The Fate of UV Physics with Renormalization Group Evolution

Dick Furnstahl

Department of Physics Ohio State University

February, 2014

Where do we draw the line? How can we take advantage of moving the line?

Thanks: colleagues at low resolution

- ANL: L. Platter
- Darmstadt: H.-W. Hammer, K. Hebeler,
 R. Roth et al., A. Schwenk
- IIT (Madras): S. Ramanan
- Iowa State: P. Maris, J. Vary
- Jülich: A. Nogga
- Michigan State: S. Bogner, A. Ekstrom
- LLNL: E. Jurgenson, N. Schunck
- OSU: B. Dainton, A. Dyhdalo, H. Hergert,
 S. Koenig, S. More, R. Perry, S. Wesolowski
- ORNL / UofT: G. Hagen, W. Nazarewicz,
 T. Papenbrock, K. Wendt
- TRIUMF: S. Bacca, P. Navratil
- UNC: E. Anderson, J. Drut
- many others in NUCLEI, LENPIC, ...

Why should we care what happens to UV physics?

- Evolution of Hamiltonians and other operators
 - Where does UV physics go as we lower a cutoff?
 - When do many-body terms become important?
 - Flow to universal Hamiltonians: can we exploit it?
- Using the EFT cutoff (Λ) scale: Naturalness?
 - Bayesian priors for fitting LECs?
 - What is learned from regulator cutoff variation?
- Which is better: EFT at lower cutoff or SRG?
 - Is SRG decoupling the same as cutting off?
 - Does it matter how we cut off UV physics?
- UV basis extrapolation; e.g., for SRG-evolved potentials
 - Universal/dual aspects of UV vs. IR? What's different?
- Knock-out experiments: short-range correlations and all that
 - What role do the UV parts of wave functions play?
 - What factorization (separation) scale should we use?

Plan: random walk through these topics (mostly questions!)

What does changing a cutoff do in an EFT?

- (Local) field theory version in perturbation theory (diagrams)
 - Loops (sums over intermediate states) $\stackrel{\Delta \Lambda_c}{\Longleftrightarrow}$ LECs

$$\frac{d}{d\Lambda_c} \left[+ \right] = 0$$

$$\int_{0}^{\Lambda_c} \frac{d^3q}{(2\pi)^3} \frac{C_0 M C_0}{k^2 - q^2 + i\epsilon} + C_0(\Lambda_c) \propto \frac{\Lambda_c}{2\pi^2} + \cdots$$

- Momentum-dependent vertices \Longrightarrow Taylor expansion in k^2
- Claim: V_{low k} RG and SRG decoupling work analogously

What does changing a cutoff do in an EFT?

- (Local) field theory version in perturbation theory (diagrams)
 - Loops (sums over intermediate states) $\stackrel{\Delta \Lambda_c}{\Longleftrightarrow}$ LECs

$$\frac{d}{d\Lambda_c} \left[+ C_0(\Lambda_c) \times \frac{\Lambda_c}{(2\pi)^3} \frac{C_0 M C_0}{k^2 - q^2 + i\epsilon} + C_0(\Lambda_c) \times \frac{\Lambda_c}{2\pi^2} + \cdots \right] = 0$$

- Momentum-dependent vertices \Longrightarrow Taylor expansion in k^2
- ullet Claim: $V_{\text{low }k}$ RG and SRG decoupling work analogously

Run NN to lower λ via SRG $\Longrightarrow \approx$ Universal low-k V_{NN}

[cf. $\mathcal{L}_{\text{eff}} = \cdots + \frac{1}{2}C_0(\psi^{\dagger}\psi)^2 + \cdots$]

• Similar pattern with phenomenological potentials (e.g., AV18)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

k [fm⁻¹]

Factorization:
$$\Delta V_{\lambda}(k, k') = \int U_{\lambda}(k, q) V_{\lambda}(q, q') U_{\lambda}^{\dagger}(q', k') \text{ for } k, k' < \lambda, \ q, q' \gg \lambda$$

$$\xrightarrow{U_{\lambda} \to K \cdot Q} K(k) [\int Q(q) V_{\lambda}(q, q') Q(q')] K(k') \text{ with } K(k) \approx 1!$$

