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I. Brief Overview of the No Core Shell Model (NCSM)



No Core Shell Model

“Ab Initio” approach to microscopic nuclear structure
calculations, in which all A nucleons are treated as
being active.

Want to solve the A-body Schrodinger equation

H¥Y = E,¥"

P. Navratil, J.P. Vary, B.R.B., PRC 62, 054311 (2000)
BRB, P. Navratll J.P. Vary, Pro%\IPart Nucl. P}Il’yh 69, 131 2013
y

P. Navratil, et al., J. Phys. G: Nucl. Part s. 36, 083
(2009)
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Effective Interaction

@ Must truncate to a finite model space V=== Vgﬁecm’e
@ In general, V;ﬁ 1s an 4-body interaction

@ We want to make an a-body cluster approximation

H=HD HA > w0 L)
a< A



Effective interaction in a projected model space 4

HWV, = E,Va  where H = Zt +ZU13~
£5.

Hbpz = Egdg
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II. Ab Initio Shell Model with a Core Approach
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Ab-initio shell model with a core
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We construct effective two- and three-body Hamiltonians for the p-shell by performing 12/£2 ab initio no-core
shell model (NCSM) calculations for A = 6 and 7 nuclei and explicitly projecting the many-body Hamiltonians
onto the 0k £2 space. We then separate these effective Hamiltonians into inert core, one- and two-body contributions
(also three-body for A = 7) and analyze the systematic behavior of these different parts as a function of the mass
number A and size of the NCSM basis space. The role of effective three- and higher-body interactions for A = 6
is investigated and discussed.

DOIL: 10.1103/PhysRevC.78.044302 PACS number(s): 21.10.Hw, 21.60.Cs, 23.20.Lv, 27.20.4+n

Also P. Navratil, M. Thoresen and B.R.B., PRC 55, R573 (1997)



FORMALISM
1. Perform a large basis NCSM for a core + 2N system, e.g., 18"F.

2. Use Okubo-Lee-Suzuki transformation to project these results
into a single major shell to obtain effective 2-body matrix elements.

3. Separate these 2-body matrix elements into a core term, single-
particle energies and residual 2-body interactions, i.e., the standard
input for a normal Shell Model calculation.

4. Use these values for performing SM calculations in that shell.
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_Effective Hamiltonian for SSI
Hc'ulate the Shell Model 2-

Two ways of convergence:

1) For P —1 andfixed a: H°*",__, — H,: previous slide

2) For a, > A and fixed P: H*" = —H,

P.+Q=P; P, -small model space; Q, -excluded space;

A,
HNl,maXaNma}c . Uafl Py Nmax Ua'l I

A a1 A ,a1,P1
\/ at, P1 1 A1 \/ 01, '511 5

Valence Cluster Expansion

N, ... =0 space (p-space); a,=A +a, a, -orderofcluster;

A_. - number of nucleons in core; a, - order of valence cluster;

U W e E : A, A+k
A (11 T V




III. Results: sd-shell nuclei
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Ab 1nitro effective interactions for sd-shell valence nucleons
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We perform ab initic no core shell model calculations for A = 18 and 19 nucler in a 4A€2, or
Nmax = 4. model space using the effective JISP16 and chiral N3LO nucleon-nucleon potentials and
transform the many-body effective Hamiltonians into the 0i{} model space to construct the A-body
effective Hamiltomans in the sd-shell. We separate the A-body effective Hamiltonians with 4 = 18
and A = 19 into inert core. one- and two-body components. Then, we use these core. one- and
two-body components to perform standard shell model caleulations for the 4 = 18 and A4 = 19
systems with valence nucleons restricted to the sd-shell. Finally, we compare the standard shell
model results in the 0/£) model space with the exact no core shell model results in the 4/ model
space for the A = 18 and A = 19 systems and find good agreement.

ArXiv: Nucl-th 1502.00700
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Input: The results of N max =4 and hw = 14 MeV NCSM calculations

TABLE II: Proton and neutron single-particle energies (in
MeV) for JISP16 effective interaction obtained for the mass

of A =18 and A = 19,

TABLE III: Proton and neutron single-particle energies (in
MeV) for chiral N3LO effective interaction obtained for the

mass of 4 =18 and 4 = 19,
A=18 A=19 A =18 A=19
Ecore = —115.529 Eeore = —115.319 Eeore = —118.460 Eeore = —118.306
3 1 5 3 1 5 3 ; T : 3 T : 3
Js 2 2 2 2 2 2 Ji 3 o 3 3 3 P
er| -3.068 -2270 6.262] -3.044 -2.248  6.289 | -3638  -3.042 3763] -3.625 -3031 3.770
Fff’ . 0.603 1.398  9.748 0.627 1.419 9.77: F_J:f . 0.044 0.690 7.299 0.057 0.700 7.307

A=18
Coupled Cluster, E core: -130.462
Idaho NN N3LO + 3N N2LO

IM-SRG, E core: -130.132
Idaho NN N3LO + 3N N2LO

A=19

-130.056 from G.R. Jansen

et al. PRL 113,
142502 (2014)

-129.637  from H. Hergert

private comm.
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Summary

Perform a converged NCSM calculation with a NN or NN+NNN
interaction for a closed core + 2 valence nucleon system.

An OLS transformation of the results of the above NCSM calculation
into a single major shell allows one to obtain core and single-particle
energies and two-body residual matrix elements appropriate for shell
model calculations in that shell, which have only a weak A-dependence.

The core and single-particle energies and two-body residual matrix
elements obtained by this procedure can be used in Standard Shell
Model calculations in the sd-shell, yielding results in good agreement
with the full space NCSM results. The core and s.p. energies + 2-body
effective interactions for A=18 give also good results for A=19 and 20.

Additional calculations are being performed with other NN
interactions and for heavier nuclei in the sd-shell.






No-Core Shell-Model Approach

@ Start with the purely intrinsic Hamiltonian

. 2
HA— ref+V— Z pj) + Z VNN(+ Z Uk)

j=1 I<j=1

Note: There are no phenomenological s.p. energies!

Coordinate space:  Argonne V8’, AV18
Can use any Nijmegen I, 11
NN potentials

Momentum space: CD Bonn, EFT Idaho



No-Core Shell-Model Approach

« Next, add CM harmonic-oscillator Hamiltonian

Defines a basis (i.e. HO) for evaluating V..



Effective Hamiltonian for NCS

Solvin (o] —EO
= H A, a—rz E A, a-2

=2

P+Q=1; P -model space;

in “infinite space” 2n+l =450
relative coordinates

Q - excluded space;

QO Q -t T ' 0
EA-:E — UEHA!QUQ LTE: E21P LE:PQ Ei;!.:;: EA,‘E,F ﬁU )
20p Uag i 0 Eisg
7
- U i7
N £2.eff 2. P O 2.1
H g™ = : Eyo.p
| \/{JT:-ETJ_;UQ P \/Uﬁ pUs. p

1) For P —1 andfixed a:

2) Fora — A and fixed P:

Two ways of convergence:
eff
ﬂmﬁ.FE R

eff
.HIT_I-Mﬁ .a

— H
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