Advances on NCSM, SRG & Chiral Interactions

Robert Roth

TECHNISCHE UNIVERSITÄT DARMSTADT

Ab Initio Workflow

Robert Roth - TU Darmstadt - February 201!

- initial formulation typically limited to bound-state basis
- description of continuum effects and observables not possible
- improvement: include continuum degrees of freedom explicitly
- here: NCSM with Continuum

Ab Initio Workflow

Robert Roth - TU Darmstadt - February 201

Ab Initio Workflow

NCSM with Continuum for the Structure of ⁹Be

with J. Langhammer, P. Navrátil, S. Quaglioni, G. Hupin, A. Calci

Phys. Rev. C 91, 021301(R) (2015)

NCSM with Continuum

Baroni, Navrátil, Quaglioni, Phys. Rev. Lett. 110, 022505 (2013)

focus on NCSMC with 3N interactions for p-shell spectroscopy

NCSMC with 3N Forces

Hupin, Langhammer, Navrátil, Quaglioni, Calci, Roth; Phys. Rev. C 88, 054622 (2013)

• representing $H|\psi^{J\pi T}\rangle = E|\psi^{J\pi T}\rangle$ using the **over-complete basis**

$$|\Psi^{J\pi T}\rangle = \sum_{\lambda} c_{\lambda} |\Psi_{A} E_{\lambda} J^{\pi} T\rangle + \sum_{\nu} \int dr r^{2} \frac{\chi_{\nu}(r)}{r} |\xi_{\nu r}^{J\pi T}\rangle$$

expansion in A-body (IT-)NCSM eigenstates

identical to the NCSM/RGM expansion

leads to the NCSMC equations

with

Robert Roth

$$\begin{pmatrix} H_{\text{NCSM}} & h \\ h & \mathcal{H} \end{pmatrix} \begin{pmatrix} c \\ \chi(r)/r \end{pmatrix} = \begin{pmatrix} access \text{ targets beyond} \\ \text{He using uncoupled densities} \\ \text{and on-the-fly algorithm} \end{pmatrix}$$

3N contributions in

$$H_{\text{NCSM}} \qquad h$$

$$given by$$

$$(T-)\text{NCSM}$$

$$\begin{pmatrix} given by \\ (\Psi_A E_{\lambda'} J^{\pi} T | \hat{H} | \xi_{vr}^{J\pi}) \end{pmatrix}$$

$$Contains \text{ NCSM/RGM} \\ \text{Hamiltonian kernel} \end{pmatrix}$$

Ab Initio Description of 9Be

Langhammer, Navrátil, Quaglioni, Hupin, Calci, Roth; Phys. Rev. C 91, 021301(R) (2015)

- ⁹Be is excellent candidate to study continuum effects on spectra
- all excited states are resonances
- previous NCSM studies with NN interactions show clear discrepancies in spectrum: 3N or continuum effects?
- include n-⁸Be continuum in NCSMC
- use standard NN+3N Hamiltonian:
 - NN: N3LO, Entem & Machleidt, 500 MeV cutoff
 - 3N: N2LO, Local, 500 MeV cutoff

⁹Be: Convergence of Phase Shifts

Langhammer, Navrátil, Quaglioni, Hupin, Calci, Roth; Phys. Rev. C 91, 021301(R) (2015)

- include 0⁺, 2⁺
 states of ⁸Be
- include 6 negative and 4 positive parity states of ⁹Be
- negative parity phase-shifts are well converged, positive parity more difficult
- extract resonance parameters from inflection point and derivative

 $\alpha = 0.0625 \text{ fm}^4, \ \hbar\Omega = 20 \text{ MeV}, \ E_{3max} = 14$

⁹Be: NCSM vs. NCSMC

Langhammer, Navrátil, Quaglioni, Hupin, Calci, Roth; Phys. Rev. C 91, 021301(R) (2015)

- NCSMC shows much better N_{max} convergence
- NCSM tries to capture continuum effects via large N_{max}
- drastic difference for the 1/2⁺ state right at threshold

⁹Be: Spectrum

Langhammer, Navrátil, Quaglioni, Hupin, Calci, Roth; Phys. Rev. C 91, 021301(R) (2015)

continuum plays more important role than chiral 3N interaction

NCSMC predictions for widths are in fair agreement with experiment

SRG with Block Generators

with A. Calci, N. M. Dicaire, C. Omand, P. Navrátil, T. Hüther, S. Schulz, K. Vobig

Similarity Renormalization Group

Glazek, Wilson, Wegner, Perry, Bogner, Furnstahl, Hergert, Roth, Navrátil...

continuous unitary transformation to pre-diagonalize Hamiltonian and thus improve model-space convergence

consistent unitary transformation of Hamiltonian and observables

$$H_{\alpha} = U_{\alpha}^{\dagger} H U_{\alpha} \qquad O_{\alpha} = U_{\alpha}^{\dagger} O U_{\alpha}$$

• evolution equations for H_{α} and V design $\frac{d}{d\alpha}H_{\alpha} = [\eta_{\alpha}, H_{\alpha}]$ $\frac{d}{d\alpha}O_{\alpha}$ induced

design G_α for optimum compromise between convergence & induced many-body forces

• dynamic generator η_{α} drives towards "diagonal" defined by G_{α} $\eta_{\alpha} = (2\mu)^2 [G_{\alpha}, H_{\alpha}]$

