Effective interactions from coupled-cluster theory

Gustav R. Jansen^{1,2}

gustav.jansen@utk.edu

¹University of Tennessee, Knoxville (UTK)

²Oak Ridge National Laboratory (ORNL)

TRIUMF February 21. 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Outline

- Who Collaborators.
- Why Motivation.
- How Formalism.
- What Results.
- When Outlook.

Collaborators and acknowledgements

- Gaute Hagen (ORNL)
- Gustav R. Jansen (UTK, ORNL)
- Jon Engel (UNC)
- Petr Navratil (TRIUMF)
- Angelo Signoracci (UTK, ORNL)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Coupled-cluster coverage (CC)

◆ロ → ◆母 → ◆臣 → ◆臣 → ◆ ● → ◆ ● → ◆ ● →

Coupled-cluster coverage (CC + PA/PR)

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

Coupled-cluster coverage (CC + PA/PR + 2PA/2PR)

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ の Q @

Valence cluster expansion

A. F. Lisetskiy, B. R. Barrett, M. K. G. Kruse, P. Navratil, I. Stetcu, and J. P. Vary Phys. Rev. C 78, 044302 (2008)

$$\hat{\mathrm{H}}_{\mathrm{eff}}^{A_{c}}(A) = E_{c}(A) + H_{1}^{A_{c}}(A) + H_{2}^{A_{c}}(A) + \dots$$

- Effective Hamiltonian operating in a very reduced modelspace where full diagonalization is possible.
- Solves the A_c + 2-body system exactly.
- Used for more than 2 nucleons in the valence space.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Okubo-Lee-Suzuki transformation

Choose the wanted eigenpairs and define

$$\langle p | \hat{\mathrm{M}}_{R} | k \rangle = \langle p | \Psi_{k} \rangle$$

and

 $\langle \mathbf{k} | \hat{\mathbf{E}} | \mathbf{k} \rangle$

The non-hermitian effective Hamiltonian is given by

$$\hat{\mathrm{H}}_{eff}' = \hat{\mathrm{M}}_R \hat{\mathrm{E}} \hat{\mathrm{M}}_R^{-1}$$

• Equivalent to

$$\hat{\mathrm{H}}_{e\!f\!f}^{\prime} = \hat{\mathrm{P}}\hat{\mathrm{H}}\left(\hat{\mathrm{P}}+\omega
ight), \qquad \langle q|\omega|p
angle = \sum_k \langle q|R_k
angle \mathrm{inv}\{\langle p|R_k
angle\}$$

• Symmetric orthogonalization procedure to get an hermitian effective interaction (I. Mayer, Int. J. Quantum Chem., 90: 63–65)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Okubo-Lee-Suzuki transformation

Choose the wanted eigenpairs and define

$$\langle p | \hat{\mathrm{M}}_{R} | k
angle = \langle p | \Psi_{k}
angle$$

and

$$\langle \mathbf{k} | \hat{\mathbf{E}} | \mathbf{k} \rangle$$

• The non-hermitian effective Hamiltonian is given by

$$\hat{\mathrm{H}}_{\textit{eff}}' = \hat{\mathrm{M}}_{\textit{R}} \hat{\mathrm{E}} \hat{\mathrm{M}}_{\textit{R}}^{-1}$$

Equivalent to

$$\hat{\mathrm{H}}_{e\!f\!f}^{\prime} = \hat{\mathrm{P}}\hat{\mathrm{H}}\left(\hat{\mathrm{P}}+\omega
ight), \qquad \langle \pmb{q}|\omega|\pmb{p}
angle = \sum_{k} \langle \pmb{q}|R_{k}
angle \mathrm{inv}\{\langle \pmb{p}|R_{k}
angle\}$$

• Symmetric orthogonalization procedure to get an hermitian effective interaction (I. Mayer, Int. J. Quantum Chem., 90: 63–65)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Okubo-Lee-Suzuki transformation

