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Where do we draw the line? How can we take advantage of moving the line?
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Why should we care what happens to UV physics?
@ Evolution of Hamiltonians and other operators
@ Where does UV physics go as we lower a cutoff?
@ When do many-body terms become important?
e Flow to universal Hamiltonians: can we exploit it?
@ Using the EFT cutoff (A) scale: Naturalness?
e Bayesian priors for fitting LECs?
@ What is learned from regulator cutoff variation?
@ Which is better: EFT at lower cutoff or SRG?
e Is SRG decoupling the same as cutting off?
e Does it matter how we cut off UV physics?
@ UV basis extrapolation; e.g., for SRG-evolved potentials
e Universal/dual aspects of UV vs. IR? What'’s different?
@ Knock-out experiments: short-range correlations and all that
e What role do the UV parts of wave functions play?
e What factorization (separation) scale should we use?

Plan: random walk through these topics (mostly questions!)



What does changing a cutoff do in an EFT?
@ (Local) field theory version in perturbation theory (diagrams)
e Loops (sums over intermediate states) <:> LECs
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e Momentum-dependent vertices = Taylor expansion in k?
@ Claim: V,,, x RG and SRG decoupling work analogously
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Approach to universality (fate of high-g physics!)

Run NN to lower X via SRG = ~Universal low-k Vjy
Off-Diagonal Vy(k,0)

\ld<)\// 1.0 e

0.5F
<A> G e oo
~ —0.5 . B ’
Sl v,
[ - s
/ \ >~ -10F s
k<A r 2’ —— 550/600 [E/G/M]
. . L 4 -.= 600/700 [E/G/M] ]
g > X (or A) intermediate states -Lsp o <=+ 500 [E/M] 1
= replace with contact terms: L’ == S00[EM] ]
C053()(_)(/)'1"" _2'0:‘Hmu‘mu‘\HH\HH\HHMHT
o 1 2 0.0 05 1.0 1.5 20 25 3.0 3.5
[of. Lo =+ zCo(vT)2 + -] K]

@ Similar pattern with phenomenological potentials (e.g., AV18)
Factorization: AVy(k, k') = fUA(k,q) Va(9, 9 UL(G, K') for k, k' < X, g, 9 > X
PR KL Q(a)Va(a, 9)Q()IK(K') with K (k) ~ 1!
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Approach to universality (fate of high-g physics!)
Run NN to lower X via SRG = ~Universal low-k Vjy

e

) -

/m\

g > X (or A) intermediate states
= replace with contact terms:
Cod3(X —X') + - --

[of. Lo =+ FCo(¥Ty)2 + -]

Cy +

v, (k,0) [fm]

Off-Diagonal Vy(k,0)

35

1.07”“_”‘_lm_m_m_m_m
A=25fm
0.5 1
r S
00F oo
—0.5F
-1.0F
r —— 550/600 [E/G/M]
r —.= 600/700 [E/G/M]
-1.5f = 500 [E/M] 7
F —.= 600 [E/M]
20F" m
L L ol b by L
00 05 10 15 20 25 30
-1
k[fm ]

@ Similar pattern with phenomenological potentials (e.g., AV18)

Factorization: AVy(k, k') = fUA(k,q) Va(9, 9 UL(G, K') for k, k' < X, g, 9 > X
KIS Q(q)Va(g. 9")Q(q")]K (k') with K(k) ~ 1!
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Approach to universality (fate of high-g physics!)

Run NN to lower X via SRG = ~Universal low-k Vjy
Off-Diagonal Vy(k,0)
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@ Similar pattern with phenomenological potentials (e.g., AV18)
Factorization: AVy(k, k') = fUA(k,q) Va(9, 9 UL(G, K') for k, k' < X, g, 9 > X
PR KL Q(a)Va(a, 9)Q()IK(K') with K (k) ~ 1!



Approach to universality (fate of high-g physics!)

