Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015

Emergence of rotational bands in light nuclei from No-Core CI calculations

Pieter Maris pmaris@iastate.edu lowa State University

IOWA STATE UNIVERSITY

SciDAC project – NUCLEI lead PI: Joe Carlson (LANL) http://computingnuclei.org

PetaApps award lead PI: Jerry Draayer (LSU)

INCITE award – Computational Nuclear Structure lead PI: James P Vary (ISU)

NERSC

No-Core Configuration Interaction calculations

Barrett, Navrátil, Vary, Ab initio no-core shell model, PPNP69, 131 (2013)

Given a Hamiltonian operator

$$\hat{\mathbf{H}} = \sum_{i < j} \frac{(\vec{p}_i - \vec{p}_j)^2}{2 \, m \, A} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

solve the eigenvalue problem for wavefunction of A nucleons

$$\mathbf{\hat{H}} \Psi(r_1, \dots, r_A) = \lambda \Psi(r_1, \dots, r_A)$$

- Expand wavefunction in basis states $|\Psi\rangle = \sum a_i |\Phi_i\rangle$
- Diagonalize Hamiltonian matrix $H_{ij} = \langle \Phi_j | \hat{\mathbf{H}} | \Phi_i \rangle$
- No-Core CI: all A nucleons are treated the same
- In practice
 - truncate basis
 - study behavior of observables as function of truncation

Basis expansion $\Psi(r_1, \ldots, r_A) = \sum a_i \Phi_i(r_1, \ldots, r_A)$

- Many-Body basis states $\Phi_i(r_1, \ldots, r_A)$ Slater Determinants
- Single-Particle basis states $\phi_{ik}(r_k)$ quantum numbers n, l, s, j, m_j
- Radial wavefunctions: Harmonic Oscillator, Wood–Saxon, Coulomb–Sturmian, Berggren (for resonant states)
- *M*-scheme: Many-Body basis states eigenstates of \hat{J}_z

$$\hat{\mathbf{J}}_{\mathbf{z}}|\Phi_i\rangle = M|\Phi_i\rangle = \sum_{k=1}^A m_{ik}|\Phi_i\rangle$$

Nmax truncation: Many-Body basis states satisfy

$$\sum_{k=1}^{A} \left(2 n_{ik} + l_{ik} \right) \leq N_0 + N_{\max}$$

Alternatives:

- Full Configuration Interaction (single-particle basis truncation)
- Importance Truncation
 Roth, PRC79, 064324 (2009)
- No-Core Monte-Carlo Shell Model
 Abe et al, PRC86, 054301 (2012)
- SU(3) Truncation Dytrych *et al*, PRL111, 252501 (2013)

NCCI calculations – main challenge

- Increase of basis space dimension with increasing A and N_{max}
 - need calculations up to at least $N_{max} = 8$ for meaningful extrapolation and numerical error estimates
- More relevant measure for computational needs
 - number of nonzero matrix elements
 - current limit 10^{13} to 10^{14} (Edison, Mira, Titan)

Nuclear potential not well-known,

though in principle calculable from QCD

$$\mathbf{\hat{H}} = \mathbf{\hat{T}}_{\mathsf{rel}} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

In practice, alphabet of realistic potentials

- Argonne potentials: AV8', AV18
 - plus Urbana 3NF (UIX)
 - plus Illinois 3NF (IL7)
- Bonn potentials
- Chiral NN interactions
 - plus chiral 3NF, ideally to the same order
- **9** ...

