Infrared properties of the harmonic oscillator basis

Thomas Papenbrock

and

OAK RIDGE NATIONAL LABORATORY

R. J. Furnstahl, G. Hagen, TP, Phys. Rev. C 86, 031301(R) (2012); arXiv:1207.6100 Sushant N. More, A. Ekström, R. J. Furnstahl, G. Hagen, TP, arXiv:1302.3815

More Progress in Ab Initio Techniques in Nuclear Physics

February 21-23, 2013

.3 TRIUMF, Vancouver, BC, Canada Research partly funded by the US Department of Energy

Convergence in finite oscillator spaces

Calculations are performed in finite oscillator spaces. How can one reliably extrapolate to infinity?

Convergence in momentum space (UV) and in position space (IR) needed

• cutoff of interaction $\Lambda < \Lambda_{UV}$

"What is the infrared cutoff in the HO basis?" [U. van Kolck at INT workshop in spring 2009]

Very precise answer [More, Ekström, Furnstahl, Hagen, TP, 2013] based on length scale

$$L_2 = \sqrt{2(N+3/2+2)}b$$

- 1. At low energies, the HO basis looks like a "box" of radius L_2 .
- 2. π/L_2 is the infrared cutoff.
- Knowledge can be used for theoretically founded extrapolations in HO basis, computations of phase shifts in HO basis ...

Spectrum of the operator p²

- At low momentum, number of states increases linearly with increasing momentum
- Spectrum looks like that of the momentum operator in a box

Eigenfunctions of p² with lowest eigenvalues in oscillator basis

Eigenfunctions looks like those from a box of size L_2 .

Squared infrared cutoff is the lowest eigenvalue of p^2

The lowest eigenvalue κ_{min} can be computed analytically for N>>1. **Result:** π/L_2

"N>>1" does not imply impractically large model spaces

N	$\kappa_{ m min}$	π/L_2	π/L_0	$L_i \equiv \sqrt{2(N+3/2+i)b}$
0	1.2247	1.1874	1.8138	
2	0.9586	0.9472	1.1874	1% deviation at N>2
4	0.8163	0.8112	0.9472	
6	0.7236	0.7207	0.8112	
8	0.6568	0.6551	0.7207	
10	0.6058	0.6046	0.6551	
12	0.5651	0.5642	0.6046	
14	0.5316	0.5310	0.5642	0.1% deviation at N>14
16	0.5035	0.5031	0.5310	
18	0.4795	0.4791	0.5031	
20	0.4585	0.4582	0.4791	π/L_2 is very precise value of the IR cutoff

IR corrections to bound-state energies

Simple view: A node in the wave function

$$u_E(r) \xrightarrow{r \gg R} A_E(e^{-k_E r} + \alpha_E e^{+k_E r})$$

at $r=L_2$ requires $\alpha_e = exp(-2k_eL_2)$. This yields a (kinetic) energy correction

$$E_L = E_\infty + a_0 e^{-2k_\infty L}$$

Model-independent approach based on [D. Djajaputra & B. R. Cooper, Eur. J. Phys. 21, 261 (2000)].

$$\Delta E_L \approx -u_{\infty}(L) \left(\frac{du_E(L)}{dE} \bigg|_{E_{\infty}} \right)$$

Final results: ANC² Binding momentum

$$\Delta E_L = \frac{\hbar^2 k_{\infty} \gamma_{\infty}^2}{\mu} e^{-2k_{\infty}L} + \mathcal{O}(e^{-4k_{\infty}L}) \qquad \text{Only observables enter}$$

$$\langle r^2 \rangle_L \approx \langle r^2 \rangle_\infty [1 - (c_0 \beta^3 + c_1 \beta) e^{-\beta}] \quad (\text{with } \beta \equiv 2k_\infty L)$$

Energy extrapolation explains findings by Coon et al, Phys. Rev. C 86, 054002 (2012)

Triton binding energy from SRG interactions: only observables enter into the IR extrapolation

Phase shifts

- 1. Compute states in channel I with positive energies ${\rm E}_{\rm i}$ and momentum ${\rm p}_{\rm i}$ in HO basis at fixed N
- 2. In a box, the ith state determines the box size $L_i = L(p_i)$ at that energy via $j_l(p_i L_i/\hbar) = 0$ $i_l(k_i L(\hbar k_i))$
- 3. Compute phase shift from usual formula: $\tan \delta_l(k_i) = \frac{j_l(k_i L(\hbar k_i))}{\eta_l(k_i L(\hbar k_i))}$
- 4. Repeat for several $\hbar\Omega$

Phase shifts

Alternative approaches based on [Busch et al 1998] employ a harmonic potential and use $\hbar\Omega \rightarrow 0$ for finite-range interactions:

T. Luu, M. J. Savage, A. Schwenk, and J. P. Vary, Phys. Rev. C 82, 034003 (2010). I. Stetcu, J. Rotureau, B. R. Barrett, and U. van Kolck, J. Phys. G 37, 064033 (2010).

How well can one distinguish L_2 in practice?

Deuteron (N³LO E&M)

How well can one distinguish L_2 in practice?

Deuteron (N³LO E&M)

How well can one distinguish the exponential law in practice?

Gaussian well

Deuteron (N³LO E&M)

Corrections for shallow bound states

Corrections due to finite Hilbert spaces

- UV practically converged (because $\lambda < \Lambda_{UV}$)
- IR convergence is slower due to exponential decay of wave function
- Dirichlet boundary condition at x=L in position space

Recipe

- 1. Perform calculations at sufficiently large values of $\hbar\Omega$ (these have small or no UV corrections)
- 2. Plot results (energies, radii) vs. L_2 (UV converged results are expected to fall onto a single line)
- 3. Perform fit to extrapolation formulas and read off asymptotic value

Summary

- Much improved understanding of IR properties of HO basis
- At low momenta, HO basis behaves as a box of size L₂
- π/L_2 is the IR cutoff
- Computation of phase shifts directly from the positive energy states in HO basis
- Energy extrapolation law expressed solely in terms of observables
- Corrections for shallow bound states worked out

Outlook: IR properties in *any localized* basis

- Diagonalize operator p^2 in a given model space \rightarrow L for this model space
- Be in the UV-converged regime
- Plot energies and radii as a function of L, and extrapolate