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Motivation

during spectra 5 to 11, which resulted in the disappearance of the ion
counts in question. This unambiguously identified these ions as 54Ca.
Figure 2b corresponds to about 90 min of data-taking. MR-TOF MS
spectra of 53Ca and 54Ca were taken in total for 12.6 h and 18.2 h,
respectively.

Our results (rICR and CTOF) for the exotic calcium isotopes investi-
gated (51,52Ca and 53,54Ca, respectively) are summarized in Table 1,
including the resulting mass excesses. The ISOLTRAP values of 51Ca

and 52Ca determined with the Penning trap agree well with the recent
measurements by TITAN4. The uncertainties were reduced by factors
of 40 and 80, respectively, owing to longer excitation times (600 ms in
the case of ISOLTRAP as compared to 80 ms in the case of TITAN),
higher cyclotron frequencies and higher calcium ion yields. The masses
of 53,54Ca determined by the MR-TOF MS have been experimentally
addressed for the first time. As a consistency check, the 52Ca mass was
also measured by the new MR-TOF method, and the mass excess is in
full agreement with both Penning-trap results (Table 1). Furthermore,
a second cross-check measurement in the vicinity of the newly mea-
sured masses was performed. The mass excess of the stable isotope 58Fe
was determined with the stable reference isotopes 58Ni and 85Rb. The
measurement resulted in a mass excess of 262,168.0(47.0) keV/c2,
where the statistical uncertainty is given in parentheses. With a devi-
ation of 13.5 keV/c2 from the literature value28, it agrees well within its
statistical uncertainty. The uncertainties in the MR-TOF method
quoted in Table 1 for 53Ca and 54Ca denote the statistical standard
deviation. For the cross-checks, the MR-TOF method has thus been
employed to measure the mass of a slightly lighter isotope and a slightly
heavier isotope, 52Ca and 58Fe, respectively. The deviations from the
Penning-trap measurement and the literature value, respectively, are
taken as estimates of the relative systematic uncertainty, which lies in
the low 1027 range. Additional cross-check measurements to determine
the systematic uncertainty have been performed over a wide mass range
and will be detailed elsewhere. The precision and fast measurement
cycle of the MR-TOF method makes this a promising approach for the
mass spectrometry of isotopes with lower yield and shorter half-life
than currently accessible.

The binding energies encode information about the ordering of shell
occupation, and thus are essential in the quest for shell closures in exotic
regions of the nuclear chart. Our high-precision data can be used to
provide a critical benchmark for the behaviour far from stability, namely,
the two-neutron separation energy S2n 5 B(Z,N) 2 B(Z,N 2 2), where
B(Z,N) is the binding energy (defined as positive) of a nucleus with Z
protons and N neutrons. The S2n values are a preferred probe of the
evolution of nuclear structure with neutron number, and can be used to
challenge model predictions, as shown in Fig. 3. The pronounced
decrease in S2n revealed by the new 53Ca and 54Ca ISOLTRAP masses
is similar to the decrease beyond the doubly magic 48Ca. In general,
correlations induced by deformation could also cause such a reduction
in S2n, but in the calcium isotopes studied here deformation is expected
to have no role29. Therefore, our new data unambiguously establish a
prominent shell closure at N 5 32. The strength of this shell closure can
be evaluated from the two-neutron shell gap, that is, the two-neutron
separation energy difference S2n(Z,N) 2 S2n(Z,N 1 2). Figure 3c shows a
two-neutron shell gap for 52Ca of almost 4 MeV, where the rise towards
52Ca at N 5 32 is as steep as that towards 48Ca at N 5 28. The peaks at
N 5 Z in Fig. 3c are due to the additional correlation energy for sym-
metric N 5 Z nuclei, known as Wigner energy.

Calcium marks the heaviest chain of isotopes studied with three-
nucleon forces based on chiral effective field theory3–6. Figure 3a shows
the predictions of our microscopic calculations with three-nucleon
forces (that is, ‘NN 1 3N’) using many-body perturbation theory

2

3

4

5

6

7

8

Em
pi

ric
al

 s
he

ll 
ga

p 
(M

eV
)

S
2n

 (M
eV

)
S

2n
 (M

eV
)

Neutron number, N

Proton number, Z 

2

6

10

14

18

22

2

6

10

14

18

22

[S
2n

(th
eo

) –
 S

2n
(e

xp
)] 

(M
eV

) 2.0

1.0

0.0

–1.0

–2.0

[S
2n

(th
eo

) –
 S

2n
(e

xp
)] 