Run NN to lower X via SRG = ~Universal low-k Vjy
Off-Diagonal Vy(k,0)
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@ Similar pattern with phenomenological potentials (e.g., AV18)
Factorization: AVy(k, k') = fUA(k,q) Va(9, 9 UL(G, K') for k, k' < X, g, 9 > X
PR KL Q(a)Va(a, 9)Q()IK(K') with K (k) ~ 1!



NN Vsrg universality from phase equivalent potentials

Diagonal elements collapse where phase equivalent [Dainton et al, 2014]
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Are inverse scattering potentials sufficient? [Dainton et al]
Create a separable potential that is phase equivalent to AV18:
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V(k,k) [fm]
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For the diagonal elements, yes, this is sufficient!
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Are inverse scattering potentials sufficient? [Dainton et al]
Create a separable potential that is phase equivalent to AV18:
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need half-on-shell T-matrix (HOST) equivalence



Are inverse scattering potentials sufficient? [Dainton et al]
Create a separable potential that is phase equivalent to AV18:
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With HOST equivalence, even delta shell potential plus OPE is sufficient!



Use universality to probe decoupling
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Is there 3NF universality?
@ Evolve chiral NNLO EFT potentials in momentum plane wave basis
toA=1.5fm™" [K. Hebeler, Phys. Rev. C85 (2012) 021002]

@ In one 3-body partial wave, fix one Jacobi momentum (p, q)
and plot vs. the other one:
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@ Collapse of curves includes non-trivial structure



Is there 3NF universality?

@ Evolve in discretized momentum-space hyperspherical harmonics
[K. Wendt, Phys. Rev. C87 (2013) 061001]

basisto A = 1.4fm ™"

@ Contour plot of integrand for 3NF expectation value in triton
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@ Local projections of 3NF also show flow toward universal form

@ Can we exploit universality a la Wilson? Stay tuned!



What else can we say about the flow of NN- - - N potentials?

@ Can arise from counterterm for new UV cutoff dependence,
e.g. changes in A; must be absorbed by 3-body coupling Do(/\ )

00)4 In(k//\ Do(/\c)O( Co 4|l'l ag/\ )

RG invariance dictates 3-body coupling flow [Braaten & Nieto]
@ General RG: 3NF from integrating out or decoupling high-k states

C1,C3,Cq Cp Cg



What do we know about the growth of NN- - - N potentials?
@ Many interesting results have appeared, prompting questions ...

Early results in lightest systems [Jurgenson et al. (2009)]:

40

T T I R 80
3 3H 3 Ly .
. 30r B 60 He =1
> r —o<Trel>| 1 <& s 0 el 1
% ool NN+NNN 1 > s
= 20 ho=28 |7V L 40 NN+NNN - ["= <Vw|
< r - 1 E L o =28 — <V, > | A
g 101 - 1 g 20 [w=l - V|
'c% r max” = | N, A3=32 N> | ]
> 0F = > 0
5 8 / 1 = L— \ ]
2 _10b B E e
s S 201 ,
S T . 18t ]
g-20r- 1 & -0 ]
L - >
m sl o ]
& =30 1 4 —601- —
e T 1 o H g
—40(- - 80+ -
_s0 L \ L1 1] 100k ]
1 2 3 4 5 10

How does this hierarchy evolve with A?



What do we know about the growth of NN - - N potentials?
@ Many interesting results have appeared, prompting questions ...

Team Roth: 4-body depends on cutoff on ¢z term.
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How do we determine consistent regulators in this case?
Does local versus non-local cutoff function matter?



What do we know about the growth of NN- - - N potentials?
@ Many interesting results have appeared, prompting questions ...

Ratio of 3NF to NN in neutron matter [Hebeler, rjf (2013)]
0.4
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Density scales as you would expect (at least here :), but X scaling?



What do we know about the growth of NN- - - N potentials?
@ Many interesting results have appeared, prompting questions ...