Phenomeological NN interaction: JISP16

JISP16 tuned up to ¹⁶O

- Constructed to reproduce np scattering data
- Finite rank seperable potential in H.O. representation
- Nonlocal NN-only potential
- Use Phase-Equivalent Transformations (PET) to tune off-shell interaction to
 - binding energy of ³H and ⁴He
 - Iow-lying states of ⁶Li (JISP6, precursor to JISP16)

Av

binding energy of ¹⁶O

ailable online at www.sciencedirect.co	m
ScienceDirect	

PHYSICS LETTERS B

Physics Letters B 644 (2007) 33-37

www.elsevier.com/locate/physletb

Realistic nuclear Hamiltonian: Ab exitu approach

A.M. Shirokov $^{a,b,\ast},$ J.P. Vary $^{b,c,d},$ A.I. Mazur $^{e},$ T.A. Weber b

^a Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992, Russia
 ^b Department of Physics and Astronomy, Jowa State University, Ames. IA 50011-3160. USA

^c Lawrence Livermore National Laboratory, L-414, 7000 East Avenue, Livermore, CA 94551, USA

^d Stanford Linear Accelerator Center, MS81, 2575 Sand Hill Road, Menlo Park, CA 94025, USA ^e Pacific National University, Tikhookeanskava 136, Khabarovsk 680035, Russia

Ground state energy of p-shell nuclei with JISP16

Maris, Vary, IJMPE22, 1330016 (2013)

¹⁰B – most likely JISP16 produces correct 3⁺ ground state, but extrapolation of 1⁺ states not reliable due to mixing of two 1⁺ states

 \mathbf{P} ¹¹Be – expt. observed parity inversion within error estimates of extrapolation

¹²B and ¹²N – unclear whether gs is 1^+ or 2^+ (expt. at $E_x = 1$ MeV) with JISP16

Excitation spectrum 7Li

- Narrow states well converged, no extrapolation needed
- Broad resonances generally not as well converged; may need to incorporate continuum?

Quadrupole moment and B(E2) transition strengths 7Li

Cockrell, Maris, Vary, PRC86 034325 (2012)

- E2 observables not converged, due to gaussian fall-off of HO wavefunction
- Nevertheless, qualitative agreement of Q and B(E2) with data

Quadrupole moments and B(E2) transitions for $J^{\pi} = \frac{5}{2}^{-}$ states

- E2 observables not converged, but nevertheless
 - J^π = (⁵/₂⁻)₁ large negative quadrupole moment
 ¹/₂⁻, ⁷/₂⁻, and (⁵/₂⁻)₁ relatively strong B(E2) to g.s.
 J^π = (⁵/₂⁻)₂ small positive quadrupole moment, Q ~ 2 e fm², and very small B(E2) to g.s.

Energies of narrow A=6 to A=9 states with JISP16

⁸He ⁸Li ⁸Be -30 ⁹Li ⁶He Ξ Ground state energy (MeV) -35 ⁶Li Ξ 王 王 Ξ. -40 ⁷Li Ξ Ŧ Ŧ -45 ⁹Be rotational band -50 2^+ ŦŦ Ŧ. JISP16 -55 $\mathbf{\Xi} \mathbf{0}^{+}$ expt 7 9 6 8 A

Maris, Vary, IJMPE22, 1330016 (2013)

Excitation spectrum narrow states in good agreement with data

Intermezzo: Rotational states

Assuming adiabatic separation of rotational and internal degrees of freedom, a rotational nuclear state $|\psi_{JKM}\rangle$ can be described in terms of an intrinsic state $|\phi_K\rangle$ in a non-inertial frame, combined with the rotational motion of this non-inertial frame

$$|\psi_{JKM}\rangle = \mathcal{N}_{JK} \int d\vartheta \left[\mathscr{D}^{J}_{MK}(\vartheta) |\phi_{K};\vartheta\rangle + (-)^{J+K} \mathscr{D}^{J}_{M-K}(\vartheta) |\phi_{\bar{K}};\vartheta\rangle \right]$$

Rotational energy

$$E(J) = E_0 + \frac{\hbar^2}{2\mathcal{I}} (J(J+1))$$

for $K = \frac{1}{2}$ bands staggering due to Coriolis term

$$E(J) = E_0 + \frac{\hbar^2}{2\mathcal{I}} \left(J(J+1) + a(-1)^{J+\frac{1}{2}} \left(J + \frac{1}{2} \right) \right)$$

