Recent advances in nuclear theory

Thomas Papenbrock

THE UNIVERSITY of TENNESSEE UT KNOXVILLE

and OAK RIDGE NATIONAL LABORATORY

TRIUMF Colloquium February 25, 2016

Research partly funded by the US Department of Energy

Collaborators

- @ ORNL / UTK: E. A. Coello Pérez, A. Ekström, G. Hagen, G. R. Jansen, K. Wendt
- @ Chalmers: B. Carlsson, C. Forssén, D. Sääf
- @ Hebrew U: N. Barnea
- @ Michigan State U: M. Hjorth-Jensen, W. Nazarewicz
- @ Trento: G. Orlandini
- @ TRIUMF: S. Bacca, J. D. Holt, M. Miorelli, P. Navrátil, T. Xu
- @ TU Darmstadt: C. Drischler, K. Hebeler, A. Schwenk, J. Simonis
- @ CERN: COLLAPS Collaboration (R. Garcia Ruiz et al.)

Energy scales and relevant degrees of freedom

Chiral symmetry is brokenPion is Nambu-GoldstonebosonTool: Chiral effective fieldtheory

Other EFTs:

Pion-less EFT

EFT for halo nuclei

EFT for nuclear vibrations

EFT for deformed nuclei

theories Fig.: Bertsch, Dean, Nazarewicz, SciDAC review (2007)

Lattice QCD describes the nucleon

Mass splittings from lattice QCD & QED Borsanyi et al., Science (2015)

Toward bridging QCD and nuclei

m_{π}	140	510	805	805
Nucleus	[Nature]	[5]	[6]	[This work]
n	939.6	1320.0	1634.0	1634.0
р	938.3	1320.0	1634.0	1634.0
nn	-	7.4 ± 1.4	15.9 ± 3.8	15.9 \pm 3.8 *
D	2.224	11.5 ± 1.3	19.5 ± 4.8	19.5 \pm 4.8 *
³ n	-			-
$^{3}\mathrm{H}$	8.482	20.3 ± 4.5	53.9 ± 10.7	53.9 \pm 10.7 *
$^{3}\mathrm{He}$	7.718	20.3 ± 4.5	53.9 ± 10.7	53.9 ± 10.7
$^{4}\mathrm{He}$	28.30	43.0 ± 14.4	107.0 ± 24.2	89 ± 36
$^{5}\mathrm{He}$	27.50			98 ± 39
5 Li	26.61			98 ± 39
⁶ Li	32.00			122 ± 50

Match pion-less EFT to lattice QCD at large pion masses. Not yet in the phase of spontaneously broken chiral symmetry. Barnea et al., PRL (2015)

Quantified theoretical uncertainties

EFTs provide us with advantages over models:

- Uncertainty estimates readily available (based on power counting)
- Quantified uncertainties (based on Bayesian statistics *and* testable assumptions)

Computation of emergent phenomena

Emergent phenomena

- Nuclear saturation
- Nuclear deformation and vibrations
- Clustering (α particles, halos, ...)

Really hard to compute from first principles

- Finely tuned
- Emergent low-energy scales / multi-scale problem
- Complex and collective in nature

Usually fixed in models

- $\hbar\omega$ sets nuclear saturation & radii in shell model
- Deformed shell model, collective & algebraic models
- α -particle cluster models of the nucleus

Opportunities for EFTs & challenges for ab initio approaches

α - α scattering from lattice EFT

Higa et al. (halo EFT) 180 180 Afzal *et al*. 150 150 120 1202 90 1 3 60 30 0 14 2 10 12 0 4 6 8 ELab (MeV)

S-wave at NNLO

Recent reviews on ab initio reactions:

Bacca & Pastore (2014); Navrátil, Quaglioni, Hupin, Romero-Redondo, Calci (2016).

Electroweak processes: Pastore et al. (2013); Lovato et al. (2013); Carlson et al. (2015).

S. Elhatisari et al., Nature 528, 111 (2015)

Nuclear deformation from first principles

Deformation in *p*-shell nuclei:

Caprio, Maris & Vary, PLB (2013); Caprio et al., IJMPE (2015); Dytrych et al., PRL (2013)

Trend in realistic *ab initio* calculations

Explosion of many-body methods

(Coupled clusters, Green's function Monte Carlo, In-Medium SRG, Lattice EFT, MCSM, No-Core Shell Model, Self-Consistent Green's Function, UMOA, ...)

[Binder et al, Phys. Lett. B 736 (2014) 119]

Chiral interaction NNLO_{sat}

NNLO_{sat} – improved binding and radii by construction

Nuclear saturation is finely tuned

A 4% change in the binding energy of ⁴He yields a 15% change in ¹⁶O [B. Carlsson, A. Ekström, C. Forssén et al., PRX **6**, 011019 (2016)].

