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Overview
Goal: Develop power counting estimates and test MBPT for
uniform nuclear matter using low-momentum interactions

(Some of the) Questions and issues
How does power counting vary with RG evolution?
How do we count many-body forces? What about
density-dependent 2-body forces from 3-body terms?
How does the many-body power counting relate to the power
counting for effective field theory (EFT) in free space?
What is the dependence on EFT regulators (e.g., scale
and scheme, local vs. nonlocal)?

Plan: Revisit Brueckner-Bethe-Goldstone (BBG) theory

Reference state: Ĥ = Ĥ0 + ĤI =⇒ |Φ〉 : Ĥ0|Φ〉 = E0|Φ〉
Energy of the interacting system from Goldstone’s Theorem

E = E0 + 〈Φ| ĤI

∞∑

n=0

( 1

E0 − Ĥ0
ĤI

)n
|Φ〉Connected

Develop basic estimates for Goldstone diagrams



Look at ratio of Goldstone diagrams
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Look at ratio of Goldstone diagrams
R = 0.8 fm - S,P,D pws LO
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Look at ratio of Goldstone diagrams
R = 1.0 fm - S,P,D pws LO
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Look at ratio of Goldstone diagrams
R = 1.2 fm - S,P,D pws LO
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Making rough estimates
Approximate potential as separable, average Pauli and momenta

=⇒

E (n+1)
pp

E (n)
pp

≈ m∗

m

∫
d3k
(2π)3 Q(Pav, k)

〈k|V |k〉
k2

av − k2

NM saturation density

λ = 2.0 fm-1
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For evolved potentials, estimates at
about the 20% level at ρsat

Unitary gas exception to
suppression: E (n+1)

pp /E (n)
pp ∼ −1

Hole-line expansion

Old story: resum G-matrix
New story: particle and hole
lines suppressed



3-Body Example: N2LO Contact Interaction
Look at ratio of 2nd-order diagrams
(cf. NO2B approximation)

Energy contributions from individual
diagrams will be scale/scheme dependent

Test non-local regulator:

f (p1,p2,p3) ≡ exp( −[(p2
1 +p2

2 +p2
3−p1 ·p2−p2 ·p3−p1 ·p3)/3Λ2

3N ]n)

For estimate: average momenta for
energy denominators, treat
regulators and theta functions as
geometric phase-space integral

For different cutoffs, ratio is a pure
function of kF/Λ

Cutoff squeezes phase space for full
3-body interactions

How do these ratios change for a
local regulator? (And many other ?’s)
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Why is a Bayesian framework well suited to EFT errors?

What can happen in an EFT fit? What are the complications?

More statistical power if larger energy range included, but EFT is
less accurate approaching breakdown scale =⇒Where to fit?
How do we combine data and theory uncertainties?
Is the EFT working? Are there too few or too many LECs?

Bayesian probabilities: pdf is a measure of state of our knowledge

Ideal for treating systematic errors (such as theory errors!)
Assumptions (or expectations) about EFT encoded in prior pdfs
Can predict values of observables with credibility intervals (errors)
Incorporates usual statistical tools (e.g., covariance analysis)

For EFT, makes explicit what is usually implicit, allowing assumptions to
be applied consistently, tested, and modified given new information



Limiting cases in applying Bayes’ theorem

Suppose we are fitting a parameter H0 to some data D given a model M1
and some information (e.g., about the data or the parameter)

Bayes’ theorem tells us
how to find the posterior
distribution of H0:

pr(H0|D,M1, I) =

pr(D|H0,M1, I)× pr(H0|M1, I)
pr(D|I)

[From P. Gregory, “Bayesian Logical
Data Analysis for the Physical Sciences”]

Special cases:
(a) If the data is overwhelming, the prior has no effect on the posterior
(b) If the likelihood is unrestrictive, the posterior returns the prior



Diagnostic tools (applications to toy models)