(M
eV

) 2.0

1.0

0.0

–1.0

–2.0

30 31 32 33 34

b

a

c
N = 28
N = 32
ISOLTRAP

28 30 32 34 36 38

Neutron number, N
28

19 21 23 25 27 29 31

30 32 34 36 38

Neutron number, N

30 31 32 33 34
Neutron number, N

ISOLTRAP
Experiment

NN+3N (MBPT)
CC (ref. 5)
KB3G
GXPF1A

ISOLTRAP
Experiment

UNEDF0
UNEDF1
HFB21
SLY4
SV-min

Figure 3 | Comparison of experimental results with theoretical predictions.
a, b, Two-neutron separation energy S2n (ref. 28) of the neutron-rich calcium
isotopes as a function of neutron number N, where the new ISOLTRAP values
are shown in red. In a, the ISOLTRAP masses are compared to predictions from
microscopic valence-shell calculations with three-nucleon forces (NN13N)
based on chiral effective field theory (solid line, MBPT) and large-space coupled-
cluster calculations including three-nucleon forces as density-dependent two-
body interactions (dashed line, CC)5. For comparison, we also show the results
of the phenomenological shell-model interactions KB3G21 and GXPF1A22. In
b, the ISOLTRAP masses are compared to state-of-the-art nuclear density-
functional-theory predictions15,29. Insets in a and b show the difference between
the theoretical predictions and experiment. c, Empirical two-neutron shell gap
as a function of proton number Z for N 5 28 and N 5 32. Error bars, 61 s.d.
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• Excellent agreement with new 
53,54Ca separation energies 
measured at ISOLTRAP/ISOLDE

• Clearly establish                 
N=32 shell closure 

• But: Results based on a   
single-resolution scale!



Input Hamiltonian

Hebeler et al., Phys. Rev. C 83 031301(R) (2011). 

• Evolve N3LO NN potential EM 500 MeV 
to low-momentum interaction Vlow k 

• For each Vlow k  cutoff      fit                
two couplings cD,cE to E3H and r4He 
using non-local regulator  

• In addition, vary 3N cutoff 
independently of  

• Include uncertainties in ci’s by       
using PWA values in 3N force

⇤
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perturbative for low-momentum interactions, at least in the
particle-particle channel [10]. The difference at small densities
is not surprising: the presence of a two-body bound state
necessitates a nonperturbative summation in the dilute limit.
We note that below saturation density, the ground state is not
a uniform system, but breaks into clusters (see, for example,
Ref. [24]).

In chiral EFT without explicit deltas, 3N interactions start at
N2LO [21] and their contributions are given diagrammatically
by

π π π

c1, c3, c4 cD cE

We assume that the ci coefficients of the long-range
two-pion-exchange part are not modified by the RG. At
present, we rely on the N2LO 3NF as a truncated “basis”
for low-momentum 3N interactions and determine the cD and
cE couplings by a fit to data for all cutoffs [22]. In the future,
fully evolved three- and four-body forces in momentum space
starting from chiral EFT will be available (see Ref. [25] for
an application of evolved 3NF in a harmonic-oscillator basis).
The fit values of Table I are natural and the predicted 4He
binding energies are very reasonable. We have also verified
that the resulting 3NF becomes perturbative in A = 3, 4 (see
also Refs. [10,15,22]), i.e., the calculated individual 3NF
contributions are largely unchanged if evaluated for wave
functions using NN forces only.

The evolution of the cutoff ! to smaller values is accompa-
nied by a shift of physics. In particular, effects due to iterated
tensor interactions are replaced by three-body contributions.
The role of the 3NF for saturation is demonstrated in Fig. 2. The
two pairs of curves show the difference between the nuclear
matter results for NN-only and NN plus 3N interactions. It is
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FIG. 2. (Color online) Nuclear matter energy of Fig. 1 at the
third-order level compared to NN-only results for two representative
NN cutoffs and a fixed 3N cutoff.

evident that saturation is driven by the 3NF [10,15]. Even for
! = 2.8 fm−1, which is similar to the lower cutoffs in chiral
EFT potentials, saturation is at too high a density without
the 3NF. Nevertheless, as in previous results [10,15], the 3N
contributions and the cD, cE fits are natural, and the same is
expected for the ratio of three- to four-body contributions.