Light nuclei: Illinois 3NF fitted to 7 states in A≤8 nuclei [Pieper et al. (2001)]. Lattice EFT suggests that nuclei are close to a quantum phase transition [Elhatisari et al., (2016)]

What is the neutron skin in ⁴⁸Ca?

Neutron skin = Difference between radii of neutron and proton distributions

Relates atomic nuclei to neutron stars via neutron EOS

Correlated quantity: dipole polarizability

Model-independent measurement possible via parity-violating electron scattering

Neutron radii and dipole polarizabilities

Lattimer & Steiner, EPJA 50 (2014) 40 4

Brown, PRL 2000, Piekarewicz & Horowitz, PRL 2001; Furnstahl, NPA 2002; Reinhard & Nazarewicz, PRC 2010; Piekarewicz et al., PRC 2012; Horowitz et al, PRC 2012; ...

 α_D : ²⁰⁸Pb by Tamii et al, PRL 2011; ⁶⁸Ni by Rossi et al, PRL 2013; ¹²⁰Sn by Hashimoto et al. (2015); ⁴⁸Ca coming soon ...

 \mathbf{R}_{n} : ²⁰⁸Pb by Abrahamyan et al, PRL 2012; ⁴⁸Ca → CREX

Correlations of critical observables

Uncertainty estimates from family of chiral interactions [NNLO_{sat}, other potentials from Hebeler (2011), and DFT].

G. Hagen et al., Nature Physics 12, 186 (2016)

Weak form factor

G. Hagen et al., Nature Physics 12, 186 (2016)

Magicity in calcium isotopes

Magicity manifests itself through many observables:

- Separation energies
- Energy of 2⁺ excited state
- Charge radii

• ...

Figure: R. Garcia Ruiz and COLLAPS collaboration

Charge radii in calcium isotopes

... question the magicity at N=32.

R. Garcia Ruiz et al., Nature Physics (advance online, 2016)

Isotope shifts around N=28

Theory challenge: Charge radius in ⁵²Ca

EFT for nuclear vibrations [with E. A. Coello Pérez, PRC 92, 064309 (2015)]

Garrett & Wood (2010): "Where are the qudrupole vibrations in atomic nuclei?"

Spectrum and B(E2) transitions

EFT for nuclear vibrations

EFT ingredients:

- quadrupole degrees of freedom
- breakdown scale around three-phonon levels
 - "small" expansion parameter: ratio of vibrational energy to breakdown scale: $\omega/\Lambda \approx 1/3$

- Uncertainties show 68% DOB intervals from Bayesian analysis of EFT truncation effects, following [Cacciari & Houdeau (2011); Bagnaschi et al (2015); Furnstahl, Klco, Phillips & Wesolowski (2015)]
 - Expand observables according to power counting
 - Employ "naturalness" assumptions as log-normal priors in Bayes' theorem
 - Compute distribution function of uncertainties due to EFT truncation
 - Compute degree-of-believe (DOB) intervals.

Hamiltonian

LO Hamiltonian $\hat{H}_{LO} = \omega \hat{N}$

NLO correction
$$\hat{h}_{\text{NLO}} = g_N \hat{N}^2 + g_v \hat{\Lambda}^2 + g_I \hat{I}^2$$

with
$$\hat{N}^2 = (d^{\dagger} \cdot \tilde{d})^2$$
,
 $\hat{\Lambda}^2 = -(d^{\dagger} \cdot d^{\dagger})(\tilde{d} \cdot \tilde{d}) + \hat{N}^2 - 3\hat{N},$
 $\hat{I}^2 = 10(d^{\dagger} \otimes \tilde{d})^{(1)} \cdot (d^{\dagger} \otimes \tilde{d})^{(1)}.$

Small expansion parameter $\varepsilon \equiv (N\omega/\Lambda)$

Uncertainty quantification

EFT result: sizeable quadrupole matrix elements are natural

In the EFT, the quadrupole operator is also expanded:

$$\hat{Q}_{\mu} = Q_0 \left(d^{\dagger}_{\mu} + \tilde{d}_{\mu} \right) + Q_1 \left(d^{\dagger} \times d^{\dagger} + \tilde{d} \times \tilde{d} + 2d^{\dagger} \times \tilde{d} \right)^{(2)}_{\mu}$$

Subleading corrections are sizable:

$$Q_1 \sim \left(\frac{\omega}{\Lambda}\right)^{1/2} Q_0$$

multiphonon states

Work in progress: Fermion coupled to vibrating nucleus

Idea: In the spirit of Halo EFT [Bertulani, Hammer, van Kolck (2002); Higa, Hammer, van Kolck (2008); Hammer & Philipps (2011); Ryberg et al. (2014)], add a fermion to describe odd-mass neighbors

2000

1500 Two new LECs enter at LO 1000 E [keV] 500 Exp 0 $^{102}\,\mathrm{Ru}$ $^{103}\,\mathrm{Rh}$ LO LO × -500 0^+ 2+ 4+ 1/2-3/2-5/2-7/2-9/2-Ι

