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In order to compute thermodynamic properties of finite nuclei, nuclear 
matter, and neutron matter, we need to compute the partition function  

The standard method for computing the partition function involves 
calculating determinants of matrices of size 4V × 4V, where V  is the number 
of lattice points filling the spatial volume.  Since V  is usually several 
hundred or several thousand, these calculations are very expensive.   
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Challenge 



Pinhole algorithm 

Consider the density operator for nucleon with spin i and isospin j 

We construct the normal-ordered A-body density operator 
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In the simulations we do Monte Carlo sampling of the amplitude 
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Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017) 



We compute the quantum mechanical trace over A-nucleon states by 
summing over pinholes (position eigenstates) for the initial and final states   

Pinhole trace algorithm 
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We have developed an alternative method using pinholes that calculates 
determinants of matrices of size A × A, where A is the number of nucleons.  
The method does not suffer from severe sign oscillations. 

This can be used to calculate the partition function in the canonical ensemble. 

Work in progress.  B. Lu, et al. 
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Figure courtesy of Bingnan Lu 



Figure courtesy of Bingnan Lu 
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A common challenge faced in many fields of quantum physics is finding the 
extremal eigenvalues and eigenvectors of a Hamiltonian matrix too large to 
store in computer memory.   

Challenge 

There are numerous efficient methods developed for this task.  All existing 
methods either use Monte Carlo simulations, diagrammatic expansions, 
variational methods, or some combination. 

The problem is that they generally fail when some control parameter in the 
Hamiltonian matrix exceeds some threshold value. 
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We demonstrate that when a control parameter in the Hamiltonian matrix 
is varied smoothly, the extremal eigenvectors do not explore the large 
dimensionality of the linear space.  Instead they trace out trajectories with 
significant displacements in only a small number of linearly-independent 
directions.   

Eigenvector continuation 

We prove this empirical observation using analytic function theory and the 
principles of analytic continuation.  

Since the eigenvector trajectory is a low-dimensional manifold embedded in 
a very large space, we can find the desired eigenvector using methods 
similar to image recognition in machine learning. 
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D. Frame, R. He, I. Ipsen, Da. Lee, De. Lee, E. Rrapaj, arXiv:1711.07090 



Consider a one-parameter family of Hamiltonian matrices of the form 

where H0 and H1 are Hermitian.  Let the eigenvalues and eigenvectors be 
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We can perform series expansions around the point c = 0. 

This is the strategy of perturbation theory.  We can compute each term in 
the series when the eigenvalues and eigenvectors of H0 are known or 
computable. 



	
	
	

	
	
	
	

16	

Perturbation theory 

convergence	region	
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Bose-Hubbard model 

In order to illuminate our discussion with a concrete example, we consider 
a quantum Hamiltonian known as the Bose-Hubbard model in three 
dimensions.  It describes a system of identical bosons on a three-dimensional 
cubic lattice. 

The parameter t controls the hopping the bosons on the lattice, and U is the 
single-site pairwise interaction.  We set the chemical potential to be 
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Perturbation theory fails at strong attractive coupling 
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Restrict the linear space to the span of three vectors 
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analy-c	con-nua-on	



The eigenvector can be well approximated as a linear combination of a 
few vectors, using either the original series expansion 
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or the rearranged multi-series expansion we obtained through analytic 
continuation  

As c is varied the eigenvector does not explore the large dimensionality of 
the linear space, but is instead well approximated by a low-dimension 
manifold. 
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We can “learn” the eigenvector trajectory in one region and perform 
eigenvector continuation to another region 
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Applying eigenvector continuation to more than one eigenvector at a time 
accelerates convergence near avoided level crossings. 
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Application: Neutron matter simulations 

We consider lattice effective field theory simulations of the neutron matter at 
the leading order. 

As a challenge to the eigenvector continuation technique, we use a lattice 
action for one-pion exchange that causes severe Monte Carlo sign oscillations. 

D.L., in “An Advanced Course in Computational Nuclear Physics”, Hjorth-Jensen, Lombardo,  
van Kolck, Eds., Lecture Notes in Physics, Volume 936 [arXiv:1609.00421] 
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Eigenvector continuation for fourteen neutrons (L = 8 fm) 
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Summary and Outlook 

These are exciting times for the ab initio 
nuclear theory community.  In lattice EFT, 
we have new projects in motion which are 
pushing the current frontiers. 
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Currently working to improve our 
understanding of the detailed connection 
between bare nuclear forces and nuclear 
structure for light and medium-mass nuclei. 



Applying the adiabatic projection method to 
low-energy nucleon-nucleus and alpha-
nucleus  scattering and reactions.  
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Using the pinhole algorithm to study the 
detailed structure of nuclei and pinhole 
trace algorithm for thermodynamics of finite 
nuclei, nuclear matter, and neutron matter. 

Implementing eigenvector continuation to 
treat all higher-order interactions in chiral 
effective field theory. 