Run NN to lower λ via SRG $\Longrightarrow \approx$ Universal low-k V_{NN}

• Similar pattern with phenomenological potentials (e.g., AV18)

Factorization: $\Delta V_{\lambda}(k, k') = \int U_{\lambda}(k, q) V_{\lambda}(q, q') U_{\lambda}^{\dagger}(q', k') \text{ for } k, k' < \lambda, \ q, q' \gg \lambda$ $\xrightarrow{U_{\lambda} \to K \cdot Q} K(k) [\int Q(q) V_{\lambda}(q, q') Q(q')] K(k') \text{ with } K(k) \approx 1!$

Run NN to lower λ via SRG $\Longrightarrow \approx$ Universal low-k V_{NN}

Similar pattern with phenomenological potentials (e.g., AV18)

k [fm⁻¹]

Factorization:
$$\Delta V_{\lambda}(k, k') = \int U_{\lambda}(k, q) V_{\lambda}(q, q') U_{\lambda}^{\dagger}(q', k') \text{ for } k, k' < \lambda, \ q, q' \gg \lambda$$

$$\xrightarrow{U_{\lambda} \to K \cdot Q} K(k) [\int Q(q) V_{\lambda}(q, q') Q(q')] K(k') \text{ with } K(k) \approx 1!$$

Run NN to lower λ via SRG $\Longrightarrow \approx$ Universal low-k V_{NN}

Similar pattern with phenomenological potentials (e.g., AV18)

k [fm⁻¹]

Factorization:
$$\Delta V_{\lambda}(k, k') = \int U_{\lambda}(k, q) V_{\lambda}(q, q') U_{\lambda}^{\dagger}(q', k')$$
 for $k, k' < \lambda, q, q' \gg \lambda$

$$\xrightarrow{U_{\lambda} \to K \cdot Q} K(k) [\int Q(q) V_{\lambda}(q, q') Q(q')] K(k') \text{ with } K(k) \approx 1!$$

Run NN to lower λ via SRG $\Longrightarrow \approx$ Universal low-k V_{NN}

Similar pattern with phenomenological potentials (e.g., AV18)

Factorization:
$$\Delta V_{\lambda}(k, k') = \int U_{\lambda}(k, q) V_{\lambda}(q, q') U_{\lambda}^{\dagger}(q', k')$$
 for $k, k' < \lambda, q, q' \gg \lambda$

$$\xrightarrow{U_{\lambda} \to K \cdot Q} K(k) [\int Q(q) V_{\lambda}(q, q') Q(q')] K(k') \text{ with } K(k) \approx 1!$$

Run NN to lower λ via SRG $\Longrightarrow \approx$ Universal low-k V_{NN}

Similar pattern with phenomenological potentials (e.g., AV18)

Factorization:
$$\Delta V_{\lambda}(k, k') = \int U_{\lambda}(k, q) V_{\lambda}(q, q') U_{\lambda}^{\dagger}(q', k')$$
 for $k, k' < \lambda, q, q' \gg \lambda$

$$\stackrel{U_{\lambda} \to K \cdot Q}{\longrightarrow} K(k) [\int Q(q) V_{\lambda}(q, q') Q(q')] K(k') \text{ with } K(k) \approx 1!$$

NN V_{SRG} universality from phase equivalent potentials

Diagonal elements collapse where phase equivalent [Dainton et al, 2014]

NN V_{SRG} universality from phase equivalent potentials

Diagonal elements collapse where phase equivalent [Dainton et al, 2014]

Are inverse scattering potentials sufficient? [Dainton et al]

Create a separable potential that is phase equivalent to AV18:

For the diagonal elements, yes, this is sufficient!

Are inverse scattering potentials sufficient? [Dainton et al]

Create a separable potential that is phase equivalent to AV18:

But for off-diagonal, need half-on-shell T-matrix (HOST) equivalence

Are inverse scattering potentials sufficient? [Dainton et al]

Create a separable potential that is phase equivalent to AV18:

With HOST equivalence, even delta shell potential plus OPE is sufficient!