• Choose the wanted eigenpairs and define

$$\langle p | \hat{\mathrm{M}}_{R} | k
angle = \langle p | \Psi_{k}
angle$$

and

$$\langle \mathbf{k} | \hat{\mathbf{E}} | \mathbf{k} \rangle$$

The non-hermitian effective Hamiltonian is given by

$$\hat{\mathrm{H}}_{\textit{eff}}' = \hat{\mathrm{M}}_{\textit{R}} \hat{\mathrm{E}} \hat{\mathrm{M}}_{\textit{R}}^{-1}$$

Equivalent to

$$\hat{\mathrm{H}}_{e\!f\!f}^{\prime} = \hat{\mathrm{P}}\hat{\mathrm{H}}\left(\hat{\mathrm{P}}+\omega
ight), \qquad \langle \pmb{q}|\omega|\pmb{p}
angle = \sum_{k} \langle \pmb{q}|\pmb{R}_{k}
angle \mathrm{inv}\{\langle \pmb{p}|\pmb{R}_{k}
angle\}$$

• Symmetric orthogonalization procedure to get an hermitian effective interaction (I. Mayer, Int. J. Quantum Chem., 90: 63–65)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Necessary ingredients

- Good description of the core especially the ground state energy.
- $A_c + 1$ eigenvalues for single particle energies.
- $A_c + 2$ wavefunctions and energies for constructing the effective interaction.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The cluster operator

$$\hat{\mathbf{T}} = \hat{\mathbf{T}}_{1} + \hat{\mathbf{T}}_{2} + \ldots + \hat{\mathbf{T}}_{A}$$

$$= \sum_{ia} t_{i}^{a} \left\{ a_{a}^{\dagger} a_{i} \right\} + \sum_{ijab} t_{ij}^{ab} \left\{ a_{a}^{\dagger} a_{b}^{\dagger} a_{j} a_{i} \right\} + \ldots +$$

$$\sum_{\substack{i_{1},\ldots,i_{A} \\ a_{1},\ldots,a_{A}}} t_{i_{1},\ldots,i_{A}}^{a_{1},\ldots,a_{A}} a_{a_{1}}^{\dagger} \ldots a_{a_{A}}^{\dagger} a_{i_{A}} \ldots a_{i_{1}}$$

Exponential ansatz

$$|\Psi
angle pprox |\Psi_{CC}
angle = e^{\hat{\mathrm{T}}} |\Phi_0
angle = \left(\sum_{n=1}^{\infty} \frac{1}{n!} \hat{\mathrm{T}}^n\right) |\Phi_0
angle,$$

Include terms like

$$e^{\hat{\mathrm{T}}} \leftarrow \frac{1}{6}\hat{\mathrm{T}}_1^3 + \frac{1}{2}\hat{\mathrm{T}}_1\hat{\mathrm{T}}_2 + \frac{1}{A!}\hat{\mathrm{T}}_1^A$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Similarity transformed Hamiltonian

 $\bar{\mathbf{H}} = e^{-\hat{\mathbf{T}}} \hat{\mathbf{H}}_{N} e^{\hat{\mathbf{T}}}$

・ロト ・ 日 ・ モ ・ ト ・ 田 ・ うらぐ

Similarity transformed Hamiltonian

CCS: $\hat{T} = \hat{T}_1$ $\begin{pmatrix} E_{\rm CCS} & \dots & \langle \Phi_0 | \bar{\rm H} | \Phi_{i_1,\dots,i_A}^{a_1,\dots,a_A} \rangle \\ 0 & \dots & \langle \Phi_i^a | \bar{\rm H} | \Phi_{i_1,\dots,i_A}^{a_1,\dots,a_A} \rangle \\ \langle \Phi_{ij}^{ab} | \bar{\rm H} | \Phi_0 \rangle & \dots & \langle \Phi_{ij}^{ab} | \bar{\rm H} | \Phi_{i_1,\dots,i_A}^{a_1,\dots,a_A} \rangle \\ \langle \Phi_{ijk}^{abc} | \bar{\rm H} | \Phi_0 \rangle & \dots & \langle \Phi_{ijk}^{abc} | \bar{\rm H} | \Phi_{i_1,\dots,i_A}^{a_1,\dots,a_A} \rangle \\ \vdots & \ddots & \vdots \\ \langle \Phi_{i_1,\dots,i_A}^{a_1,\dots,a_A} | \bar{\rm H} | \Phi_0 \rangle & \dots & \langle \Phi_{i_1,\dots,i_A}^{a_1,\dots,a_A} | \bar{\rm H} | \Phi_{i_1,\dots,i_A}^{a_1,\dots,a_A} \rangle \end{pmatrix}$ $\langle \Phi_i^a | \mathbf{H} | \Phi_0 \rangle = 0$

Similarity transformation is exact independent of truncation.