Example: g(x) = (1/2 + tan (πx/2))2 =⇒ “model” ≈ a0 + a1x + a2x2 +O(x3)

Likelihood ∝ e−χ
2

as usual; prior could be uniform or for natural coefficients

Without prior
M χ2/dof a0 a1 a2

true 0.25 1.57 2.47
1 2.24 0.203±0.01 2.55±0.11
2 1.64 0.25±0.02 1.6±0.4 3.33±1.3
3 1.85 0.27±0.04 0.95±1.1 8.16±8.1
4 1.96 0.33±0.07 −1.9±2.7 44.7±32.6
5 1.39 0.57±0.3 −14.8±6.9 276±117

Marginalize over omitted higher-order terms =⇒ use all data stably

Prior on naturalness suppresses overfitting by limiting parameter play-offs

Diagnostics identify sensitivity to prior, whether EFT works, breakdown
scale, theory vs. data error dominance, . . .



Diagnostic tools (applications to toy models)

Example: g(x) = (1/2 + tan (πx/2))2 =⇒ “model” ≈ a0 + a1x + a2x2 +O(x3)

Likelihood ∝ e−χ
2

as usual; prior could be uniform or for natural coefficients

With Gaussian prior (R = 5)
M a0 a1 a2

true 0.25 1.57 2.47
2 0.25±0.02 1.63±0.4 3.2±1.3
3 0.25±0.02 1.65±0.5 3±2.3
4 0.25±0.02 1.64±0.5 3±2.4
5 0.25±0.02 1.64±0.5 3±2.4

Marginalize over omitted higher-order terms =⇒ use all data stably

Prior on naturalness suppresses overfitting by limiting parameter play-offs

Diagnostics identify sensitivity to prior, whether EFT works, breakdown
scale, theory vs. data error dominance, . . .



Diagnostic tools (applications to toy models)
Example: g(x) = (1/2 + tan (πx/2))2 =⇒ “model” ≈ a0 + a1x + a2x2 +O(x3)

Likelihood ∝ e−χ
2

as usual; prior could be uniform or for natural coefficients

M=3$(up$to$x3)$
Uniform$prior$

M=3$(up$to$x3)$
Gaussian$prior$with$R=5$

Marginalize over omitted higher-order terms =⇒ use all data stably

Prior on naturalness suppresses overfitting by limiting parameter play-offs

Diagnostics identify sensitivity to prior, whether EFT works, breakdown
scale, theory vs. data error dominance, . . .
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Diagnostic tools (applications to toy models)

Example: g(x) = (1/2 + tan (πx/2))2 =⇒ “model” ≈ a0 + a1x + a2x2 +O(x3)

Likelihood ∝ e−χ
2

as usual; prior could be uniform or for natural coefficients
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Can we justify EKM errors in Bayesian framework?
Basic assumption: cn’s the same size in
σnp ≈ σ0(1 + c2Q2 + c3Q3 + · · · ) with Q = {p,mπ}/600 MeV

Yes! So apply set A (left plot blue) to σnp at Elab = 96 MeV =⇒ Q ≈ 1/3
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Figure 1 – Dependence of the posterior distribution on the prior on the hidden parameter c̄. On the left, comparison
at LO of the default log-uniform prior with respect to a log-normal one. On the right, the same comparison but
at NNLO.

expansion parameter is not uniquely defined. To address these issues, we introduce a parameter
� which reflects our ignorance of the optimal expansion parameter for QCD observables. Our
expression for a generic QCD observable is then given by

Ok =
kX

n=l

⇣↵s

�

⌘n
(n � 1)! �n cn

(n � 1)!
⌘

kX

n=l

⇣↵s

�

⌘n
(n � 1)! dn, (7)

where we have isolated a factor (n � 1)! in the expansion which can be motivated from theory
by looking at the behaviour of the coe�cients cn for large n due to renormalon chains. We
assume the same priors on the modified coe�cients dn as on the original cn. Then, we tune �
by measuring the performance of the model for a fixed � value on a given set of observables.
At a given order and for a given degree of belief (DoB), we calculate for each observable the
corresponding interval. Then, we compute the success rate defined as the ratio between the
number of observables whose next-order is within the computed DoB interval over the total
number of observables in the set. We define the optimal � value to be such that the success rate
is equal to requested DoB.