Use universality to probe decoupling

- What if not phase equivalent everywhere?
- Use ¹P₁ as example (for a change :)
- Result: local decoupling!

Use universality to probe decoupling

- What if not phase equivalent everywhere?
- Use ¹P₁ as example (for a change :)
- Result: local decoupling!

Is there 3NF universality?

- Evolve chiral NNLO EFT potentials in momentum plane wave basis to $\lambda = 1.5 \, \text{fm}^{-1}$ [K. Hebeler, Phys. Rev. C85 (2012) 021002]
- In one 3-body partial wave, fix one Jacobi momentum (p, q) and plot vs. the other one:

Collapse of curves includes non-trivial structure

Is there 3NF universality?

- Evolve in discretized momentum-space hyperspherical harmonics basis to $\lambda = 1.4\,\mathrm{fm}^{-1}$ [K. Wendt, Phys. Rev. C87 (2013) 061001]
- Contour plot of integrand for 3NF expectation value in triton

- Local projections of 3NF also show flow toward universal form
- Can we exploit universality à la Wilson? Stay tuned!

What else can we say about the flow of NN··· N potentials?

• Can arise from counterterm for new UV cutoff dependence, e.g., changes in Λ_c must be absorbed by 3-body coupling $D_0(\Lambda_c)$

RG invariance dictates 3-body coupling flow [Braaten & Nieto]

• General RG: 3NF from integrating out *or* decoupling high-*k* states

What do we know about the *growth* of NN···N potentials?

Many interesting results have appeared, prompting questions . . .

Early results in lightest systems [Jurgenson et al. (2009)]:

How does this hierarchy evolve with A?

What do we know about the *growth* of NN···N potentials?

Many interesting results have appeared, prompting questions . . .

Team Roth: 4-body depends on cutoff on c_3 term.

How do we determine consistent regulators in this case? Does local versus non-local cutoff function matter?

What do we know about the *growth* of NN···N potentials?

Many interesting results have appeared, prompting questions . . .

Ratio of 3NF to NN in neutron matter [Hebeler, rjf (2013)]

Density scales as you would expect (at least here :), but λ scaling?

What do we know about the growth of NN··· N potentials?

Many interesting results have appeared, prompting questions . . .

Nuclear matter scaling: use NN results at saturation $\Longrightarrow \langle V_3 \rangle / \langle V_2 \rangle$

Simple dimensional scaling (e.g., $(k_{\rm F}/\Lambda)^3$ or $(k_{\rm F}/\lambda)^3$) doesn't work

but a different scaling ...
$$\frac{\langle V_3 \rangle}{\langle V_2 \rangle} \frac{f_\pi^2 \Lambda}{\rho} \Lambda^{1/3} \sim \mathcal{O}(1)$$
 [where did $\rho/f_\pi^2 \Lambda$ come from?]

What do we know about the growth of NN··· N potentials?

Many interesting results have appeared, prompting questions . . .

Nuclear matter scaling: use NN results at saturation $\Longrightarrow \langle V_3 \rangle / \langle V_2 \rangle$

Simple dimensional scaling (e.g., $(k_F/\Lambda)^3$ or $(k_F/\lambda)^3$) doesn't work

but a different scaling ...
$$\frac{\langle V_3 \rangle}{\langle V_2 \rangle} \frac{f_\pi^2 \Lambda}{\rho} \Lambda^{1/3} \sim \mathcal{O}(1)$$
 [where did $\rho/f_\pi^2 \Lambda$ come from?]

Current answer: not enough yet! But tools in place to make progress!