Similarity transformed Hamiltonian

Similarity transformation is exact independent of truncation.

Similarity transformed Hamiltonian

Similarity transformation is exact independent of truncation.

Excited states using EOM-CC

Eigenvalues of $\bar{\mathrm{H}} = e^{-\hat{\mathrm{T}}}\hat{\mathrm{H}}e^{\hat{\mathrm{T}}} - \langle \Phi_0|\hat{\mathrm{H}}|\Phi_0\rangle$

$$\left(\bar{\mathrm{H}}\hat{\mathrm{R}}\right)_{c}|\Phi_{0}
angle=\left(E-E_{c}
ight)\hat{\mathrm{R}}|\Phi_{0}
angle$$

Properties of \overline{H} .

- Non-symmetric (non-hermetian) operator.
- For CCSD and a twobody hamiltonian six-body operator.
- The matrix representation is very sparse.
- Generally too large to store and diagonalize exactly.

Efficient implementation of
$$\left(ar{\mathrm{H}}\hat{\mathrm{R}}
ight)_{\mathcal{C}}$$
 is key.

Adding particles with EOM

 Diagonalize the similarity transformed hamiltonian in the appropriate space

$$\begin{split} \bar{\mathrm{H}} |R_k\rangle &= (E_k - E_c) |R_k\rangle \qquad \qquad |R_k\rangle = \hat{\mathrm{R}} |\Phi_0\rangle \\ \langle L_k |\bar{\mathrm{H}} &= \langle L_k | (E_k - E_c) \qquad \qquad \langle L_k | = \langle \Phi_0 | \hat{\mathrm{L}} \\ \langle L_k | R_{k'}\rangle &= \delta_{kk'} \end{split}$$

PA-EOM-CCSD $(A_c + 1)$ 2PA-EOM-CCSD $(A_c + 2)$

$$\hat{\mathbf{R}} = \sum_{a} r^{a} \left\{ a_{a}^{\dagger} \right\} + \frac{1}{2} \sum_{a,b,i} r_{i}^{ab} \left\{ a_{a}^{\dagger} a_{b}^{\dagger} a_{i} \right\} \qquad \hat{\mathbf{R}} = \frac{1}{2} \sum_{a,b} r^{ab} \left\{ a_{a}^{\dagger} a_{b}^{\dagger} \right\} + \frac{1}{6} \sum_{a,b,c,i} r_{i}^{abc} \left\{ a_{a}^{\dagger} a_{b}^{\dagger} a_{c}^{\dagger} a_{i} \right\} \\ \hat{\mathbf{L}} = \sum_{a} l_{a} \left\{ a_{a} \right\} + \frac{1}{2} \sum_{a,b,i} l_{ab}^{i} \left\{ a_{i}^{\dagger} a_{b} a_{a} \right\} \qquad \hat{\mathbf{L}} = \frac{1}{2} \sum_{a,b} l_{ab} \left\{ a_{b} a_{a} \right\} + \frac{1}{6} \sum_{a,b,c,i} l_{abc}^{i} \left\{ a_{i}^{\dagger} a_{c} a_{b} a_{a} \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Toolchain

$$\hat{\mathbf{H}} = \sum_{i < j} \left(\frac{(\mathbf{p}_i - \mathbf{p}_j)^2}{2mA} + \hat{\mathbf{V}}_{NN}^{(i,j)} \right) + \sum_{i < j < k} \hat{\mathbf{V}}_{3N}^{(i,j,k)}$$

- 1. Solve Hartree-Fock equations with full threebody interaction.
- 2. Discard the residual threebody elements to get a twobody Hamiltonian (NO2B).
- 3. CCSD to get the similarity transformed Hamiltonian.
- 4. Λ -CCSD(T) to get the core energy $E_c(A)$.
- 5. PA-EOM-CCSD to get the single particle energies.
- 6. 2PA-EOM-CCSD to get the A_c + 2-body energies and wavefunctions.
- 7. Okubo-Lee-Suzuki to get the non-Hermitian effective interaction.
- 8. Symmetric orthogonalization to get the final Hermitian effective interaction.
- 9. Shell-model calculation to get the energies.