With these modifications, the analytic expression for the posterior density distribution for
�k is given by

f(�k|dl, . . . , dk) '
✓

nc

nc + 1

◆
�k+1

2k!↵k+1
s d̄k

8
><
>:

1 if |�k|  k!
�
↵s
�
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d̄k

⇣
k!↵k+1

s d̄k

|�k|�k+1

⌘nc+1
if |�k| > k!

�
↵s
�

�k+1
d̄k

(8)

where nc is the number of coe�cients available in the computation and d̄k = max(|d1|, . . . , |dk|).
This analytic expression captures the general features of the posterior distributions for �k

produced by this class of models: a flat top with power suppressed tails.

3.1 The model’s dependence on the prior on c̄

The choice of the priors in a Bayesian model is arbitrary and subjective. In the original formu-
lation, the prior on c̄ was chosen as non-informative as possible, i.e. a log-uniform distribution.
However, the downside of such a conservative choice is that at low perturbative orders, the tails
of the posterior distribution for �k are very long and give rise to very large intervals if a large
DoB is given as an input to the model. As a test, we use a more informative prior. If we scale
all coe�cients dn by the first coe�cient dl, the hypothesis that all coe�cients are of order unity
is equivalent to the original hypothesis that all coe�cients are of the same order of magnitude.
Hence, we can also consider a log-normal distribution around zero

f(c̄) =
1p

2⇡c̄�
e�

log2 c̄

2�2 , c̄ > 0 (9)

pr(Δk|c0,*c1,*c2)*
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Elab=200 MeV
68% credibility interval widths are 4.0, 1.2, 0.40, 0.13 mb =⇒ agrees!



Summary: Goals of theory UQ for EFT calculations

Reflect all sources of uncertainty in an EFT prediction
=⇒ likelihood or prior for each =⇒ Next: apply to NN fits

Compare theory predictions and experimental results statistically
=⇒ error bands as credibility intervals =⇒ Next: model problem
blind tests; then apply to A > 2 nuclear observables

Distinguish uncertainties from IR vs. UV physics
=⇒ separate priors

Guidance on how to extract EFT parameters (LECs)
=⇒ Bayes propagates new info (e.g., will an additional or better
measurement or lattice calculation help?)
=⇒ Next: MN from lattice

Test whether EFT is working as advertised— do our predictions
exhibit the anticipated systematic improvement?

=⇒ trends of credibility interval =⇒ Future: model selection

The Bayesian framework lets us consistently achieve our UQ goals!



Advertisement: INT Workshop in 2016
Bayesian Methods in Nuclear Physics (INT-16-2a)

June 13 to July 8, 2016
R.J. Furnstahl, D. Higdon, N. Schunck, A.W. Steiner

A four-week workshop to explore how Bayesian inference can enable progress
on the frontiers of nuclear physics and open up new directions for the field.
Among our goals are to

facilitate cross communication, fertilization, and collaboration on Bayesian
applications among the nuclear sub-fields;

provide the opportunity for nuclear physicists who are unfamiliar with
Bayesian methods to start applying them to new problems;

learn from the experts about innovative and advanced uses of Bayesian
statistics, and best practices in applying them;

learn about advanced computational tools and methods;

critically examine the application of Bayesian methods to particular physics
problems in the various subfields.

Existing efforts using Bayesian statistics will continue to develop over the next
two years, but Summer 2016 will be an opportune time to bring the statisticians
and nuclear practitioners together. [See computingnuclei.org for more meetings]


