Chiral EFT from a data perspective

Andreas Ekström

Chalmers University of Technology

Overview

- Multiple minima
- Uncertainty quantification
- Summary

Optimization strategies

LECs **p** to be extracted/optimized from data.

Hinges on Gaussian likelihood and flat prior

$$\chi^{2}(\mathbf{p}) = \sum_{i} \left(\frac{\mathcal{O}_{i,\text{theo}}(\mathbf{p}) - \mathcal{O}_{i,\text{exp}}}{\sigma_{i,\text{tot}}} \right)^{2}$$

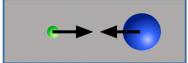
$$\sigma_{i,\text{tot}}^2 = \sigma_{i,\text{exp}}^2 + \sigma_{i,\text{theo}}^2$$

$$= \sigma_{i,\text{exp}}^2 + \sigma_{i,\text{numerical}}^2 + \sigma_{i,\text{method}}^2 + \sigma_{i,\text{model}}^2$$

$$\sigma_{\text{model}}^{(\text{amp})} = C \left(\frac{Q}{\Lambda}\right)^{\nu+1}$$

Separate ('historic') Fit

piN

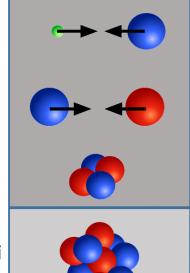


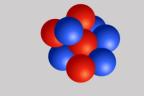
NN

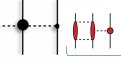
Light nuclei A=2,3,(4)

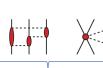
Heavier nuclei A=14,16,..,25

Simultaneous Fit









B. D. Carlsson et al. PRX 6 011019 (2016) A. Ekström et al. PRC 91 051301(R) (2015)

Objective function

$$\chi^2(\mathbf{p}) = \sum_i \left(\frac{\mathcal{O}_{i,\text{theo}}(\mathbf{p}) - \mathcal{O}_{i,\text{exp}}}{\sigma_{i,\text{tot}}} \right)^2$$

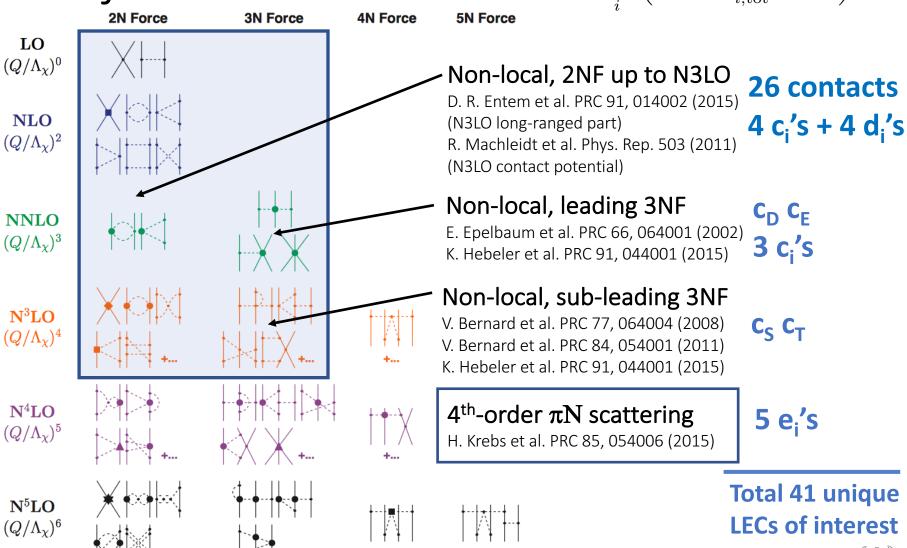
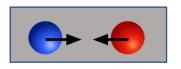


Figure from: R. Machleidt and F. Sammarruca, Phys. Scr. 91 (2016) 083007

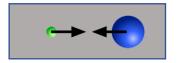
Experimental data $\chi^2(\mathbf{p}) = \sum_i \left(\frac{\mathcal{O}_{i,\text{theo}}(\mathbf{p}) - \mathcal{O}_{i,\text{exp}}}{\sigma_{i,\text{tot}}} \right)^2$

$$\chi^2(\mathbf{p}) = \sum_i \left(\frac{\mathcal{O}_{i,\text{theo}}(\mathbf{p}) - \mathcal{O}_{i,\text{exp}}}{\sigma_{i,\text{tot}}} \right)^2$$



Granada NN database (0-290 MeV)

R. Navarro Pérez et al. PRC 88, 064002 (2013)



Washington Institute WI08 π N database (0-70 MeV)