Rotational states: Quadrupole matrix elements

Consider both proton and neutron quadrupole tensors

Rotational states: Dipole matrix elements

Magnetic moments

$$\mu(J) = a_0 J + a_1 \frac{K}{J+1} + a_2 \delta_{K,\frac{1}{2}} \frac{(-1)^{J-\frac{1}{2}}}{2\sqrt{2}} \frac{2J+1}{J+1}$$

Magnetic transition matrix elements

$$\langle \psi_{J-1,K} || M_1 || \psi_{J,K} \rangle = -\sqrt{\frac{3}{4\pi}} \sqrt{\frac{J^2 - K^2}{J}} \left(a_1 + a_2 \,\delta_{K,\frac{1}{2}} \,\frac{(-1)^{J-\frac{1}{2}}}{\sqrt{2}} \right)$$

Define dipole terms $D_{l,p}$, $D_{l,n}$, $D_{s,p}$, and $D_{s,n}$ for both the magnetic moments and for the M_1 transitions

$$M_1 = g_{l,p} D_{l,p} + g_{l,n} D_{l,n} + g_{s,p} D_{s,p} + g_{s,n} D_{s,n}$$

with $g_{l,p} = 1$, $g_{l,n} = 0$, $g_{s,p} = 5.586$, and $g_{s,n} = -3.826$

Excitation spectrum 7Be – Emergence of rotational band?

- Spectrum in reasonable agreement with data
 - Iowest two excited states converged
 - broad resonances not as well converged
- Excitation energies of lowest J states consistent with

```
K = \frac{1}{2} rotational band
```

Emergence of $K = \frac{1}{2}$ **rotational band**

Ratio of electric quadrupole moments and B(E2)'s over ground state quadrupole moment Q(3/2)

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver - p. 16/50

Candidate rotational bands: ⁷Be–¹²Be

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver - p. 17/50

Candidate rotational bands: ⁷Be–¹²Be

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver - p. 18/50

Electromagnetic moments and transitions

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver - p. 19/50

Electromagnetic moments and transitions

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver - p. 20/50

Electromagnetic moments and transitions

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver - p. 21/50

Convergence with basis size? ⁹Be

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver - p. 22/50

Convergence with basis size? ⁹Be

Absolute binding energy? NO! Excitation within band? ~YES

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver - p. 23/50

Convergence with basis size? ⁹Be

Absolute *E*2? **NO**! Ratio of *E*2? ~**YES** Absolute *M*1? ~**YES**

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver - p. 24/50

Intra-band E2 transition strength

Caprio, Maris, Vary, Smith, arXiv:1502.01083

E2 transition strenght between natural (negative) parity states in ⁹Be

Transitions within g.s. (K = 3/2) and (K = 1/2) bands significantly enhanced over typical E2 transition strenght

LS decomposition rotational bands ⁹Be

Johnson, arXiv:1409.7355

L decomposition with SRG-evolved chiral N3LO NN-only interaction

with Cohen–Kurath shell model

9.S. (K = 3/2) (left): $\frac{3}{2}^{-}, \frac{5}{2}^{-}, \frac{7}{2}^{-}, \text{ and } \frac{9}{2}^{-} \text{ states dominated by } L = 1, 2, 3, \text{ and } 4$

• excited
$$(K = 1/2)$$
 (right):
$$\frac{1}{21}^{-}, \frac{3}{22}^{-}, \frac{5}{22}^{-}, \text{ and } \frac{7}{23}^{-} \text{ states dominated by } L = 1, 2, 3, \text{ and } 4$$

Comparison with experiment

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver - p. 27/50

Nuclear interaction from chiral perturbation theory

- Strong interaction in principle calculable from QCD
- Use chiral perturbation theory to obtain effective A-body interaction from QCD
 Entem and Machleidt, PRC68, 041001 (2003)
 - sontrolled power series expansion in Q/Λ_{χ} with $\Lambda_{\chi} \sim 1$ GeV
 - natural hierarchy for many-body forces