■ Enable chiral EFT power counting ⇒ NDA and naturalness

$$\mathcal{L}_{\chi\, ext{eft}} = c_{lmn} \left(rac{ extstyle N^\dagger(\cdots) extstyle N}{f_\pi^2 extstyle \Lambda_\chi}
ight)^I \left(rac{\pi}{f_\pi}
ight)^m \left(rac{\partial^\mu, m_\pi}{\Lambda_\chi}
ight)^n f_\pi^2 \Lambda_\chi^2 \quad extstyle f_\pi \sim 100\, ext{MeV}$$

- Georgi (1993): f_{π} for strongly interacting fields; rest is Λ_{χ}
- Cohen et al. (1997). Uncanonical scaled EFT action at Λ:

$$S_{\Lambda} = \frac{1}{g^2} \int \! d^4x \, \widehat{\mathcal{L}}_{\Lambda} \left(\frac{\pi'}{\Lambda}, \frac{\textit{N}'}{\Lambda^{3/2}}, \frac{\partial}{\Lambda} \right) \quad \text{``natural'' if loops} \leq \text{trees}$$

- NDA: that bound is saturated: $g \sim 4\pi$ with $\Lambda \sim \Lambda_{\chi}$
- Rescale to canonical kinetic normalization ⇒ NDA
- Claim: should *match* choosing $\Lambda \sim \Lambda_{\chi}$ scale \Longrightarrow NDA estimates
 - Λ_{χ} is not itself an adjustable cutoff but a physics scale
 - e.g., from non-Goldstone-boson exchange such m_{ρ}
 - Need calculations for quantitative Λ_{Y}
- Other refs: Dugan and Golden (1993), Friar (1997)

■ Enable chiral EFT power counting ⇒ NDA and naturalness

$$\mathcal{L}_{\chi\, ext{eft}} = c_{lmn} \left(rac{ extstyle N^\dagger(\cdots) extstyle N}{f_\pi^2 extstyle \chi_\chi}
ight)^I \left(rac{\pi}{f_\pi}
ight)^m \left(rac{\partial^\mu, m_\pi}{ extstyle \chi_\chi}
ight)^n f_\pi^2 extstyle \chi_\chi^2 \quad extstyle f_\pi \sim 100\, ext{MeV}$$

• E.g., check NLO, NNLO constants from \mathcal{L}_{NN} [Epelbaum et al.] Take $\Lambda_{\chi} \Longrightarrow$ cutoff Λ : 500...600 MeV):

$f_{\pi}^2 C_S$	$-1.079\ldots -0.953$	$f_{\pi}^2 C_T$	0.0020.040
$f_{\pi}^2 \Lambda_{\chi}^2 C_1$	3.143 2.665	$4 f_{\pi}^2 \Lambda_{\chi}^2 C_2$	2.029 2.251
$f_{\pi}^2 \Lambda_{\chi}^2 C_3$	0.4030.281	$4 f_{\pi}^2 \Lambda_{\chi}^2 C_4$	$-0.364\ldots -0.428$
$2 f_{\pi}^2 \Lambda_{\chi}^2 C_5$	2.846 3.410	$f_{\pi}^2 \Lambda_{\chi}^2 C_6$	-0.7280.668
$4 f_{\pi}^2 \Lambda_{\chi}^2 C_7$	-1.929 — 1.681		

- $1/3 \lesssim c_{lmn} \lesssim 3 \Longrightarrow \text{natural!} \Longrightarrow \text{truncation error estimates}$
- If unnaturally large, signal of missing long-distance physics (e.g., Δ in c_i 's) or over-fitting
- $f_{\pi}^2 C_T$ unnaturally small $\Longrightarrow SU(4)$ spin-isospin symmetry

■ Enable chiral EFT power counting ⇒ NDA and naturalness

$$\mathcal{L}_{\chi\, ext{eft}} = c_{lmn} \left(rac{ extstyle N^\dagger(\cdots) extstyle N}{f_\pi^2 extstyle \chi_\chi}
ight)^l \left(rac{\pi}{f_\pi}
ight)^m \left(rac{\partial^\mu, m_\pi}{ extstyle \chi_\chi}
ight)^n f_\pi^2 extstyle \chi_\chi^2 \quad extstyle f_\pi \sim 100\, ext{MeV}$$

Applications to coefficients in relativistic and Skyrme density functionals

- Identify unnaturally large and small Skyrme coefficients
- Guide fitting attempts with generalized EDF's?