Nuclear matter scaling: use NN results at saturation = (V3)/({V2)
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Simple dimensional scaling (e.g., (kr/A)® or (kz/\)3) doesn’t work

2
but a different scaling . .. é‘ésim\A1/3 ~ O(1) [where did p/f2A come from?]
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@ Many interesting results have appeared, prompting questions ...
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Current answer: not enough yet! But tools in place to make progress!



How big should different contributions be?

@ Enable chiral EFT power counting = NDA and naturalness
/

N'f'(...)/\/ ~\™ oM, my n -
['Xeft:CImn <f7€/\x> (fﬂ> < Ay > fﬂ/\x fr ~ 100 MeV

@ Georgi (1993): f, for strongly interacting fields; rest is A,
@ Cohen et al. (1997). Uncanonical scaled EFT action at A:

™

! /
= /d4 x La (/\ /\3/272) “natural” if loops < trees

e NDA: that bound is saturated: g ~ 4w with A ~ A,
@ Rescale to canonical kinetic normalization = NDA
@ Claim: should match choosing A ~ A, scale = NDA estimates

e A, is not itself an adjustable cutoff but a physics scale
@ e.g., from non-Goldstone-boson exchange such m,
e Need calculations for quantitative A,

@ Other refs: Dugan and Golden (1993), Friar (1997)



How big should different contributions be?

@ Enable chiral EFT power counting = NDA and naturalness
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@ E.g., check NLO, NNLO constants from Ly [Epelbaum et al.]
Take A, = cutoff A: 500...600 MeV):

2 Cs —1.079...-0.953 ZCr 0.002...0.040
N2, Cy 3.143...2.665 41272 C; 2.029...2.251

f2N2 Cs 0.403...0.281 4f2N2 Cs | —0.364...—0.428
21f2N% Cs 2.846...3.410 fAN2 Cs | —0.728... - 0.668
4f2N% C7 | —1.929... — 1.681

@ 1/3 < ¢mp < 3 = naturall = truncation error estimates

@ If unnaturally large, signal of missing long-distance physics
(e.g., Ain ¢;’s) or over-fitting

@ f2Cr unnaturally small = SU(4) spin-isospin symmetry



How big should different contributions be?

@ Enable chiral EFT power counting = NDA and naturalness
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Applications to coefficients in relativistic and Skyrme density functionals
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@ Identify unnaturally large and small Skyrme coefficients

@ Guide fitting attempts with generalized EDF’s?




How big should different contributions be?

@ Enable chiral EFT power counting = NDA and naturalness
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@ Old chiral NDA analysis for EDFs:
[Friar et al., rif et al.]
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How big should different contributions be?

@ Enable chiral EFT power counting = NDA and naturalness

Nt NN /=
‘CXeft = Cimn <f(2/\)> (f
T X m

@ Old chiral NDA analysis for EDFs:
[Friar et al., rjf et al.]
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@ Density expansion?

Po 1
>N> < = _
1000 > A > 500 :> f2/\ =3

@ Also gradient expansion
@ Applied to RMF, Skyrme EDFs
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What is the breakdown scale? Not clear for YEFT! How do we analyze?




Error (“Lepage”) plots revisited [Lepage (1997); Steele, rjf (1999) ]

@ What is the evidence that the EFT is working as it should and we're
not just fitting (or over-fitting) elephants with many parameters?
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@ Slope of error curve with energy should increase with EFT order

@ Breakdown scale (A, ) where error curves intersect or where error
stops improving (stabilized prediction)

e Can we apply to observables other than phase shifts?
e Investigations with toy models in progress [S. Wesolowski]

@ What about error bands from regulator cutoff A variations?