 $V_{NN} \gg V_{NNN} \gg V_{NNNN}$

- in principle
 no free parameters
 - in practice a few undetermined parameters
- renormalization necessary

Leading-order 3N forces in chiral EFT

Effect of 3-body forces on lowest excited states ⁸Be

Maris, Aktulga, Binder, Calci, Catalyurek, Langhammer, Ng, Saule, Roth, Vary, Yang J. Phys. Conf. Ser. 454, 012063 (2013)

- Very well converged without explicit 3NF
- Reasonably well converged with explicit 3NF
- In agreement with data

Rotational nature of 2^+ and 4^+ of 8 Be

results at SRG parameter $\lambda = 2.0 \text{ fm}^{-1}$, basis $\hbar \omega = 20 \text{ MeV}$

- Excitation energies in agreement with rotational model
- Q and E2 transition matrix elements not converged
- ratios Q/Q_0 and M_{E2}/Q_0 reasonably converged and in semi-quantitative agreement with rotational model (note: these are broad resonances, for which we cannot obtain true convergence)

Effect of 3-body forces on rotational excited states ¹²C

Maris, Aktulga, Binder, Calci, Catalyurek, Langhammer, Ng, Saule, Roth, Vary, Yang J. Phys. Conf. Ser. 454, 012063 (2013)

- Chiral 3NF improves agreement with data
- Not converged with explicit 3NF, despite weak N_{max} dependence
- Increase in excitation energy of $(2^+, 0)$ and $(4^+, 0)$ rotational states likely due to increased binding of $(0^+, 0)$

Spectrum of ^{12}C

Maris, Vary, Calci, Langhammer, Binder, Roth, Phys. Rev. C90, 014314 (2014)

- Excitation energies $(1^+, 0)$ and $(0^+, 1)$ sensitive to 3NF
- Negative parity spectrum relative to lowest (3⁻, 0) reasonably well converged, and 3NF improves agreement with experiment

preliminary results with SRG evolved N³LO NN plus N²LO 3NF

- Clearly underbound without chiral 3NF
- With chiral 3NF
 - overbound with
 500 MeV cutoff,

 $c_D = -0.2, c_E = -0.205$

 (slightly) underbound with 400 MeV cutoff,

 $c_D = -0.2, c_E = 0.098$?

Need extrapolation to complete basis

Ground state energies at $N_{\text{max}} = 4$, 6, and 8

Rotational band(s) in ¹³C ? – work in progress

Excitation energies at $N_{\rm max} = 8$, basis parameter $\hbar \omega = 20 \text{ MeV}$

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver - p. 34/50

Rotational band(s) in ¹³C ? – work in progress

- Quadrupole moments relative to Q_0 agree with rotational band predictions, but lowest $9/2^-$ does not belong to this rotational band
- Magnetic moments in agreement with rotational band predictions
- Need to look at E2 and M1 transitions

Conclusions

- No-core Configuration Interaction nuclear structure calculations
 - Main challenge: construction and diagonalization of extremely large (D $\sim 10^{10}$) sparse (NNZ $\sim 10^{14}$) matrices
- Emergence of rotational structure
 - Excitation energies (i.e. energy differences)
 - Ratios of Q moments and E2 transition matrix elements
 - Dipole moments and M1 transition matrix elements
- Perspectives and plans
 - Convergence of long-range observables remains a challenge
 - extrapolation tools
 - efficient truncation schemes w. uncertainty estimates
 - realistic basis functions w. correct asymptotic behavior
 - Resonance state: incorporating continuum
- Would not have been possible without collaboration with applied mathematicians and computer scientists NESAP award – early science project on Cori NERSC (Xeon Phi)

Intrinsic quadrupole moments

Although quadrupole moments themselves are not converged

- Significantly larger than Weisskopf estimates
- Ratio of proton over neutron quadupole moments converged

Challenge: achieve numerical convergence for No-Core Full Configuation calculations using finite model space calculations