R. Workman et al. PRC 86, 035202 (2012)

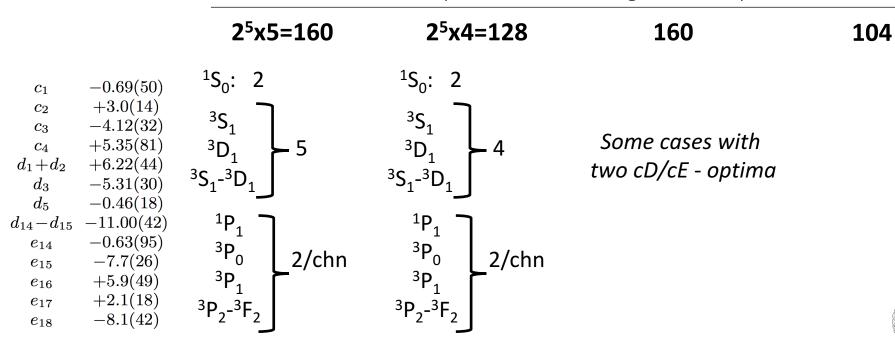
	Experimental value	$\sigma_{ m exp+method}$
$E(^{2}\mathrm{H})$	-2.22456627(46)	0.22×10^{-3}
$E(^{3}\mathrm{H})$	-8.4817987(25)	0.028
$E(^{3}\mathrm{He})$	-7.7179898(24)	0.019
$E(^4\text{He})$	-28.2956099(11)	0.11
$r_{\rm pt-p}(^2{\rm H})$	1.97559(78) ^a	0.79×10^{-3}
$r_{\text{pt-p}}(^{3}\text{H})$	1.587(41)	0.041
$r_{\text{pt-p}}(^{3}\text{He})$	1.7659(54)	0.013
$r_{\rm pt-p}(^4{\rm He})$	1.4552(62)	0.0071
$Q(^{2}\mathrm{H})$	$0.27(1)^{b}$	0.01
$E_A^1(^3\mathrm{H})$	0.6848(11)	0.0011

Multiple minima

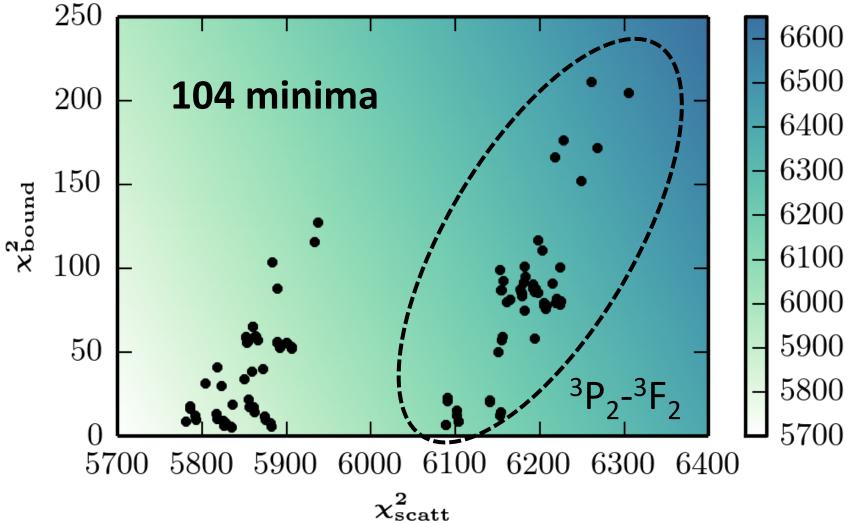
41-dim LEC space!

Boris Carlsson

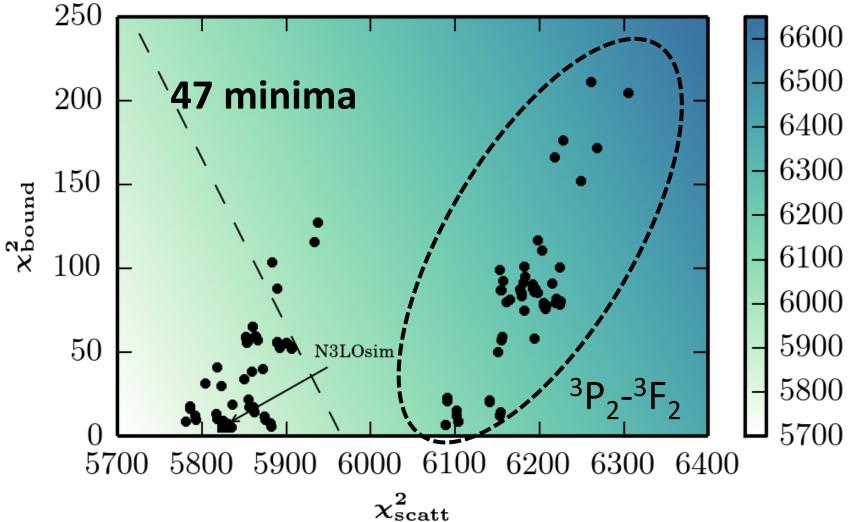
Number of optima at each stage in the optimization