How should we fit the LECs? Constrained curve fitting
@ A new era for fitting and testing chiral Hamiltonians [see A. Ekstrom]

o Deficiencies revealed; more advanced interactions coming
@ Practical/theory motivations for Bayesian priors [Lepage (2001)]:

Constraints consistent with Lepage plots (can be tricky)

Would like to be independent of where we stop fitting (E, order)
Want the theory error at each order incorporated appropriately
Do not want constants to play off each other

@ Bayesian fits in 30 seconds. Suppose we have parameters
a=1{ap,ay, - ,au},adatasetd = {di, b, - ,dy}, and a theory f.
e Goal: what a to use (with error) given a data setd —- pr(ald, f)
e Known: given a, what is the chance we get d = pr(d|a, f)

@ Joint probability pr(d,a) can be decomposed into conditional
probabilities two ways (and so are equal): N

pr(ald, pr(d|f) = pr(da, Npr(alf)  eg., pr(dja,f) o [ e /2
k=1
Now just put pr(d|f) on the other side. The “priors” are pr(a|f).



“Prior” work by Schindler/Phillips: naturalness as a prior
@ “Bayesian Methods for Parameter Estimation in Effective Field Theories”
@ Test application to chiral perturbation theory
@ M coefficients naturalness values in normal distribution

M

1 _iyM 2 g2 L

pr(a|M, R) = <H )e 22i=08/F — Ris width
0 varR

@ In progress: revisit by S. Wesolowski, D. Phillips, rjf for NN--- N

@ Is normal distribution for natural
a = {a;} appropriate given we v [\
expect 1/n < a; < n? [\

@ Maybe log normal distribution F RS
instead for |a;| NN ES / \

f(x;p,0)=—-———=€ 222 |, x>0. /

°80 0.5 1.0 15 2.0 25 3.0

How does this prior relate to weighting by the order of expansion?



“Prior” work by Schindler/Phillips: naturalness as a prior

@ Schindler/Phillips toy Usual x? fit

problem: find M lowest-order X 2 a; P

coefficients in expansion of

9(x) = ( +tan(Z ) Za,

~0.25+1.57x +2.47x% +1.29x° 4 .|

2.49(0.22+0.02|2.47+0.11
0.85(0.294+0.02{1.04+0.40| 4.91+1.31
0.85|0.26+0.04|2.00+£1.12| -2.55+8.27
0.60(0.18+0.07|5.74+2.81|-50.44+34.0
0.57(0.284+0.14]0.24+7.08|46.9+£120.0

aORwWN =22

by ordinary “x?” fitting and
using Baye3|an priors on the
“naturalness” of coefficients.

With natural prior

ao a as
0.234+0.14(2.4240.11
0.27+0.03|1.50+0.35|3.214+1.21
0.27+0.03|1.544+0.33|2.80+1.19
0.274+0.03|1.54+0.35|2.76+1.18
0.28+0.05(1.57+0.21|2.794+1.11

= marginalize over M and log
@ Goal: determine ag and a4 normal parameters

@ Coefficients are of order
unity: 1/4 < a; < 4

@ Limited measurements and
experimental noise

MM =2

Controlled fitting protocol needed for consistent “running” of EFT




“Prior” work by Schindler/Phillips: naturalness as a prior

T T T Ty e from moddl
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~ 025+ 1.57x + 2.47x% + 1.29x3 + - [ 4 prior is a normal distribution with R = 1
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naturalness” of coefficients. i

2r i v 15 b

@ Coefficients are of order = =i = 2

unity: 1/4 < g < 4 sl 4 L[ i
@ Limited measurements and i

experimental noise T M=3 ]

a, prior is a normal distribution, with R = 3

T B B
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@ Goal: determine ag and a4

Controlled fitting protocol needed for consistent “running” of EFT



“Prior” work by Schindler/Phillips: naturalness as a prior

> ‘ " T exact from model
@ Schindler/Phillips toy g gy
problem: find M lowest-order 2 I B
coefficients in expansion of AR ]
T = 1
9(x) = ( +tan(Z ) Za, i T
= M=3 Jﬂ ]