- Perform a series of calculations with increasing N_{max} truncation
- Extrapolate to infinite model space \longrightarrow exact results
 - Empirical: binding energy exponential in N_{max}

 $E_{\text{binding}}^{N} = E_{\text{binding}}^{\infty} + a_1 \exp(-a_2 N_{\text{max}})$

- use 3 or 4 consecutive N_{max} values to determine $E_{\text{binding}}^{\infty}$
- use $\hbar \omega$ and N_{max} dependence to estimate numerical error bars

Maris, Shirokov, Vary, PRC79, 014308 (2009)

Recent studies of IR and UV behavior: exponentials in $\sqrt{\hbar\omega/N}$ and $\sqrt{\hbar\omega N}$ Coon *et al*, PRC86, 054002 (2012); Furnstahl, Hagen, Papenbrock, PRC86, 031301(R) (2012); More, Ekstrom, Furnstahl, Hagen, Papenbrock, PRC87, 044326 (2013)

Extrapolating to complete basis – in practice

- Perform a series of calculations with increasing N_{max} truncation
- **J** Use empirical exponential in N_{max} :
 - $E_{\text{binding}}^N = E_{\text{binding}}^\infty + a_1 \exp(-a_2 N_{\text{max}})$

Cockrell, Maris, Vary, PRC86, 034325 (2012)

Hyperspherical harmonics up to $K_{max} = 14$: $E_b = -31.46(5)$ MeV
Vaintraub, Barnea, Gazit, PRC79, 065501 (2009)

Spectrum of ^{12}C

Maris, Vary, Calci, Langhammer, Binder, Roth, Phys. Rev. C90, 014314 (2014)

- Excitation energies reasonably well converged
- Dependence of SRG parameter (left) generally smaller than dependence on basis $\hbar\Omega$ (right)

Spectrum of ^{12}C

- **•** Excitation energies $(1^+, 0)$ and $(0^+, 1)$ sensitive to 3NF
- Negative parity spectrum relative to lowest (3⁻,0) reasonably well converged, and 3NF improves agreement with experiment

Convergence of M1 and E2 transitions

- M1 transitions reasonably converging

- E2 transitions not converged
- $B(E2)(2^+, 0) \rightarrow (0^+, 0)$
 - significantly reduced by 3NF
 - consistent with increased E_x and decreased radius and Q

Electromagnetic transitions

- Transition strengths in qualitative agreement with experiment
- Agreement generally improves by including chiral 3N forces, except for the B(E2) $(2^+, 0) \rightarrow (0^+, 0)$ transition

Future

- consistent chiral EFT current operators
- consistent SRG evolution of operators

Looking forward: Taming the scale explosion

- Reaching the limit of *M*-scheme N_{max} truncation
 - extremely large, extremely sparse matrices

Looking forward: Taming the scale explosion

- Reaching the limit of *M*-scheme N_{max} truncation
- Exploit symmetries to reduce basis dimension
 - Coupled-J basis
 - SU(3) basis

0.1 sparsity (NNZ / D²) $M_{i} = 0, 2 \text{ NF}$ 0.01 $M_{i} = 0, 3 \text{ NF}$ $M_{1} = 0, 4 \text{ NF}$ $J^{\pi} = 0^+, 2 NF$ • $J^{\pi} = 1^+, 2 \text{ NF}, {}^6\text{Li}$ 0.001 $J^{\pi} = 0^+, 3 \text{ NF}$ • $J^{\pi} = 0^+$. 4 NF × $J^{\pi} = 1^+, 2 \text{ NF}, {}^{6}\text{Li}, \text{SU}(3)$ 0.0001 10^{2} 10^{3} 10^{4} 10^{8} 10^{9} 10^{5} 10^{6} 10^{7} 10^{1} basis dimension (D)

Aktulga, Yang, Ng, Maris, Vary, HPCS2011 Dytrych *et al*, PRL111, 252501 (2013)

smaller,
 but less sparse matrices

- number of nonzero matrix elements often (significantly) larger than in *M*-scheme
- construction of matrix more costly
- larger memory footprint than in *M*-scheme

