Many-body calculations in the continuum: From four neutrons to ²⁸O

Progress in ab initio techniques in nuclear physics

Kévin Fossez, Main collaborators: J. Rotureau, N. Michel, W. Nazarewicz and M. Płoszajczak March 1, 2017

NSCL/MSU

MSU/NSCL - Kévin Fossez

A renewal of nuclear physics

- Technology: detectors, electronics, Rare Isotope Beams Facilities (RIBF).
- **Computation:** power, parallelization, algorithms.

Theory:

- \rightarrow Effective Field Theory,
- \rightarrow renormalization scheme,
- \rightarrow *ab initio* methods,
- \rightarrow couplings to the continuum.

Continuum still challenging.

What is an Open Quantum System?

Quantum systems coupled to the environment of scattering states and decay channels.

- Structure and reaction channels influence each other.
- Near-threshold effects (halos, clustering).
- Formation of many-body resonances.
- Exotic decay modes.

The continuum is essential for the description of drip-line nuclei.

Selected challenges

- Interplay between **collectivity** and couplings to the continuum: Be, Mg chains.
- Unified description of nuclear structure and reactions: ${}^{8}\text{He}(t, p){}^{10}\text{He}$.
- Ab initio calculations in the continuum: ⁷H.
- Halo systems + collectivity: ¹¹Be, ³⁷Mg.
- Many-nucleon **decay**: ¹⁶Be, ²⁶O.
- Quasi-stationary formalism: $\Phi(E,t) = \phi(t)\Psi(E)$
 - + Outgoing boundary conditions.
- Berggren basis:

$$\sum_{n\in(b,d)} |u_l(k_n)\rangle \langle \tilde{u}_l(k_n)| + \int_{L_{l,j}^+} dk |u_l(k)\rangle \langle \tilde{u}_l(k)| = \hat{\mathbb{1}}.$$

Where we are in nuclear theory

Approaches divided by how the continuum is included/described:

(NC)GSM vs DMRG

MSU/NSCL - Kévin Fossez

Can four neutrons form a nucleus?

Bound state:

- Exp. claim: ${}^{14}\text{Be}^* \rightarrow {}^{10}\text{Be} + {}^{4}\text{n}$.
- F. M. Marqués et al., PRC 65, 044006 (2002)
- Physics with a hammer: *ab initio* results.
 S. C. Pieper, PRL 25, 252501 (2003)
- \rightarrow Bound four-neutron system ruled out.

Subtle interplay between the many-body components of the nuclear interaction, the Pauli principle and the coupling to the neutron continuum.

Can four neutrons form a nucleus?

Theoretical investigations:

• Fadeev-Yakubowski + unif. cx-scaling: Resonant ⁴n unlikely.

E. Hiyama et al., PRC 93, 044004 (2016)

NCSM/SS-HORSE: *E* ≈ 0.8 MeV and Γ ≈ 1.4 MeV
 A. M. Shirokov *et al.*, PRL 117, 182502 (2016)

• Monte Carlo calculations: $E \approx 1.8$ MeV and $\Gamma \approx 0.3$ MeV

S. Gandolfi et al., arXiv:1612.01502

No influence of 3-body forces.

→ Most suitable approach for this problem in E. Hiyama *et al.*, suggests a very large width ($\Gamma \approx 6$ MeV), but no EFT interaction.

Need for a full continuum approach with EFT interactions.

 $E = 0.83 \pm 0.65 \text{ (stat)} \pm 1.25 \text{ (syst) MeV}$ $\Gamma^{(\text{max})} = 2.6 \text{ MeV}$

Nucleus vs. reaction process:

How much times does a nucleon need to start from one side of the nucleus, go to the other side and come back?

- One must have: $T_{1/2} > T_{s.p.}$ to have a nucleus.
- $\Gamma = (\hbar \ln(2))/T_{1/2}$ is convexe, small variations on $T_{1/2}$ gives large variations on Γ .

 \rightarrow No clear limit, but $\Gamma < 3$ MeV is rather safe (for A = 4, using a crude argument).