025+ 1.57x + 247x7 +1.20x7 - gy

05 0‘.2 ' 0.22 ' 0.24 ' 0.26 ' 0.28 ' 0‘.3
by ordinary “y?” fitting and %
using BayeS|an priors on the 2 [ S o]
“naturalness” of coefficients. AT S
2 y
@ Coefficients are of order — ‘ﬁ; %i‘
unity: 1/4 < g < 4 R N

@ Limited measurements and ;
experimental noise I M=3

b a, prior is a log-normal di
vnlhp. 00 mdo 075

[ L L P
05 0.2 022 0.24 0.26 028 03

it

@ Goal: determine ag and a4

Controlled fitting protocol needed for consistent “running” of EFT



Is there a motivation for lower EFT cutoffs?
@ Recent examples of calculations with soft EFT interactions

o Nuclear matter calculations with soft smooth cutoff EFT
potential [Corraggio et al., arXiv:1402.0965]
o Lattice chiral EFT: coarse lattices = low A cutoff
= but many successes [see D. Lee]
@ How is an EFT at two different scales related to an RG running
via SRG or Vliowk?
e First, distinguish breakdown A, from regulator A
e For matching, choose A ~ A, for Weinberg counting
@ Integrating out momenta in a local EFT (a la Georgi)
e Integrate out momenta = non-local action
e Derivative expansion and drop higher terms —> back to local
e Requires sufficient scale separation or error grows from
dropped terms
cf. SRG = error is unchanged with softening
But what is happening if we instead refit the EFT?

@ Which is better in practice? We need more comparisons!



Does it matter how we cutoff UV physics?
@ Perhaps not in principle, but certainly in practice!
@ What form does the T-generator SRG cutoff take?
e Decoupling (roughly) imposes off-diagonal form for V,(k, q)

Vak, @) =5 VA(0,) ~ Vi (0, g) e~/
@ Test with a simple variational ansatz (from k-space S-eqn)
ak® o (K42

1 (kA4
W= et 2 ° =

(k2+fy2)(k2+y2)2

@ error in deuteron energy for
different initial potentials

var
N

(E,,~Ey) MeV]

@ small \ works pretty well

——N°3LO 500 MeV
—e—NNLO 550/600 MeV

@ Viowkx Works even better!

1 2 3 4 5 6 7
A (™"



What if we “lower” cutoff by a truncated oscillator basis?
[Work by S. Bogner, S. Koenig, S. More, T. Papenbrock, rjf .. .]

@ S. Coon: Finite oscillator basis imposes both IR and UV cutoffs
@ Nature of UV vs. IR cutoff in light of dual nature of HO
e Low-momentum (IR) spectrum is the same as hard-wall at
La = /2(Nmax +3/2 4 A)bogc with by = +/1/ ()

with A =2 [see T. Papenbrock]

o Duality = short distance (UV) same as hard wall in
momentum with by — 1/bose In Lo = we expect

Ar = V/2(Nmax +3/2 4+ A)i/boe. ~ With A =2

@ Analytic result for separable potential with hard cutoff A:
Va(k.K') = gh(K)f(K') with fy(k) = e */N)" — AE 22 c/ dk 2(k)
A

@ Expect asymptotic form of energy correction for SRG or smooth
View k 0 (roughly) follow this form (with additional A dependence)



Examples for deuteron and RG-evolved potentials
[Thanks to K. Wendt for generating deuteron energies in IR-converged spaces]

T
0 — _ ‘ 2n e 2 —
1 . e(k/’\) H(k,k’)e(km)
ok N’LO (500 MeV)
SRG A = 2.0 fm™"
_27 ]
_10 -
m \\\
\-u -3 \\\ _|
m 10 ~J
g ‘<
4 .
U N S
c—-n=4 N,
5| n=2_8 ~. |
10°F — n=w S
—6 T N L. T |
107y 2 3 4 5
-1
A [fm ]

= AEy/E4 for different cutoff forms; hard wall is n = oo



Examples for deuteron and RG-evolved potentials

[Thanks to K. Wendt for generating deuteron energies in IR-converged spaces]