E. A. Coello Pérez & TP, preliminary results

Magnetic moments: Relations between eveneven and even-odd nuclei

Nucleus	I_i^{π}	$\mu_{\exp}(I_i^{\pi})$	$\mu_{\rm EFT}(I_i^{\pi})$	Nucleus	I_i^{π}	$\mu_{\exp}(I_i^{\pi})$	$\mu_{\rm EFT}(I_i^{\pi})$
¹⁰² Ru	2_{1}^{+}	$0.85(3)^*$	0.85(16)	$^{106}\mathrm{Pd}$	2_{1}^{+}	$0.79(2)^*$	0.79(15)
	2^{+}_{2}		0.85(33)		2_{2}^{+}	0.71(10)	0.79(30)
	4_{1}^{+}		2.08(33)		4_{1}^{+}	1.8(4)	1.93(30)
¹⁰³ Rh	$\frac{1}{21}$	-0.088^{*}	-0.088(16)	107 Ag	$\frac{1}{21}$	-0.11^{*}	-0.11(15)
	$\frac{3}{21}$	0.77(7)	0.78(16)		$\frac{\overline{3}}{21}$	0.98(9)	0.74(15)
	$\frac{5}{21}$	1.08(4)	0.79(16)		$\frac{\overline{5}}{21}$	1.02(9)	0.71(15)
	$\frac{\bar{7}}{21}$	2.0(6)	2.0(3)		$\frac{\tilde{7}}{21}$		1.9(3)
	$\frac{\overline{9}}{21}$	2.8(5)	2.0(3)		$\frac{\tilde{9}}{21}$		1.9(3)

At LO, one new LEC enters to describe odd-mass neighbor

E. A. Coello Pérez & TP, preliminary results

EFT for deformed nuclei

EFT works well for a wide range of rotors

Bohr & Mottelson (1975):"The accuracy of the presentmeasurements of E2-matrixneasurements of E2-matrixelements in the ground-statebands of even even nuclei is inmost cases barely sufficient todetect deviations from theleading-order intensity relations."

EFT can not explain oscillatory patterns in supposedly "good" rotors ¹⁶⁸Er, ¹⁷⁴Yb

EFT and weak interband transitions (¹⁵⁴Sm)

$i \rightarrow f$	$B(E2)_{exp}$	$B(E2)_{\rm ET}$	$B(E2)_{\rm CBS}$	$B(E2)_{\rm BH}$
$\overline{2_g^+ \rightarrow 0_g^+}$	0.863 (5)	0.863 ^a	0.853	0.863
$4^+_g \rightarrow 2^+_g$	1.201 (29)	1.233 (9)	1.231	1.234
$6^+_g \rightarrow 4^+_g$	1.417 (39)	1.358 (23)	1.378	1.355
$8^+_g \rightarrow 6^+_g$	1.564 (83)	1.421 (43)	1.471	1.424
$2^+_{\gamma} \rightarrow 0^+_g$	0.0093 (10)	0.0110 (28)		0.0492
$2^+_{\gamma} \rightarrow 2^+_g$	0.0157 (15)	0.0157 ^a		0.0703
$2^+_{\gamma} \rightarrow 4^+_g$	0.0018 (2)	0.0008 (2)		0.0050
$2^+_\beta \rightarrow 0^+_g$	0.0016 (2)	0.0025 (6)	0.0024	0.0319
$2^+_\beta \rightarrow 2^+_g$	0.0035 (4)	0.0035 ^a	0.0069	0.0456
$2^+_\beta \rightarrow 4^+_g$	0.0065 (7)	0.0063 (16)	0.0348	0.0821

^aValues employed to adjust the LECs of the effective theory.

In-band transitions [in e²b²] are LO, inter-band transitions are NLO. Effective theory is more complicated than Bohr Hamiltonian both in Hamiltonian and E2 transition operator. EFT correctly predicts strengths of inter-band transitions with natural LECs. [E. A. Coello Pérez and TP, Phys. Rev. C 92, 014323 (2015)]

Summary

- Exciting times in nuclear theory
 - explosion of many-body solvers
 - many new developments regarding interactions and currents
- Optimization of chiral interaction $\mathrm{NNLO}_{\mathrm{sat}}$: improved radii and binding
- Weak charge, neutron radius, and dipole polarizability in ⁴⁸Ca
 - predictions for soon-to-be measured quantities
 - charge radii in neutron-rich calcium isotopes not well understood
- EFT for nuclear vibrations
 - Quadrupole moments are of natural size (and sizeable) due to NLO corrections
 - anharmonic vibrations
- EFT for deformed nuclei
 - interband transitions correctly described due to new terms in operator

Outlook

We have fast cars (CCM, GFMC, IMSRG, MCSM, NCSM, UMOA, QMC) ...

but the roads have potholes

New interactions are being worked on ...