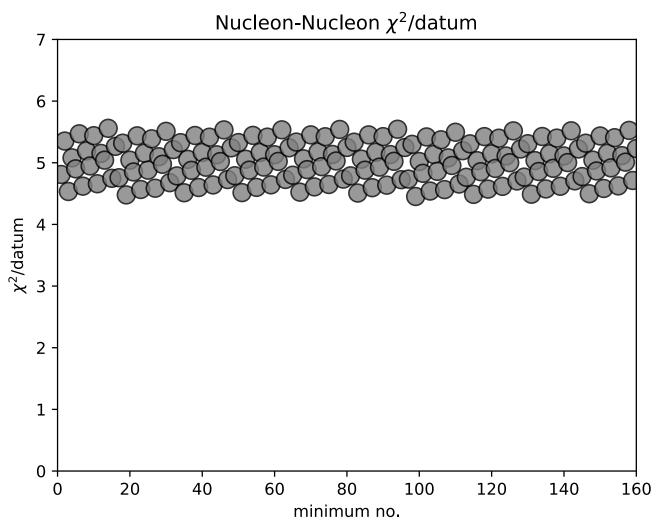


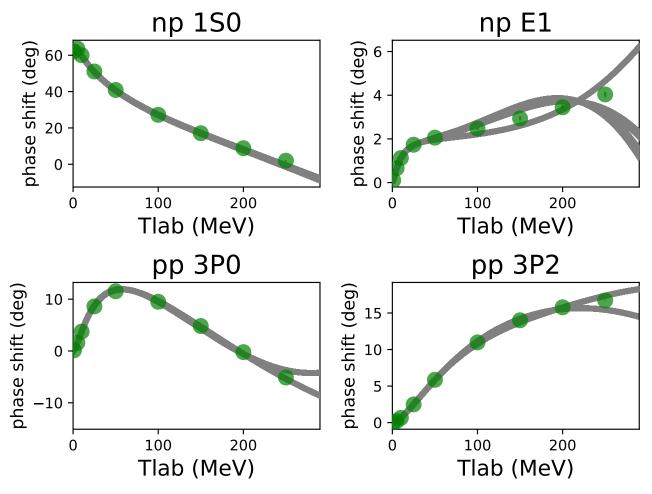
Multiple minima at N3LO: overview

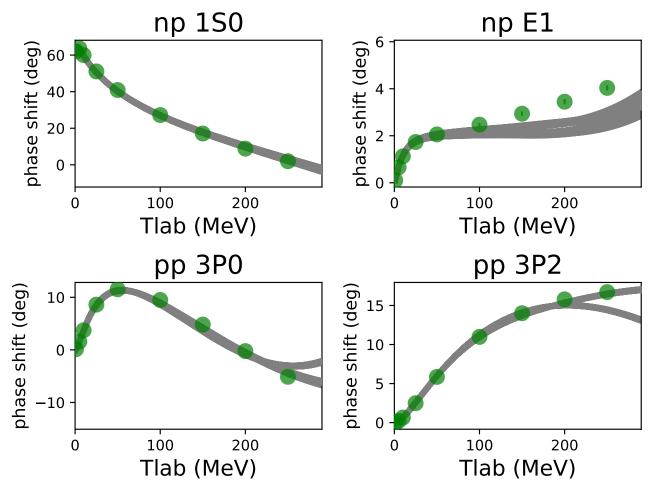


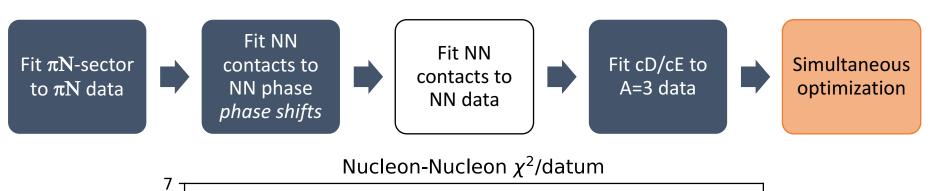
Multiple minima at N3LO: overview

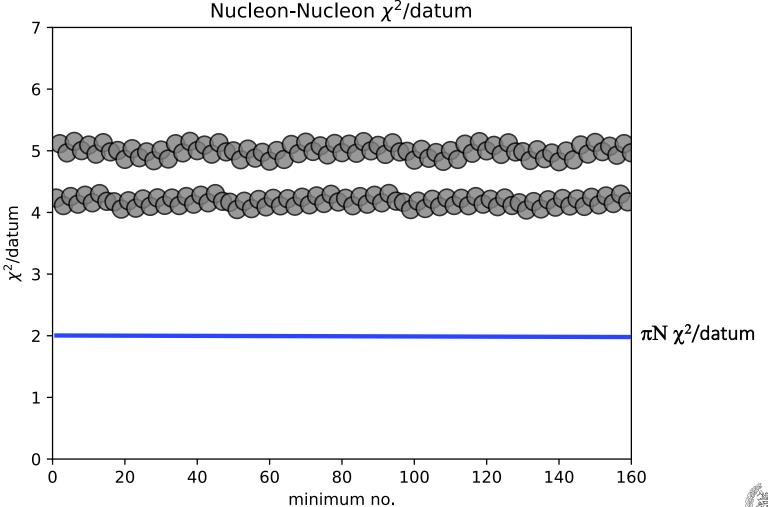