■ Enable chiral EFT power counting ⇒ NDA and naturalness

$$\mathcal{L}_{\chi\, ext{eft}} = \emph{c}_{lmn} \left(rac{\emph{N}^{\dagger}(\cdots)\emph{N}}{\emph{f}_{\pi}^{2}\emph{\Lambda}_{\chi}}
ight)^{\emph{I}} \left(rac{\pi}{\emph{f}_{\pi}}
ight)^{\emph{m}} \left(rac{\partial^{\mu},\emph{m}_{\pi}}{\emph{\Lambda}_{\chi}}
ight)^{\emph{n}} \emph{f}_{\pi}^{2}\emph{\Lambda}_{\chi}^{2} \quad \emph{f}_{\pi} \sim 100\, ext{MeV}$$

Old chiral NDA analysis for EDFs: [Friar et al., rif et al.]

$$c \left[\frac{N^{\dagger} N}{f_{\pi}^{2} \Lambda} \right]^{I} \left[\frac{\nabla}{\Lambda} \right]^{n} f_{\pi}^{2} \Lambda^{2}$$

$$\Rightarrow \rho \longleftrightarrow N^{\dagger} N$$

$$\Rightarrow \tau \longleftrightarrow \nabla N^{\dagger} \cdot \nabla N$$

$$\downarrow I \longleftrightarrow N^{\dagger} \nabla N$$

- Density expansion? $1000 \ge \Lambda \ge 500 \Longrightarrow \frac{1}{7} \le \frac{\rho_0}{f^2 \Lambda} \le \frac{1}{4}$
 - Also gradient expansion
 - Applied to RMF, Skyrme EDFs

■ Enable chiral EFT power counting ⇒ NDA and naturalness

$$\mathcal{L}_{\chi\, ext{eft}} = \emph{c}_{lmn} \left(rac{\emph{N}^{\dagger}(\cdots)\emph{N}}{\emph{f}_{\pi}^{2}\emph{\Lambda}_{\chi}}
ight)^{\emph{I}} \left(rac{\pi}{\emph{f}_{\pi}}
ight)^{\emph{m}} \left(rac{\partial^{\mu},\emph{m}_{\pi}}{\emph{\Lambda}_{\chi}}
ight)^{\emph{n}} \emph{f}_{\pi}^{2}\emph{\Lambda}_{\chi}^{2} \quad \emph{f}_{\pi} \sim 100\, ext{MeV}$$

 Old chiral NDA analysis for EDFs: [Friar et al., rjf et al.]

$$c \left[\frac{N^{\dagger} N}{f_{\pi}^{2} \Lambda} \right]^{l} \left[\frac{\nabla}{\Lambda} \right]^{n} f_{\pi}^{2} \Lambda^{2}$$

$$\Rightarrow \begin{array}{c} \rho \longleftrightarrow N^{\dagger} N \\ \tau \longleftrightarrow \nabla N^{\dagger} \cdot \nabla N \\ \mathbf{J} \longleftrightarrow N^{\dagger} \nabla N \end{array}$$

• Density expansion? $1000 \ge \Lambda \ge 500 \Longrightarrow \frac{1}{7} \le \frac{\rho_0}{f^2\Lambda} \le \frac{1}{4}$

- Also gradient expansion
- Applied to RMF, Skyrme EDFs

What is the breakdown scale? Not clear for χ EFT! How do we analyze?

Error ("Lepage") plots revisited [Lepage (1997); Steele, rjf (1999)]

• What is the evidence that the EFT is working as it should and we're not just fitting (or over-fitting) elephants with many parameters?

- Slope of error curve with energy should increase with EFT order
- Breakdown scale (Λ_{χ}) where error curves intersect or where error stops improving (stabilized prediction)
 - Can we apply to observables other than phase shifts?
 - Investigations with toy models in progress [S. Wesolowski]
- What about error bands from regulator cutoff Λ variations?

