolations with A__

i 6He
] JISP16

] 510 < A < 830 MeV/c
24
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In eonclusion, our extrapolations in the ir cutoff A of —28.78(50) MeV or the ir cutoff As. of

28.68(22) MeV are consistent with each other and with the independent calculations,
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Carbon-12 as a three alpha bound state

functions of basis are transitionally invariant, symmetric, coupled to J=L
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Ground State Energy (MeV
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Outline

History: HO shell model can provide a linear trial function for a
variational calculation of few-body systems (energies, etc.)

Review: How to extrapolate to infinite number of terms, based on
functional analysis theorems

Effective Field Theory concepts applied to a discrete basis suggest an
alternative extrapolation approach respecting ultraviolet (UV) and
infrared (IR) running of the results as the basis is extended.

Examples:Two alternate proposals for IR running, two soft NN
potentials (Idaho N3LO and JISP16), light nuclei A=2-6

Conclusion: Extrapolation method is successful for ground state
energies. Can it be extended to other observables?
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Variational energy as a function of oscillator energy hw for fixed number of quanta
Number of quanta increases by two for each curve

1969 H atom up to 10 quanta
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FiG. 1. Energy of the ground state of the H atom as a function of the parameter & for the
variational analysis discussed in Section 3. This energy E,(e), p = 0,1, 2, 3, 4, 5 is associated
with a trial wave function w, = X2_, al? | n00}, where | #00) is a harmonic-oscillator state
of frequency hw = (me*|2k*)e>.
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2009 deuteron up to 20 quanta
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No-core full configuration method of
Maris,Vary,Shirokov
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Figure 8: (Color online) Dependence of the ground-state energy of *H upon fiw =
M /my = X2, /Imn(N +3/2)] for fixed N = A%/A% — 3/2 = A/Asc — 3/2. Curves are
not fits but spline interpolations to guide the eye.



Fix IR regulator and take UV regulator to infinity
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As the ultraviolet cutoff increases, the fractional
difference between calculated E(A, A) and an
accepted-as-converged E, lessens.

Alternatively, the plot can be read the other
way, where if we fix the UV A, the results
improve as we lower the IR cutoff A.
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As the ultraviolet cutoff increases, the
results get worse for large fixed A_.
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