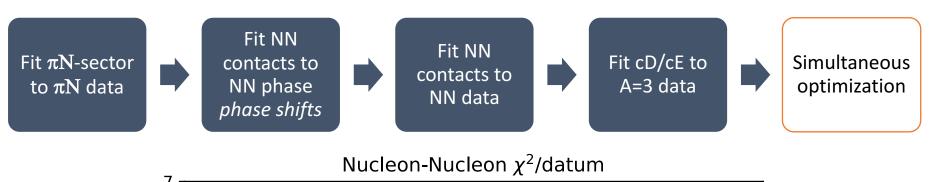


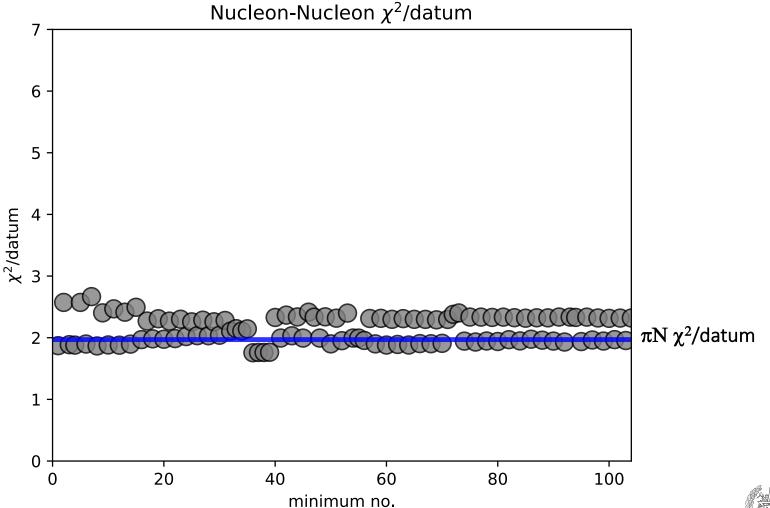


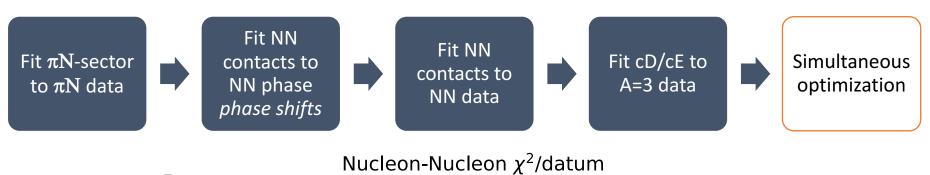


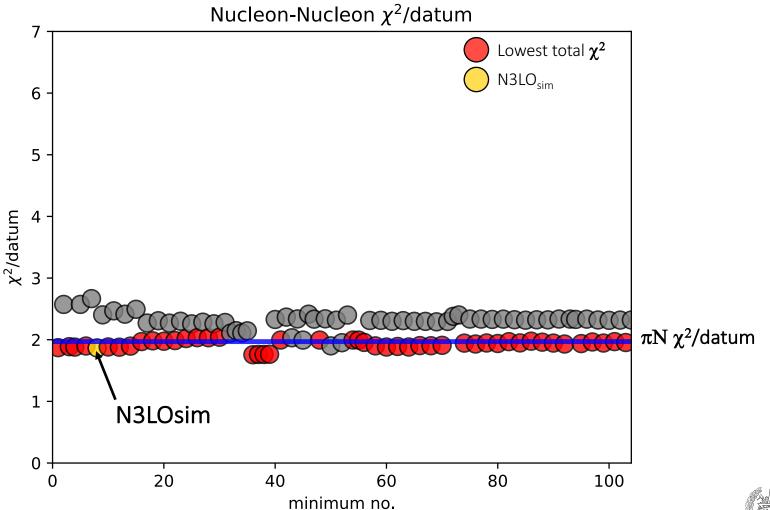


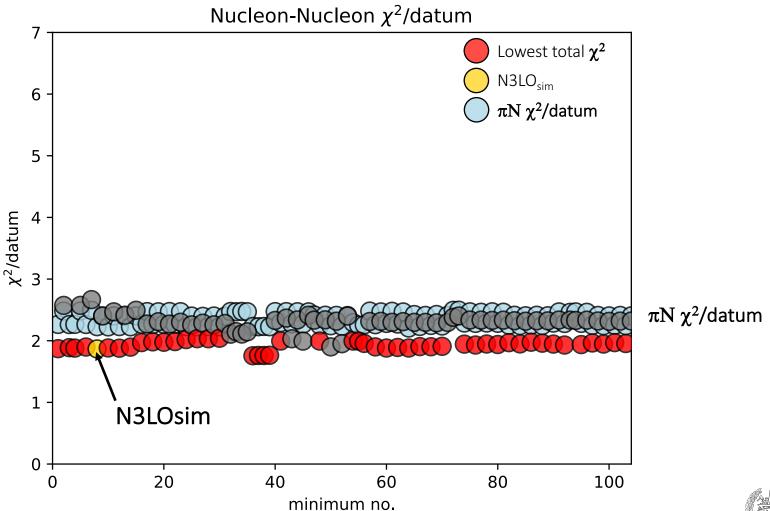


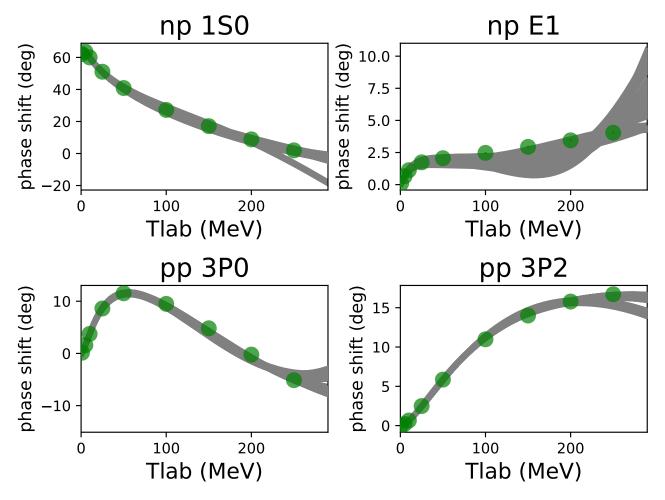


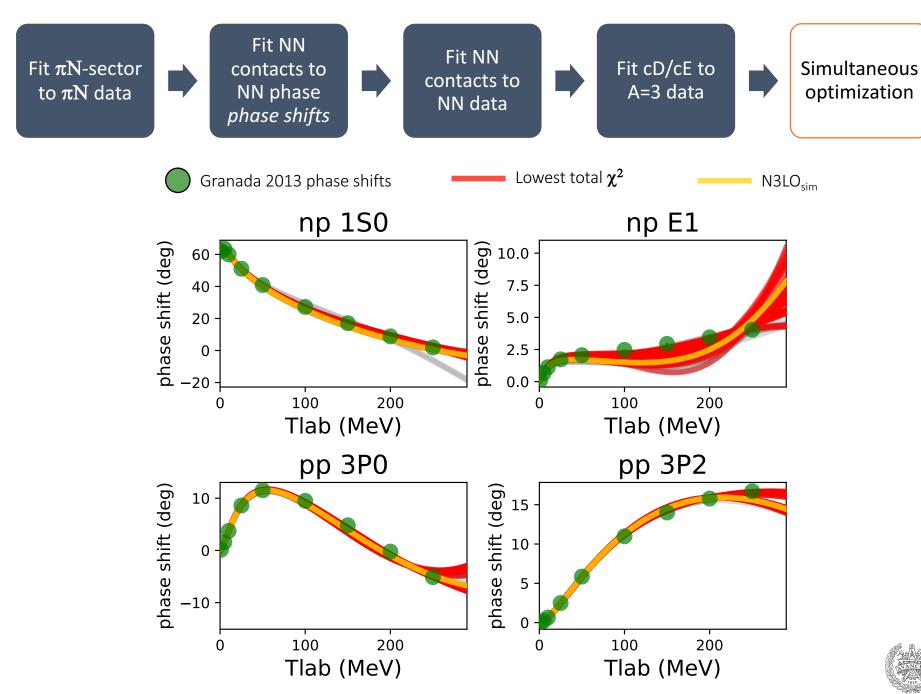