How should we fit the LECs? Constrained curve fitting

- A new era for fitting and testing chiral Hamiltonians [see A. Ekstrom]
 - Deficiencies revealed; more advanced interactions coming
- Practical/theory motivations for Bayesian priors [Lepage (2001)]:
 - Constraints consistent with Lepage plots (can be tricky)
 - Would like to be independent of where we stop fitting (E, order)
 - Want the theory error at each order incorporated appropriately
 - Do not want constants to play off each other
- Bayesian fits in 30 seconds. Suppose we have parameters $\mathbf{a} = \{a_0, a_1, \cdots, a_M\}$, a data set $\mathbf{d} = \{d_1, d_2, \cdots, d_N\}$, and a theory f.
 - Goal: what **a** to use (with error) given a data set $\mathbf{d} \Longrightarrow pr(\mathbf{a}|\mathbf{d}, f)$
 - Known: given **a**, what is the chance we get $\mathbf{d} \Longrightarrow pr(\mathbf{d}|\mathbf{a}, f)$
- Joint probability $pr(\mathbf{d}, \mathbf{a})$ can be decomposed into conditional probabilities two ways (and so are equal): $pr(\mathbf{a}|\mathbf{d}, f)pr(\mathbf{d}|f) = pr(\mathbf{d}|\mathbf{a}, f)pr(\mathbf{a}|f) \qquad \text{e.g., } pr(\mathbf{d}|\mathbf{a}, f) \propto \prod_{i=1}^{N} e^{-\chi^2/2}$

Now just put
$$pr(\mathbf{d}|f)$$
 on the other side. The "priors" are $pr(\mathbf{a}|f)$.

"Prior" work by Schindler/Phillips: naturalness as a prior

- "Bayesian Methods for Parameter Estimation in Effective Field Theories"
- Test application to chiral perturbation theory
- M coefficients naturalness values in normal distribution

$$pr(\mathbf{a}|M,R) = \left(\prod_{i=0}^{M} \frac{1}{\sqrt{2\pi}R}\right) e^{-\frac{1}{2}\sum_{i=0}^{M} a_i^2/R^2} \implies R \text{ is width}$$

- In progress: revisit by S. Wesolowski, D. Phillips, rjf for NN···N
- Is normal distribution for natural $\mathbf{a} = \{a_i\}$ appropriate given we expect $1/n < a_i < n$?
- Maybe log normal distribution instead for |a_i|

$$f(x; \mu, \sigma) = \frac{1}{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, \quad x > 0.$$

How does this prior relate to weighting by the order of expansion?

"Prior" work by Schindler/Phillips: naturalness as a prior

 Schindler/Phillips toy problem: find M lowest-order coefficients in expansion of

$$g(x) = \left(\frac{1}{2} + \tan(\frac{\pi}{2}x)\right)^2 = \sum_{i=0}^{\infty} a_i x^i$$

$$\approx 0.25 + 1.57x + 2.47x^2 + 1.29x^3 + \cdots$$

by ordinary " χ^2 " fitting and using Bayesian priors on the "naturalness" of coefficients.

- Coefficients are of order unity: 1/4 < a_i < 4
- Limited measurements and experimental noise
- Goal: determine a₀ and a₁

Usual χ^2 fit

			· -	
М	χ^2	a_0	a ₁	a ₂
1	2.49	0.22±0.02	2.47±0.11	
2	0.85	0.29 ± 0.02	1.04±0.40	4.91±1.31
3	0.85	0.26±0.04	2.00±1.12	-2.55±8.27
4	0.60	0.18±0.07	5.74 ± 2.81	-50.4±34.0
5	0.57	0.28±0.14	0.24±7.08	46.9±120.0

With natural prior

	The second secon		
М	a_0	a ₁	a ₂
	0.23±0.14		
2	0.27±0.03	1.50±0.35	3.21±1.21
3	0.27±0.03	1.54±0.33	2.80±1.19
4	0.27±0.03	1.54±0.35	2.76±1.18
5	0.28±0.05	1.57±0.21	2.79±1.11

 \implies marginalize over M and log normal parameters

Controlled fitting protocol needed for consistent "running" of EFT

"Prior" work by Schindler/Phillips: naturalness as a prior

 Schindler/Phillips toy problem: find M lowest-order coefficients in expansion of

$$g(x) = \left(\frac{1}{2} + \tan(\frac{\pi}{2}x)\right)^2 = \sum_{i=0}^{\infty} a_i x^i$$

$$\approx 0.25 + 1.57x + 2.47x^2 + 1.29x^3 + \cdots$$

by ordinary " χ^2 " fitting and using Bayesian priors on the "naturalness" of coefficients.