The smooth RG evolution used in the results so far is
not the only choice for low-momentum interactions. A recent
development is the use of flow equations to evolve Hamiltoni-
ans, which we refer to as the similarity renormalization group
(SRG) [27–29]. The flow parameter λ, which has dimensions
of a momentum, is a measure of the degree of decoupling
in momentum space. Few-body results for roughly the same
value of SRG λ and smooth Vlow k ! have been remarkably
similar (see, for example, Ref. [11]). With either RG method,
we can also change the initial interaction. The results presented
so far all start from a chiral EFT potential at a single order
with one choice of EFT regulator implementation and values.
There are several alternatives available [8,19,30], which are
almost phase-shift equivalent (but the χ2 is not equally
good up to Elab ≈ 300 MeV). Universality for phase-shift
equivalent chiral EFT potentials as ! decreases was shown for
smooth-cutoff Vlow k interactions in Refs. [9,20] in the form of
the collapse of different initial potentials to the same matrix
elements in each partial wave channel. An analogous collapse
has been found for N3LO potentials evolved by the SRG to
smaller λ [9].

Based on this universal collapse for low-momentum inter-
action matrix elements, it is natural to expect a similar collapse
for the energy per particle in nuclear matter. We consider
four different chiral NN potentials: the N3LO potential by
Entem and Machleidt [19] for two different cutoffs 500 and
600 MeV, and the N3LO NN potential by Epelbaum et al. [30]
(EGM) for two different cutoff combinations 550/600 MeV
and 600/700 MeV. The results for the energy are presented in
Fig. 3. The upper panel shows the energies for Vlow k NN-only
interactions derived from different chiral NN potentials (solid
lines) in comparison to Brueckner-Hartree-Fock (BHF) (which
means resummed particle-particle ladder) results based on
unevolved chiral potentials (dashed lines). For clarity, we
only display the two extreme BHF results. As shown in the
lower panel we find a model dependence of about 13 MeV for
the unevolved N3LO potentials around saturation density and
approximately 2 MeV for the Vlow k and SRG low-momentum
interactions, comparable to the cutoff variation in Fig. 1. The
latter spread reflects the residual RG/SRG dependence on the
initial interactions.

By supplementing the low-momentum NN interactions
with corresponding 3NFs we can probe the sensitivity of
the energy to uncertainties in the ci coefficients (see also
Refs. [16,31,32]). We consider three different cases: first, we
take low-momentum interactions evolved from the N3LO NN
potential EM 500 MeV (EM ci’s: c1 = −0.81 GeV−1, c3 =
−3.2 GeV−1, c4 = 5.4 GeV−1); second, low-momentum
interactions from the EGM 550/600 MeV potential (EGM ci’s:
c1 = −0.81 GeV−1, c3 = −3.4 GeV−1, c4 = 3.4 GeV−1);
and third, low-momentum interactions from the EM
500 MeV potential combined with the central ci values
obtained from the NN partial wave analysis [33] (PWA ci’s:
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• Realistic saturation properties       
within theoretical uncertainties

RAPID COMMUNICATIONS

HEBELER, BOGNER, FURNSTAHL, NOGGA, AND SCHWENK PHYSICAL REVIEW C 83, 031301(R) (2011)

0.8 1.0 1.2 1.4 1.6

kF [fm
−1

]

−20

−15

−10

−5

0

5

E
ne

rg
y/

nu
cl

eo
n 

[M
eV

] Λ = 1.8 fm
−1

Λ = 2.0 fm
−1

Λ = 2.2 fm
−1

Λ = 2.8 fm
−1

0.8 1.0 1.2 1.4 1.6

kF [fm
−1

]
0.8 1.0 1.2 1.4 1.6

kF [fm
−1

]

Hartree-Fock

Empirical
saturation
point 2nd order

Vlow k NN  from N
3
LO (500 MeV) 

3NF fit to E3H and r4He

3rd order pp+hh

2.0 < Λ3NF < 2.5 fm
−1

FIG. 1. (Color online) Nuclear matter energy per particle versus Fermi momentum kF at the Hartree-Fock level (left) and including
second-order (middle) and third-order particle-particle/hole-hole contributions (right), based on evolved N3LO NN potentials and 3NF fit to
E3H and r4He. Theoretical uncertainties are estimated by the NN (lines)/3N (band) cutoff variations.

as in Ref. [22]. Our 3NF central fit values are given in Table I;
we estimate that cD has an uncertainty of approximately 0.4
due to the uncertainties of the charge radius in 4He. We use
a 3NF regulator of the form exp{−[(p2 + 3/4q2)/!2

3NF]nexp}
with nexp = 4, where the 3N cutoff !3NF is allowed to vary
independently of the NN cutoff, which probes the sensitivity to
short-range three-body physics. The shaded regions in Fig. 1
show the range of results for 2.0 fm−1 < !3NF < 2.5 fm−1

at fixed ! = 2.0 fm−1.
Nuclear matter is calculated in three approximations:

Hartree-Fock (left), Hartree-Fock plus second-order contribu-
tions (middle), and additionally summing third-order particle-
particle and hole-hole contributions (right). The technical
details regarding the treatment of the 3NF and the many-body
calculation are as for neutron matter in Ref. [16]. We first
construct a density-dependent two-body interaction from the
3NF by summing one particle over occupied states in the Fermi
sea (see also Ref. [23]). This conversion simplifies the many-
body calculation significantly and allows the inclusion of
all 3NF double-exchange terms beyond Hartree-Fock, which
were only approximated in Refs. [10,15]. Furthermore, we
have corrected the combinatorial factors at the normal-ordered

TABLE I. Results for the cD and cE couplings fit to E3H =
−8.482 MeV and to the point charge radius r4He = 1.464 fm (based
on Ref. [26]) for the NN/3N cutoffs and different EM/EGM/PWA
ci values used. For Vlow k (SRG) interactions, the 3NF fits lead to
E4He = −28.22 . . . − 28.45 MeV (−28.53 . . . − 28.71 MeV).

Vlow k SRG

! or λ/!3NF (fm) cD cE cD cE

1.8/2.0 (EM ci’s) +1.621 −0.143 +1.264 −0.120
2.0/2.0 (EM ci’s) +1.705 −0.109 +1.271 −0.131
2.0/2.5 (EM ci’s) +0.230 −0.538 −0.292 −0.592
2.2/2.0 (EM ci’s) +1.575 −0.102 +1.214 −0.137
2.8/2.0 (EM ci’s) +1.463 −0.029 +1.278 −0.078
2.0/2.0 (EGM ci’s) −4.381 −1.126 −4.828 −1.152
2.0/2.0 (PWA ci’s) −2.632 −0.677 −3.007 −0.686

two-body level of the 3NF from 1/6 to 1/2 in diagrams
beyond Hartree-Fock used in these references (see Refs. [9,16]
for detailed discussions of these factors, which are correctly
included in Refs. [3,5,16,17]). To our knowledge, previous
calculations in the literature of nuclear matter using normal-
ordered 3NF contributions need the same correction.

The dashed lines in the left panel of Fig. 1 (for ! =
1.8 and 2.8 MeV) show the exact Hartree-Fock energy in
comparison with the results obtained using the effective
two-body interaction (solid lines). The excellent agreement
supports the use of this density-dependent two-body ap-
proximation for symmetric nuclear matter. For the results
beyond the Hartree-Fock level we use full momentum-
dependent single-particle Hartree-Fock propagators. We have
checked that the energies obtained using a self-consistent
second-order spectrum overlap with the band of curves
in Fig. 1.

The Hartree-Fock results show that nuclear matter is
bound even at this simplest level. A calculation without
approximations should be independent of the cutoffs, so
the spread in Fig. 1 sets the scale for omitted many-body
contributions. The second-order results show a significant
narrowing of this spread over a large density region. It is
encouraging that our results agree with the empirical saturation
point within the uncertainty in the many-body calculation and
omitted higher-order many-body forces implied by the cutoff
variation (the greater spread compared to Ref. [15] is mostly
attributable to the corrected combinatorial factor). We stress
that the cutoff dependence of order 3 MeV around saturation
density is small compared to the total size of the kinetic energy
(≈23 MeV) and potential energy (≈−38 MeV) at this density.
Moreover, the cutoff dependence is smaller at kF ≈ 1.1 fm−1,
which more resembles the typical densities in medium-mass
to heavy nuclei (ρ = 0.11 fm−3). For all cases in the right
panel of Fig. 1, the compressibility K = 175–210 MeV is in
the empirical range.

The inclusion of third-order contributions gives only small
changes from second order except at the lowest densi-
ties shown. This is consistent with nuclear matter being

031301-2



Ground-state energies

• Single-particle energies and two-
body matrix elements calculated to         
2nd and 3rd order in MBPT 

• Uncertainty due to input Hamiltonian 
1.2 MeV per valence particle in 28O 

• Difference between 2nd- and 3rd-
order results 0.6 MeV per valence 
particle in 28O 

• Overbinding in Mg due to pn (T=0) 
part of the effective interaction
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Two-neutron separation energies

• Uncertainty of ~5 MeV for neutron-rich isotopes, dominated by input Hamiltonian 

• For some N ≤ Z isotopes many-body uncertainty comparable, in total ~10 MeV
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Two-proton separation energies

• Experimental trends of proton-rich isotones are reasonably well reproduced 

• S2p’s are over predicted for proton-deficient isotones by 1-3 MeV
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2+ excitation energies

• Uncertainty from input Hamiltonian typically a few hundred keV 

• Not all experimental excitation energies are reproduced,                                
especially deformed 2+ states in 30Ne, 32Mg not described in sd-shell calculations
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