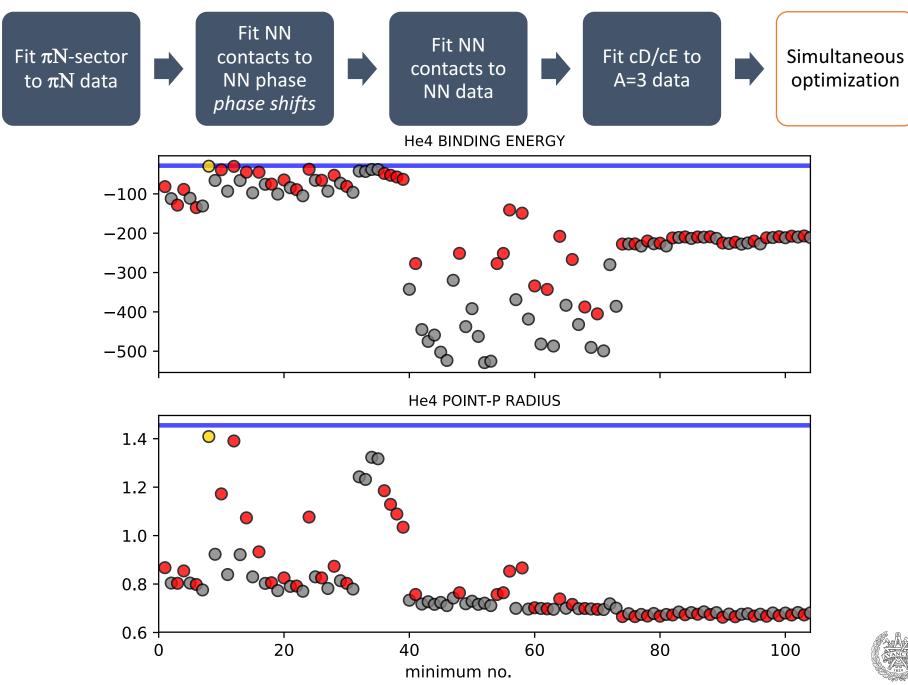


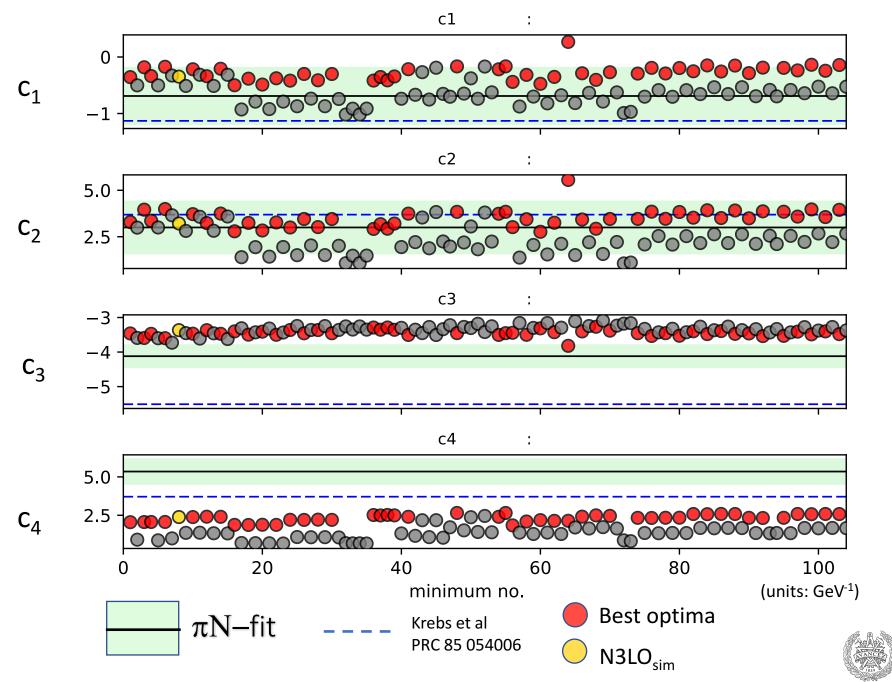












Using "Roy-Steiner" πN-LECs

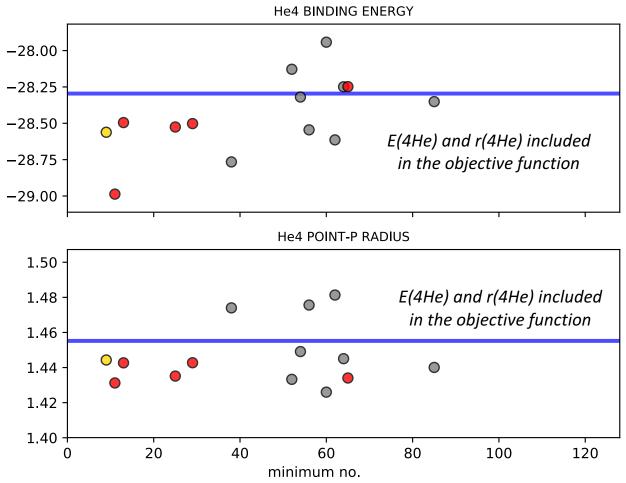
Constraining the objective function to keep πN LECs close to values from Roy-Steiner analysis in M. Hoferichter et al. PRL 115, 192301 (2015)

A simultaneous optimization of this objective function also leads to a good description on all NN and NNN data. For instance NN χ^2 /datum = 2.5. Most LECs remain in the Roy-Steiner region (to ~1 sigma), only c₁ and c₃ depart, 6 and 31 sigma, to -0.96 GeV⁻¹ and -3.76 GeV⁻¹, respectively.