At the limit of structure and reactions

Methods:

- NCGSM (N. Michel), DMRG (J. Rotureau).
- 2-body forces, continuum, *ab initio*.
- Natural orbitals.
- Broad resonance "tracing".

Model space:

- Two poles: $0s_{1/2}$ and $0p_{3/2}$ (WS).
- Continua for *s* and *p* waves (45-45-30 states)
- HO states for d, f and g waves (7, b = 2 fm).
- Several contours and basis tested.
- \rightarrow Results independent of the interaction.
- \rightarrow Rapid grow of the width ($\Gamma\approx 6\,MeV$ at 2p2h...).
- \rightarrow Energy mismatch with Exp.?

Preliminary results:

			12	Mg 19 5 ps	Mg 20 90 ms	Mg 21 122 ms	Mg 22 3.8755 s	Mg 23 11.317 s	Mg 24 78.99	Mg 25 10.00	Mg 26 11.01	Mg 27 9.458 m	Mg 28 20.915 h	Mg 29 1.30 s	Mg 30 313 ms	Mg 31 232 ms	Mg 32 86 ms	Mg 33 90.5 ms	Mg 34 20 ms	Mg 35 70 ms	Mg 36 3.9 ms		
				Na 18 1.3 zs	Na 19 >1 as	Na 20 447.9 ms	Na 21 22.49 s	Na 22 2.6027 y	Na 23 100.	Na 24 14.997 h	Na 25 59.1 s	Na 26 1.0713 s	Na 27 301 ms	Na 28 30.5 ms	Na 29 44.1 ms	Na 30 48.4 ms	Na 31 17.0 ms	Na 32 12.9 ms	Na 33 8.2 ms	Na 34 5.5 ms	Na 35 1.5 ms		
		10	Ne 16 9 zs	Ne 17 109.2 ms	Ne 18 1.6656 s	Ne 19 17.262 s	Ne 20 90.48	Ne 21 0.27	Ne 22 9.25	Ne 23 37.14 s	Ne 24 3.38 m	Ne 25 602 ms	Ne 26 197 ms	Ne 27 31.5 ms	Ne 28 18.9 ms	Ne 29 14.7 ms	Ne 30 7.3 ms	Ne 31 3.4 ms	Ne 32 3.5 ms	Ne 33 260 1e-09	Ne 34		
		F 14 500 ys	F 15 410 ys	F 16 11 zs	F 17 64.49 s	F 18 109.771 m	F 19 100.	F 20 11.163 s	F 21 4.158 s	F 22 4.23 s	F 23 2.23 s	F 24 384 ms	F 25 80 ms	F 26 9.7 ms	F 27 4.9 ms	F 28 < 40 1e-09	F 29 2.5 ms	F 30 < 260 1e-01	F 31		24		
8	O 12 >6.3 zs	O 13 8.58 ms	O 14 70.621 s	O 15 122.24 s	O 16 99.757	O 17 0.038	O 18 0.205	O 19 26.464 s	O 20 13.51 s	O 21 3.42 s	O 22 2.25 s	O 23 97 ms	O 24 65 ms	O 25 2.8 zs	O 26 90 25	O 27 260 1e-01	O 28 : 100 1e-01		22				
	N 11 550 ys	N 12 11.000 ms	N 13 9.965 m	N 14 99.636	N 15 0.364	N 16 7.13 s	N 17 4.173 s	N 18 619.2 ms	N 19 336 ms	N 20 136 ms	N 21 83 ms	N 22 24 ms	N 23 13.9 ms	N 24 < 52 1e-09	N 25 260 1e-01		20			_			$-0d_{3/2}$
6	C 10 19.306 s	C 11 20.364 m	C 12 98.93	C 13 1.07	C 14 5.70 ky	C 15 2.449 s	C 16 747 ms	C 17 193 ms	C 18 92 ms	C 19 46.2 ms	C 20 16 ms	C 21 < 30 1e-09	C 22 6.2 ms	C 23 7	18					_			$-1s_{1/2}$
	B 9 800 zs	B 10 19.9	B 11 80.1	B 12 20.20 ms	B 13 17.33 ms	B 14 12.5 ms	B 15 9.93 ms	B 16 <190 ps	B 17 5.08 ms	B 18 <26 ns	B 19 2.92 ms	B 20 7	B 21 < 260 1e-09							_	0-0-	0000	$- 0d_{5/2}$
	4		6		8	,	10		12		14		16										

Is ²⁸O bound or unbound?