Reducing the basis dimension

Symmetry-Adapted No-Core Shell Model

Dytrych et al, PRL111, 252501 (2013)

- $\langle N_{\max} \rangle 12$ complete basis up to N_{\max} ,

 dominant SU(3) irreps up to $N_{\max} = 12$
- Exact factorization (in combination with HO s.p. basis)
- Calculations for ${}^{12}C$ and ${}^{20}Ne$ in progress

Reducing the basis dimension

Symmetry-Adapted No-Core Shell Model

Dytrych *et al*, PRL111, 252501 (2013)

- No-Core Monte-Carlo Shell Model
 - Abe, Maris, Otsuka, Shimizu, Utsuno, Vary, PRC86, 054301 (2012)
 - based on FCI truncation, not on N_{\max} truncation
 - reduce basis to (few) hundred highly optimized states
 - coupled-J basis
 - leads to small but dense matrix
- Importance Truncated NCSM
 - based on $N_{\rm max}$ truncation
 - reduce basis dimension by (several) order(s) of magnitude
 - many-body states single Slater Determinants in M-scheme

Caveat: Uncertainty Quantification

Can the numerical errors due to reduced basis dimension be quantified within the computational framework?

Roth, PRC79, 064324 (2009)

Beyond Harmonic Oscillator wavefunctions

- Berggren basis / No-Core Gamow Shell Model
 - incorporate continuum into basis
 - diagonalize complex symmetrix matrix
- Coulomb–Sturmian basis
 - radial basis functions with exponential asymptotic behavior

e.g. Coulomb–Sturmian basis to improve convergence of RMS radius, Caprio, Maris, Vary, PRC86, 034312 (2012)

Coulomb–Sturmian basis

Caprio, Maris, Vary, PRC86, 034312 (2012); PRCC90, 034305 (2014)

Harmonic Oscillator radial w.f.

$$R_{nl}(b;r) = \left(\frac{r}{b}\right)^{l+1} L_n^{l+\frac{1}{2}} \left((r/b)^2 \right) e^{-\frac{1}{2}(r/b)^2}$$

Coulomb–Sturmian radial w.f.

$$S_{nl}(b;r) = \left(\frac{2r}{b}\right)^{l+1} L_n^{2l+2} \left(\frac{2r}{b}\right) e^{-r/b}$$

- Length scale b_l choosen such that nodes of n = 1 CS and HO w.f. coincide
- CS basis
 - truncation on $\sum (2n+l)$ for comparison with HO basis
 - no exact factorization of CM motion

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver - p. 47/50

Center-of-Mass motion

Caprio, Maris, Vary, PRC86, 034312 (2012)

- Without Lagrange multiplier
 - at $N_{\text{max}} = 6$
 - 4 degenerate states:
 - $J^{\pi} = 1^+$ states at $N_{\text{max}} = 4$ with 2 quanta CM excitations
 - 6 degenerate states:
 J^π = 3⁺ states at N_{max} = 4
 with 2 quanta CM excitations
 - degenerate states at $N_{max} = 8$:
 - 1^+ and 3^+ states at $N_{max} = 6$ with 2 quanta CM excitations
 - 1^+ and 3^+ states at $N_{max} = 4$ with 4 quanta CM excitations
- With Lagrange multiplier all states with CM excitations are removed from low-lying spectrum

Coulomb–Sturmian for halo nuclei

Caprio, Maris, Vary, PRC90, 034305 (2014)

 \checkmark CS: different length parameters b_l for protons and neutrons

Radii of He isotopes with JISP16

Caprio, Maris, Vary, PRC90, 034305 (2014)

- Future plans
 - Explore different basis truncation schemes
 - Apply to chiral NN and 3N interactions

- Radii exctracted from crossover point for three highest N_{max} values
- HO and CS basis in good agreement with each other
- Qualitative agreement with data
- Note: matter radii in agreement with elastic scattering measurement/extraction of experimental radius