However, predictions with N3LO non-local NN+3NF for ⁴He disagree with experiment

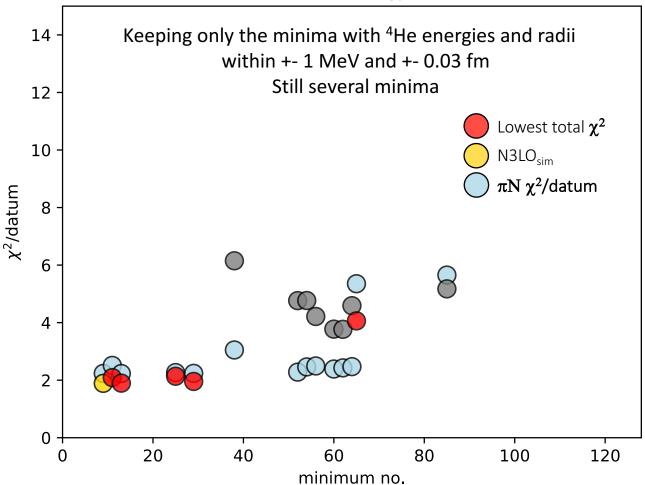
$$R(4He) = 1.05 \text{ fm}$$

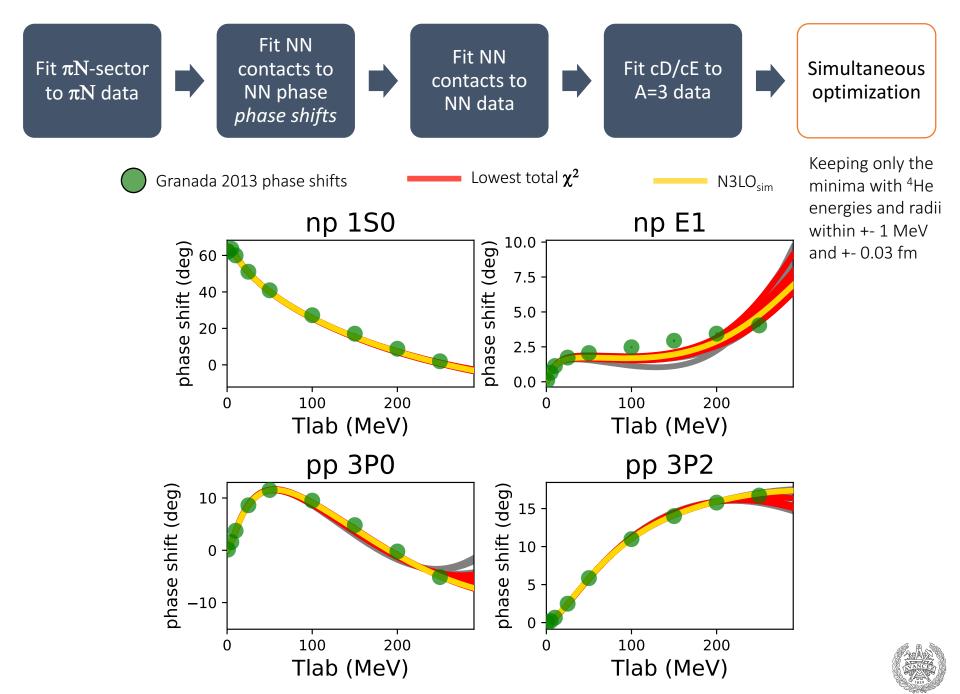
Keeping only the minima with energies and radii within +- 1 MeV and +- 0.03 fm Still several minima



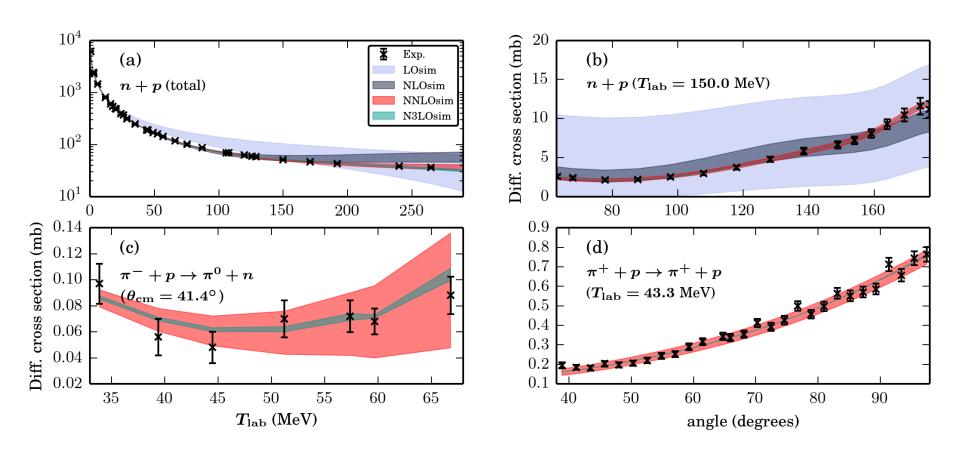
Nucleon-Nucleon χ^2 /datum

E(4He) and r(4He) included
in the objective function

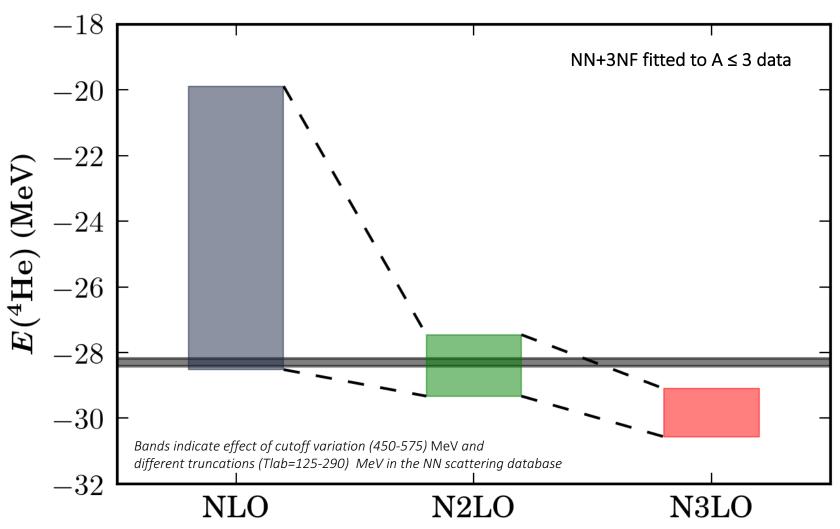




Scattering observables



Non-local chiral interactions (sim)



Hessian method for UQ

Approximate the objective function with a quadratic form in the vicinity of the optimum

$$\chi^{2}(\mathbf{p_{0}} + \Delta \mathbf{p}) - \chi^{2}(\mathbf{p_{0}}) \approx \frac{1}{2} (\Delta \mathbf{p})^{T} \left[\mathbf{H} |_{\mathbf{p_{0}}} \right] (\Delta \mathbf{p})$$

The covariance matrix can be computed from the inverse of the Hessian. This follows from a quadratic approximation to the log-likelihood function.

$$\operatorname{Cov}(\mathbf{p_0}) \sim \left[\left. \mathbf{H} \right|_{\mathbf{p_0}} \right]^{-1}$$