E
e*(k//\)" H(k’k,)ef(k'/A)‘
N’LO (500 MeV)

SRG A = 2.0 fm™"
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-1
A [fm ]

= AEy/E4 for Ag; looks like n = oo but noticable scatter



Examples for deuteron and RG-evolved potentials
[Thanks to K. Wendt for generating deuteron energies in IR-converged spaces]

[T T T
10 5 e—(k//\) H(k,k’)ei(k/A)
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= AEy/E4 for A2; looks like n = oo and no scatter



Examples for deuteron and RG-evolved potentials
[Thanks to K. Wendt for generating deuteron energies in IR-converged spaces]

R e e S
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Examples for deuteron and RG-evolved potentials
[Thanks to K. Wendt for generating deuteron energies in IR-converged spaces]

e
2 ef(k//\)“ H(k’k,)ef(k'/A)‘
N’LO (500 MeV)

SRG A = 2.0 fm™"

o
)
S~
LU'U —1
3 10 =
n=oo
o HOwith A,
N 3674@\0&)'
—) T | T L
107y 2 3 4 5
-1
A [fm ]

For A < A\, AEg/Eq o 4"’ (roughly), as used empirically



SRG/Vlowk wave functions versus “measured” SRCs
@ Universal aspects of UV and IR truncations?

o IR dictated by asymptotic many-body wave function
= break-up channels = depends only on observables
— independent of RG running (and intial potential)

e UV depends on potential; e.g., changes with RG running
because UV potential and wave function do

e But expect similar (scaled) AE for A> 2

@ Similar to discussions of short-range correlation physics
o Frankfurt/Strikman arguments on asymptotic k-space wf
o E.g., T. Neff et al. 2-body S =0, T = 1 densities:
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Is any of this UV physics “measurable”? [see rjf, 1309.5771]
@ Relevant to knock-out experiments of various types
@ Issues of scale and scheme dependence (RG invariants?)

e We have (implicitly or explicitly) established a separation or
factorization scale when we calculate observables

e If sufficient separation of scales, then impulse approximation can be
good, and no ambiguities.

o Generally scale dependent, e.g. parton vs. momentum distributions:

(k) (fm®)

—1

g

)
auge theory) but EFT?

—

Which scale to use for experiment? Clear for QCD



Start with simplest problem: deuteron electrodisintegration
@ In progress by S. More, K. Hebeler, rjf
e e e \\

R

/ri\\
wisH | ReaLTY ™
7

P(kyE) Ypzk+q

' e p=k;+q
‘ ‘@ a1
J Impulse Approximation Final State Interaction

@ Build on Yang and Phillips EFT calculations, but beyond the EFT
(“high-resolution probes of low-resolution nuclei”)

@ Old field redefinition arguments of Hammer, rjf; also with U, (k, q)

S o o

@ Understand mixing of structure, FSI, and currents (can't isolate!)

@ Can we make money on factorization?



Additional comments (prejudices) on UV physics

@ The fate of UV physics cuts across and unites many topics
@ Calculational methods with microscopic forces are maturing
e Deficiencies of current Hamiltonians clearly revealed
e Opportunities: revisit old EFT technology while inventing new

e Structure component ahead of reactions but RG can shift
between; treating one in isolation can be dangerous

@ Knock-out experiments need to be understood better

o EFT and RG provide tools to do this

o Different factorization scale for expt. analysis and calculation?
@ Don’t be too narrow with "ab initio” for microscopic NN- - - N forces

e Use sounds provincial in light of QCD

o Low-energy paradigm: tower of effective theories (or turtles)
@ Where should we think about the next rung on the EFT tower?

@ pionless EFT for halo nuclei
e low-lying excitations in deformed nuclei [see T. Papenbrock]
o DFT? [e.g., J. Dobaczewski et al.; revisit Landau-Migdal?]
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