- Coefficients are of order unity: 1/4 < a_i < 4
- Limited measurements and experimental noise
- Goal: determine a₀ and a₁

Controlled fitting protocol needed for consistent "running" of EFT

"Prior" work by Schindler/Phillips: naturalness as a prior

 Schindler/Phillips toy problem: find M lowest-order coefficients in expansion of

$$g(x) = \left(\frac{1}{2} + \tan(\frac{\pi}{2}x)\right)^2 = \sum_{i=0}^{\infty} a_i x^i$$

$$\approx 0.25 + 1.57x + 2.47x^2 + 1.29x^3 + \cdots$$

by ordinary " χ^2 " fitting and using Bayesian priors on the "naturalness" of coefficients.

- Coefficients are of order unity: 1/4 < a_i < 4
- Limited measurements and experimental noise
- Goal: determine a₀ and a₁

Controlled fitting protocol needed for consistent "running" of EFT

Is there a motivation for lower EFT cutoffs?

- Recent examples of calculations with soft EFT interactions
 - Nuclear matter calculations with soft smooth cutoff EFT potential [Corraggio et al., arXiv:1402.0965]
 - Lattice chiral EFT: coarse lattices ⇒ low Λ cutoff
 ⇒ but many successes [see D. Lee]
- How is an EFT at two different scales related to an RG running via SRG or Vlowk?
 - First, distinguish breakdown Λ_{χ} from regulator Λ
 - For matching, choose $\Lambda \sim \Lambda_{\chi}$ for Weinberg counting
- Integrating out momenta in a local EFT (à la Georgi)
 - Integrate out momenta ⇒ non-local action
 - Derivative expansion and drop higher terms ⇒ back to local
 - Requires sufficient scale separation or error grows from dropped terms
 - cf. SRG \Longrightarrow error is unchanged with softening
 - But what is happening if we instead refit the EFT?
- Which is better in practice? We need more comparisons!

Does it matter how we cutoff UV physics?

- Perhaps not in principle, but certainly in practice!
- What form does the T-generator SRG cutoff take?
 - Decoupling (roughly) imposes off-diagonal form for $V_{\lambda}(k,q)$

$$V_{\lambda}(k,q) \stackrel{q\gg k}{\longrightarrow} V_{\lambda}(0,q) \sim V_{\infty}(0,q) \, e^{-(q^4/\lambda^4)}$$

• Test with a simple variational ansatz (from *k*-space S-eqn)

$$u(k) = \frac{1}{(k^2 + \gamma^2)(k^2 + \mu^2)} e^{-(k^4/\lambda^4)} \qquad w(k) = \frac{ak^2}{(k^2 + \gamma^2)(k^2 + \nu^2)^2} e^{-(k^4/\lambda^4)}$$

- error in deuteron energy for different initial potentials
- ullet small λ works pretty well
- V_{low k} works even better!

What if we "lower" cutoff by a truncated oscillator basis?

[Work by S. Bogner, S. Koenig, S. More, T. Papenbrock, rjf . . .]

- S. Coon: Finite oscillator basis imposes both IR and UV cutoffs
- Nature of UV vs. IR cutoff in light of dual nature of HO
 - Low-momentum (IR) spectrum is the same as hard-wall at

$$L_{\Delta}=\sqrt{2(extstyle N_{
m max}+3/2+\Delta)}b_{
m osc}$$
 with $b_{
m osc}\equiv\sqrt{\hbar/(\mu\Omega)}$ with $\Delta=2$ [see T. Papenbrock]

