Eigenvector continuation and

new results in nuclear lattice simulations

Dean Lee e
Facility for Rare Isotope Beams =
Department of Physics and Astronomy
Michigan State University
Nuclear Lattice EFT Collaboration

v

X

%

\
\ A
/a
-“V " A

Progress in Ab Initio Techniques in Nuclear Physics
TRIUMF, February 28, 2018

€. #™ MICHIGAN STATE
&v

ERIB UNIVERSITY

e Study of Strongly Interacting Matter i ' .

Foergchuni;sgemeinschaft ﬁ HELMHOLTZ et ; J J ULICH

SFG | GEMEINSCHAFT 5 "f,"'““""""’sg FORSCHUNGSZENTRUM
*




QOutline

Lattice effective field theory
Pinhole algorithm
Pinhole trace algorithm
Figenvector continuation

Summary and outlook



Lattice chiral effective field theory
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Review: D.L, Prog. Part. Nucl. Phys. 63 117-154 (2009)
TALENT summer school lectures: qmc2016.wordpress.ncsu.edu
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Challenge

In order to compute thermodynamic properties of finite nuclei, nuclear
matter, and neutron matter, we need to compute the partition function

Trexp(—(8H)

The standard method for computing the partition function involves
calculating determinants of matrices of size 4V X 4V, where V is the number
of lattice points filling the spatial volume. Since V is usually several
hundred or several thousand, these calculations are very expensive.



Pinhole algorithm

Consider the density operator for nucleon with spin ¢ and isospin j

pij(n) = al ;(n)a; ;(n)

We construct the normal-ordered A-body density operator

Pisgiinga (M1, 0a) =1 5 (1) piy i, (na):

In the simulations we do Monte Carlo sampling of the amplitude

Ai1,j1,--'iA,jA (nlv nrr Iy, t) - <\IJIle_Ht/2:0i1,j1,-“iA,jA (n17 T nA)e_Ht/2’m1>
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Metropolis updates of pinholes

hybrid Monte Carlo
updates of auxiliary/pion fields
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Pinhole trace algorithm

We have developed an alternative method using pinholes that calculates
determinants of matrices of size A X A, where A is the number of nucleons.
The method does not suffer from severe sign oscillations.

We compute the quantum mechanical trace over A-nucleon states by
summing over pinholes (position eigenstates) for the initial and final states

Tr O

1
= > (Olaiy ja(a) - as 4 (01) Oal, ; (n1)---af, . (1n4)0)

110 A,J1° " JAN1 "N
This can be used to calculate the partition function in the canonical ensemble.

Work in progress. B. Lu, et al.



Metropolis updates of pinholes

hybrid Monte Carlo
updates of auxiliary/pion fields
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Challenge

A common challenge faced in many fields of quantum physics is finding the
extremal eigenvalues and eigenvectors of a Hamiltonian matrix too large to
store in computer memory.

There are numerous efficient methods developed for this task. All existing
methods either use Monte Carlo simulations, diagrammatic expansions,
variational methods, or some combination.

The problem is that they generally fail when some control parameter in the
Hamiltonian matrix exceeds some threshold value.
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Eigenvector continuation

We demonstrate that when a control parameter in the Hamiltonian matrix
is varied smoothly, the extremal eigenvectors do not explore the large
dimensionality of the linear space. Instead they trace out trajectories with
significant displacements in only a small number of linearly-independent
directions.

We prove this empirical observation using analytic function theory and the
principles of analytic continuation.

Since the eigenvector trajectory is a low-dimensional manifold embedded in
a very large space, we can find the desired eigenvector using methods
similar to image recognition in machine learning.

D. Frame, R. He, I. Ipsen, Da. Lee, De. Lee, E. Rrapaj, arXiv:1711.07090
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Consider a one-parameter family of Hamiltonian matrices of the form
H (C) =H 0+ cH 1
where H, and H; are Hermitian. Let the eigenvalues and eigenvectors be

H(c)[y;(c)) = Ej(e)[¥;(c))

We can perform series expansions around the point ¢ = 0.

ZE() )" /n!
¥ (c) ZW ))c™ /!

This is the strategy of perturbation theory. We can compute each term in
the series when the eigenvalues and eigenvectors of H, are known or
computable.
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convergence region

Perturbation theory

[b(e)) =3[9 (0))c" /n!
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Bose-Hubbard model

In order to illuminate our discussion with a concrete example, we consider
a quantum Hamiltonian known as the Bose-Hubbard model in three

dimensions. It describes a system of identical bosons on a three-dimensional
cubic lattice.

H=—t Y af(m)a(m) + o 3 pm)lom) — 1]~ uY p(n)
> n n

(n’,n

p(n) = af (n)a(n)

The parameter ¢ controls the hopping the bosons on the lattice, and U is the
single-site pairwise interaction. We set the chemical potential to be

@ = —6t
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Ey/t

Perturbation theory fails at strong attractive

coupling

exact energies ¥
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Eg/t

Restrict the linear space to the span of three vectors
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Rec

5(c)) = lim ZZW*"“

nOmO

w™(c—w)"/(m!n!)
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The eigenvector can be well approximated as a linear combination of a
few vectors, using either the original series expansion

[¥;(c) Z W(n ))c"/n!

or the rearranged multi-series expansion we obtained through analytic
continuation

5(c)) = lim ZZW*W’ w™ (¢ — w)"/(m!nl)

nOmO

As c is varied the eigenvector does not explore the large dimensionality of
the linear space, but is instead well approximated by a low-dimension
manifold.



We can “learn” the eigenvector trajectory in

eigenvector continuation to another region

Ey/t
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Applying eigenvector continuation to more than one eigenvector at a time

accelerates convergence near avoided level crossings.
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Application: Neutron matter simulations

We consider lattice effective field theory simulations of the neutron matter at
the leading order.

N N N_ 94 N N N
V —> i m <+
N N N 94 N N N
/OPEP Contact interactions

As a challenge to the eigenvector continuation technique, we use a lattice

action for one-pion exchange that causes severe Monte Carlo sign oscillations.

D.L., in “An Advanced Course in Computational Nuclear Physics”, Hjorth-Jensen, Lombardo,
van Kolck, Eds., Lecture Notes in Physics, Volume 936 [arXiv:1609.00421]
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energy (MeV)
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energy (MeV)

Eigenvector continuation for six neutrons (L = 8 fm)
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energy (MeV)

Eigenvector continuation for fourteen neutrons (L = 8 fm)
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g4 values

Ey for six neutrons (MeV)

Ey for fourteen neutrons (MeV)

¢ 13.8(1) 48.9(4)

¢ 13.6(2) 48.4(5)

cs 13.6(2) 48.9(6)

Ca2,C3 136(2) 481(6)

C3,(C] 136(2) 489(6)

C1,C2 136(2) 480(6)
C1,C92,C3 136(2) 480(6)
direct calculation 12(*F5 42(*1)
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Summary and Outlook

These are exciting times for the ab initio
nuclear theory community. In lattice EFT,
we have new projects in motion which are
pushing the current frontiers.

Currently working to improve our
understanding of the detailed connection
between bare nuclear forces and nuclear
structure for light and medium-mass nuclei.
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Applying the adiabatic projection method to
low-energy nucleon-nucleus and alpha-
nucleus scattering and reactions.

Using the pinhole algorithm to study the
detailed structure of nuclei and pinhole
trace algorithm for thermodynamics of finite
nuclei, nuclear matter, and neutron matter.

Implementing eigenvector continuation to
treat all higher-order interactions in chiral
effective field theory.
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