Expand observables similarly, to second order

$$\mathcal{O}(\mathbf{p_0} + \Delta \mathbf{p}) - \mathcal{O}(\mathbf{p_0}) \approx (\Delta \mathbf{p}^T) \mathbf{J}_{\mathcal{O}} + \frac{1}{2} (\Delta \mathbf{p}^T) \mathbf{H}_{\mathcal{O}} (\Delta \mathbf{p})$$

The covariance between two observables is then given by

$$Cov(\mathcal{O}_A, \mathcal{O}_B) \approx \mathbf{J}_{\mathcal{O}_A}^T Cov(\mathbf{p_0}) \mathbf{J}_{\mathcal{O}_B} + second order$$

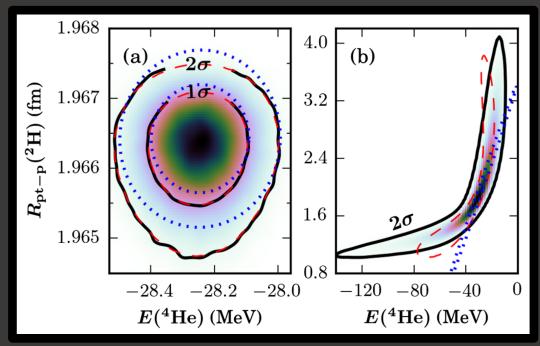
Hessian method for UQ

fur

TH

inve

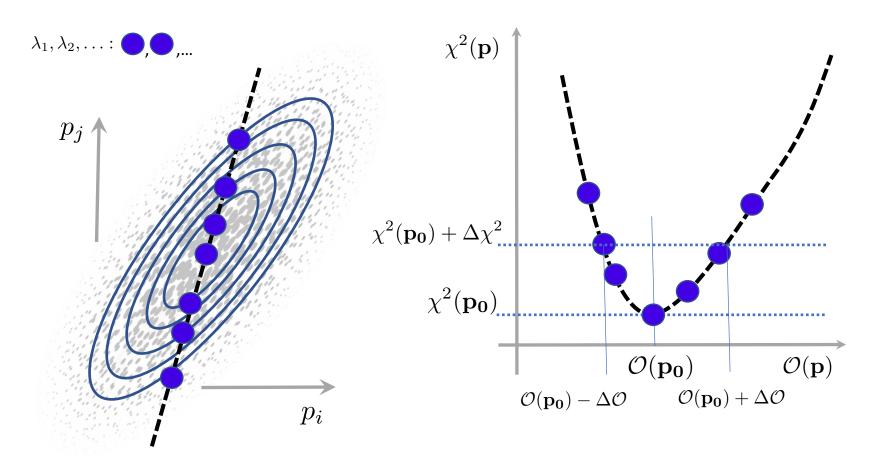
- Very "portable" once you have the covariance matrix
- Facilitates correlation studies in several observables
- Gradients can be costly to compute
- Relies on second order approximation to the objective function



B. D. Carlsson et al. PRX 6 011019 (2016)

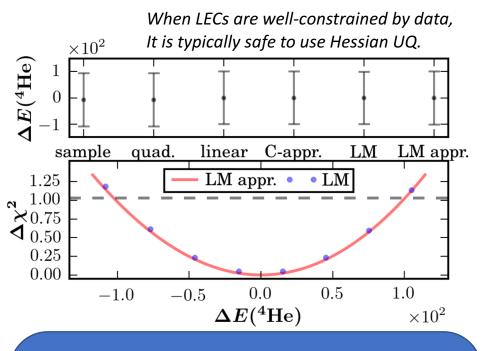
Lagrange multiplier optimization

$$F(\mathbf{p}, \lambda) = \chi^2(\mathbf{p}) + \lambda \cdot \mathcal{O}(\mathbf{p})$$



Quick Comparison

B. D. Carlsson accepted Phys. Rev. C (arXiv:1611.03691)





LECs drawn from the covariance matrix

Quad. = Hessian UQ with observables expanded in the

LECs to second order.

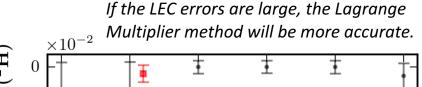
Linear = Same as "quad", but linear approximation

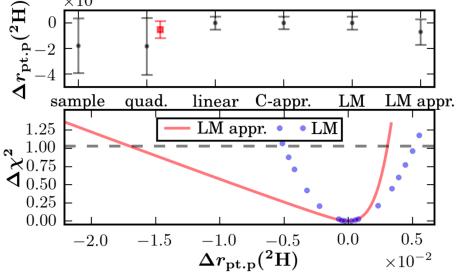
C-appr = Same as "linear", but also linear approximation

of Hessian matrix.

LM = Lagrange-Multiplier method

LM appr. = Quadratic approximation to LM method.





Simulated larger error bars enhances the non-quadratic shape of the chi-squared surface.

Red error bar: accounting for higher-order terms improves the picture.

MC sample overestimates dramatically.

Summary

- "Standard" pool of fit data insufficient to identify a single set of LECs at N3LO.
- Need more data to filter minima and better inform the N3LO interaction. Many good suggestions during the workshop. (scattering observables, heavier nuclei, matter, LQCD).
- Non-local N3LO 3NF is not a small correction to ⁴He.
- Lagrangian multiplier optimization is a convenient and derivative free method for UQ.

Thank You