Benchmark interaction for the oxygen chain

- Chiral NN interaction at N³LO from EM with cutoff at 500 MeV.
- Chiral 3N interaction at NNLO with $c_D = -0.2$, $c_E = 0.098$ and a cutoff at 400 MeV.
- Evolved to $\lambda = 2.0 \text{ fm}^{-1}$ with SRG.
- $N_{max} = 12$ for NN interaction and $E3_{max} = 12, 14$ for 3N interaction.
- Fixed $\hbar\omega$ at 20 MeV.

R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, and P. Navratil, PRL 109 052501 (2012).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Benchmark interaction for the oxygen chain

- Chiral NN interaction at N³LO from EM with cutoff at 500 MeV.
- Chiral 3N interaction at NNLO with $c_D = -0.2$, $c_E = 0.098$ and a cutoff at 400 MeV.
- Evolved to $\lambda = 2.0 \text{ fm}^{-1}$ with SRG.
- $N_{max} = 12$ for NN interaction and $E3_{max} = 12, 14$ for 3N interaction.
- Fixed $\hbar\omega$ at 20 MeV.

H. Hergert, S. Binder, A. Calci, J. Langhammer and R. Roth, PRL 110 242501 (2013).

Benchmark interaction for the oxygen chain

- Chiral NN interaction at N³LO from EM with cutoff at 500 MeV.
- Chiral 3N interaction at NNLO with $c_D = -0.2$, $c_E = 0.098$ and a cutoff at 400 MeV.
- Evolved to $\lambda = 2.0 \text{ fm}^{-1}$ with SRG.
- N_{max} = 12 for NN interaction and E3_{max} = 12, 14 for 3N interaction.
- Fixed $\hbar\omega$ at 20 MeV.

S. Binder, P. Piecuch, A. Calci, J. Langhammer, P. Navratil and R. Roth, PRC 88 054319 (2013).

Benchmark interaction for the oxygen chain

- Chiral NN interaction at N³LO from EM with cutoff at 500 MeV.
- Chiral 3N interaction at NNLO with $c_D = -0.2$, $c_E = 0.098$ and a cutoff at 400 MeV.
- Evolved to $\lambda = 2.0 \text{ fm}^{-1}$ with SRG.
- N_{max} = 12 for NN interaction and E3_{max} = 12, 14 for 3N interaction.
- Fixed $\hbar\omega$ at 20 MeV.

A. Cipollone, C. Barbieri and P. Navr´atil, arXiv:1303.4900v2 (2013).

Oxygen isotopes Total binding energy

- Overall good agreement with experiment.
- CCEI and Λ-CCSD(T) agree very well.
- CCEI starts to deviate at ²³O.
 - Convergence issues
 - Missing many-body forces in the valence space.
 - Additional correlations in the CCEI wavefunction than accessible with CCSD.

GRJ, J. Engel, G. Hagen, P. Navratil and A. Signoracci, arXiv:1402.2563 (2014).

Oxygen isotopes Exitation energies

Carbon isotopes

Exitation energies

◆ロ → ◆母 → ◆臣 → ◆臣 → ◆ ● ◆ ● ◆ ● ◆

Outlook

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Include continuum degrees of freedom.
- Effective operators.
- Threebody interactions in the valence space.

Questions?

Gustav R. Jansen gustav.jansen@utk.edu

This work was partly supported by the Office of Nuclear Physics, U.S. Department of Energy (Oak Ridge National Laboratory), under Contracts No. DE-FG02-96ER40963 (University of Tennessee) and No.DE-SC0008499 (NUCLEI SciDAC-3 Collaboration), and the Field Work Proposal ERKBP57 at Oak Ridge National Laboratory.

An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-000R22725 and used computational resources of the National Center for Computational Sciences, the National Institute for Computational Sciences, and the Notur project in Norway.