 ${\ensuremath{\,^{\circ}}}^{24}O$ bound, ${\ensuremath{^{25}}}O$ unbound and ${\ensuremath{^{26}}}O$ barely unbound.

• A bound ²⁸O nucleus is excluded from previous experiments, but no direct observation.

160

An open question

What theory says on neutron-rich oxygen isotopes: Everything.

- *Ab initio* results not better than models for these systems.
- Need for an approach with a better balance between the main ingredients.
- \rightarrow Core + two-body interaction locally fitted + GSM.

Description of neutron-rich oxygen isotopes

Shell model approaches have known limitations.

- How the choice of the core affects results?
- How reasonnable are the truncations?
- How good is the interaction?

• Introducing one hole in
$$0d_{5/2}$$
 (core):
 $\hat{H} - \hat{H}_{core} = \sum_{i=1}^{N_{val}} (\hat{t}_i + \hat{U}_i) + \sum_{i < k}^{N_{val}} \left(\hat{V}_{ik} + \frac{\hat{p}_i \cdot \hat{p}_k}{M_{core}} \right)$

→ Set $\hat{V}_{ik} = 0$ on $0d_{5/2}$ and remove the doublecounting with $\hat{W}_i = \sum_p \hat{V}_{ip}, p \in 0d_{5/2}$:

$$\hat{H} - \hat{H}_{core} = \sum_{i=1}^{N_{val}+1} (\hat{t}_i + \hat{U}_i - \hat{W}_i) + \sum_{i$$

MSU/NSCL - Kévin Fossez

Description of neutron-rich oxygen isotopes

Shell model approaches have known limitations.

- How the choice of the core affects results?
- How reasonnable are the truncations?
- How good is the interaction?

Only 3 neutrons at most in the continuum.
 → No truncations in DMRG.

Nucleus	J^{π}	E_{GSM}	E _{DMRG}				
²⁶ O	0+	-6.31 (0)	-6.30 (0)				
²⁶ O	2+	-5.23 (0.027)	-5.22 (0.01)				
²⁷ O	$3/2^{+}$	-5.76 (0.014)	-5.76 (<10 keV)				
²⁷ O	$1/2^{+}$	-1.42 (0.017)	-1.43 (<10 keV)				
²⁸ O	0+	-6.79	-6.74				

Description of neutron-rich oxygen isotopes

Shell model approaches have known limitations.

- How the choice of the core affects results?
- How reasonnable are the truncations?
- How good is the interaction?
- We have the g.s. of ²⁶O slightly bound in the original fits.
- \rightarrow New fit (C) with the g.s. of ^{26}O 300 keV higher to seen the effect on $^{28}\text{O}.$
- \rightarrow The g.s. of ^{28}O is now slightly unbound, but still below the g.s. of $^{26}\text{O}.$
- \rightarrow Something is missing: 3-body forces?

Predictions on neutron-rich oxygen isotopes

After all, ²⁸O may not be the only one interesting.

- Narrow resonances in ^{25,27}O.
- Particle-emission decay through $d_{3/2}$ waves ($\Gamma \sim 10$ keV).
- M1 transitions are inexistent.
- E2 transitions ($e_{eff}^n = 0.5$) are weak with B(E2) between 1.65 and 2.3 W.u. ($\Gamma \sim eV$).

 \rightarrow Many challenges for experimental studies, uncertain theoretical predictions.

Conclusion

Couplings to the continuum are an important ingredients for the description of exotic nuclei.

- The four-neutron system seems unlikely to be a genuine nucleus (from the GSM perspective), but the problem is still open.
- The g.s. of ²⁸O is expected to be a narrow resonance.

Emergence of new phenomena when couplings to the continuum are present.

Features generic to all open quantum systems, cross-fertilization with other fields.

Thank you for your attention!