• Duality \Longrightarrow short distance (UV) same as hard wall in momentum with $b_{\rm osc} \to \hbar/b_{\rm osc}$ in $L_2 \Longrightarrow$ we expect

$$\Lambda_{\Delta} = \sqrt{2(\textit{N}_{\text{max}} + 3/2 + \Delta)} \hbar/\textit{b}_{\text{osc}} \qquad \text{with } \Delta = 2$$

• Analytic result for separable potential with hard cutoff Λ:

$$V_{\lambda}(k,k') = gf_{\lambda}(k)f_{\lambda}(k') \text{ with } f_{\lambda}(k) = e^{-(k/\lambda)^n} \implies \Delta E \stackrel{\Lambda \gg \lambda}{\longrightarrow} C \int_{\lambda}^{\infty} dk \, f_{\lambda}^2(k)$$

• Expect asymptotic form of energy correction for SRG or smooth $V_{\text{low }k}$ to (roughly) follow this form (with additional Λ dependence)

 $\Longrightarrow \Delta E_d/E_d$ for different cutoff forms; hard wall is $n=\infty$

 $\Longrightarrow \Delta E_d/E_d$ for Λ_0 ; looks like $n=\infty$ but noticable scatter

[Thanks to K. Wendt for generating deuteron energies in IR-converged spaces]

 $\Longrightarrow \Delta E_d/E_d$ for Λ_2 ; looks like $n=\infty$ and *no* scatter

For $\Lambda > \lambda$, $\Delta E_d / E_d \propto g(\Lambda) e^{-2(\Lambda/\lambda)^4}$ (??)

For $\Lambda \lesssim \lambda,\, \Delta E_d/E_d \propto e^{-4(\Lambda/\lambda)^2}$ (roughly), as used empirically

SRG/Vlowk wave functions versus "measured" SRCs

- Universal aspects of UV and IR truncations?
 - IR dictated by asymptotic many-body wave function
 ⇒ break-up channels ⇒ depends only on observables
 ⇒ independent of RG running (and intial potential)
 - UV depends on potential; e.g., changes with RG running because UV potential and wave function do
 - But expect similar (scaled) ΔE for A > 2
- Similar to discussions of short-range correlation physics
 - Frankfurt/Strikman arguments on asymptotic k-space wf
 - E.g., T. Neff et al. 2-body S = 0, T = 1 densities:

Is any of this UV physics "measurable"? [see rjf, 1309.5771]

- Relevant to knock-out experiments of various types
- Issues of scale and scheme dependence (RG invariants?)
 - We have (implicitly or explicitly) established a separation or factorization scale when we calculate observables
 - If sufficient separation of scales, then impulse approximation can be good, and no ambiguities.
 - Generally scale dependent, e.g. parton vs. momentum distributions:

Which scale to use for experiment? Clear for QCD (gauge theory) but EFT?

Start with simplest problem: deuteron electrodisintegration

• In progress by S. More, K. Hebeler, rjf

- Build on Yang and Phillips EFT calculations, but beyond the EFT ("high-resolution probes of low-resolution nuclei")
- Old field redefinition arguments of Hammer, rif; also with $U_{\lambda}(k,q)$

- Understand mixing of structure, FSI, and currents (can't isolate!)
- Can we make money on factorization?

Additional comments (prejudices) on UV physics

- The fate of UV physics cuts across and unites many topics
- Calculational methods with microscopic forces are maturing
 - Deficiencies of current Hamiltonians clearly revealed
 - Opportunities: revisit old EFT technology while inventing new
 - Structure component ahead of reactions but RG can shift between; treating one in isolation can be dangerous
- Knock-out experiments need to be understood better
 - EFT and RG provide tools to do this
 - Different factorization scale for expt. analysis and calculation?
- Don't be too narrow with "ab initio" for microscopic NN···N forces
 - Use sounds provincial in light of QCD
 - Low-energy paradigm: tower of effective theories (or turtles)
- Where should we think about the next rung on the EFT tower?
 - pionless EFT for halo nuclei
 - low-lying excitations in deformed nuclei [see T. Papenbrock]
 - DFT? [e.g., J. Dobaczewski et al.; revisit Landau-Migdal?]