Choice of Generator: T_{int}

- standard choice for G_α is intrinsic kinetic energy T_{int}
- drives diagonalization everywhere, also for low-lying basis states that are covered explicitly by many-body model space
- rule of thumb: the more diagonal the more induced many-body interactions

Robert Roth - TU Darmstadt - February 2015

Choice of Generator: Block Generators

Dicaire, Omand, Navrátil; Phys. Rev. C 90, 034302 (2014)

HO block generator: use H_α matrix elements for states below N_{gen} and T_{int} matrix elements above, i.e.,

$$G_{\alpha} = T_{int} + \Pi_{N_{gen}} V_{\alpha} \Pi_{N_{gen}}$$

with projection operator $\Pi_{N_{\text{gen}}}$ on rel. HO states with $2N + L \leq N_{\text{gen}}$

• generator has explicit scale parameters: $N_{gen} \& \hbar \Omega$

HO matrix elements, ${}^{1}S_{0}$ channel, $\hbar\Omega = 24$ MeV

Choice of Generator: Block Generators

Q block generator: use H_α matrix elements for states below Q_{gen} and T_{int} matrix elements above, i.e.,

$$G_{\alpha} = T_{int} + \Pi_{Q_{gen}} V_{\alpha} \Pi_{Q_{gen}}$$

with projection operator $\Pi_{Q_{\text{gen}}}$ on rel. momentum states with $q \leq Q_{\text{gen}}$

generator has explicit scale parameter: Qgen

momentum-space matrix elements, ¹S₀ channel

⁴He: Convergence vs. Induced Many-Body

- α-dependence of block generator quickly saturates
- block protects lowlying matrix elements from further change

⁴He: Convergence vs. Induced Many-Body

- N_{gen} controls convergence and induced many-body forces
- induced 3N appear smaller than with T_{int} generator

⁴He: Convergence vs. Induced Many-Body

 Q-block generator exhibits similar behaviour

⁴He: Efficiency Test

- efficiency test: dial same magnitude of induced 3N and compare convergence
- Q- & HO-block give better convergence than T_{int} for same induced 3N
- using static block generators (G_α=G₀) gives similar results

HO-block: $N_{gen} = 8$, $\alpha = 0.0625 \text{ fm}^4$ Q-block: $Q_{gen} = 2.0 \text{ fm}^{-1}$, $\alpha = 0.0625 \text{ fm}^4$ T_{int} : $\alpha = 0.01 \text{ fm}^4$ Robert Roth - TU Darmstadt - February 2015

Towards Many-Body Applications

SRG Evolution in 3N

- extension of block generators to SRG evolution in three-body space rather straight forward (with static generators)
- careful with embedding and generalisation of scale definition
- first results for HO-block generator available

Many-Body Solution

- any many-body approach will do, i.e., not restricted to N_{max} truncated NCSM space
- first results from In-Medium SRG available
- using HF basis and including 3N contributions included in NO2B approximation

IM-SRG Results

IM-SRG Results

IM-SRG Results

Improved Chiral NN Interactions

with the LENPIC Collaboration

E. Epelbaum, H. Krebs, U.-G. Meißner, S. Binder, K. Hebeler, J. Langhammer, J. Golak, R. Skibiński, K. Topolnicki, H. Witała, P. Maris, H. Potter, J. Vary, A. Nogga, H. Kamada, D. Furnstahl, V. Bernard, A. Calci

Improved Chiral NN Interactions

family of improved chiral NN interactions from LO to N4LO with (semi)local regulators [talk by Hermann Krebs]

```
Epelbaum, Krebs, Meißner, arXiv:1412.0142 & 1412.4623
```

matrix elements of corresponding 3N interactions up to N3LO are being generated [talk by Kai Hebeler]

initial questions from many-body perspective:

- how do (semi)local regulators affect convergence?
- what is the order-by-order systematics of observables and convergence?
- uncertainty estimation from order-by-order at fixed cutoff feasible?
- do the interactions behave well under SRG transformation?

⁴He: Cutoff Dependence @ N3LO

LENPIC Collaboration, in prep.

⁴He: Order-by-Order @ 1.2 fm

LENPIC Collaboration, in prep.

thanks to my group and my collaborators

- J. Braun, E. Gebrerufael, T. Hüther, J. Langhammer, S. Schulz, H. Spiess, C. Stumpf, A. Tichai, R. Trippel, K. Vobig, R. Wirth Technische Universität Darmstadt
- P. Navrátil, A. Calci TRIUMF, Vancouver
- S. Binder Oak Ridge National Laboratory
- H. Hergert NSCL / Michigan State University
- J. Vary, P. Maris Iowa State University
- S. Quaglioni, G. Hupin Lawrence Livermore National Laboratory
- E. Epelbaum, H. Krebs & the LENPIC Collaboration Universität Bochum, ...

Deutsche Forschungsgemeinschaft

DFG

HIC for FAIR Helmholtz International Center

Exzellente Forschung für Hessens Zukunft

Bundesministerium für Bildung und Forschung