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Motivations @

e Great progress of ab initio calculations in nuclei and nuclear matter

e Chiral interactions and SRG play a crucial role

— Soft — improved convergence of many-body expansions
— QCD rooted + systematic
— Estimation of its theoretical error

e However in practice, RG invariance not fulfilled

— Additional complications in many-body systems
— Cutoff dependence of observables

Long term : develop many-body schemes fulfilling EFT requirements

Short term : avoiding cutoff dependence of observables
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Interface EFT interaction / Many-body methods a

e Traditional view : Vj,; as black box

QCD Lagrangian Observables, uncertainties

Lattice QCD Many-Body

Mehdi Drissi RG invariance of many-body observables



Interface EFT interaction / Many-body methods

e Traditional view : Vj,; as black box

QCD Lagrangian Observables, uncertainties

Lattice QCD Many-Body

e Adapt many-body scheme to assess proposed power counting

. Observables,
QCD Lagrangian uncertainties

Validity of Power Counting

Lattice QCD Many-Body

Power counting rules
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Modelisation of neutron matter a

> Interaction lagrangian

=2
L£=N' (iao + 2VM) N + G(ANNTNTNN

> Cutoff regularisation

V(k,k'; A) = Go(A) va(k)va(k') Generic
K2 K2
= Go(N) P~ eXp— s Gaussian

> Matching Go(A) to the scattering lenght ag = —18.9 fm

> Many-body schemes considered
e Hartree-Fock (HF)

Analytically & numerically
e Particle-particle/hole-hole resummation ladder

e Self Consistent Green’s Function (SCGF) }Only numerically
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Importance of renormalisation consistency E

Hartree-FOck : (expanded in 245 for convenience) pp/hh resummation :

T

2 Vi-s krlie (s, )
EMF k2 )3 mG(N) 1 2v/2ke EHd k2 |3 a8 ! 2/ ! Flle
— (A = _F - Vg | — (N kp)=—"—<K = — — ds s dk karctan | —/—~————
A Nk =205 my o |2t 0 A ANk =515 Ty Jo ) + = R (s,)
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Importance of renormalisation consistency E

Hartree-FOck : (expanded in 2= for convenience) pp/hh resummation :
EHF K23 mG(A 1 23k \ Ee o k3 a8 Viss kel (5. %)
T(/\, ke) = ﬁ {g - 7(2;)2 8kr |:§+ o (( A F) A (Aike) = 2; 57 )y ds 57./0 drk K arctan 7,,.2;;/\) +%l—?¥(s,n)
Co(A) matched at first order to ag Co(A) exactly matched to ag
4 4 1
G(N) = wo Go(A) = Wwﬁ
a  Vom
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Importance of renormalisation consistency

Hartree-FOck : (expanded in 2= for convenience) pp/hh resummation :
2 2 -
EHF k)3 mG(A) 2/2ke Ed K3 as t o,V kelig (s.r)
“a(Nke) = ﬁ {g ~ e —- 528k E+ o A A Nke) =50 05— A ds s /0 dk karctan 7%% +%R¥(5‘N)
Co(A) matched at first order to ag Co(A) exactly matched to ag
4t 4r 1
Cg(/\) = ﬁao CO(/\) = M1
E w0 ﬁ
& A
0.06] eon 10 =
0.05 S g o
0.04 Ry g
EFe 6 EC
0.03 e ) - £
0.02 o — e
—Emn — =N
0.01 A i 2 .
A
0.00 5 10 15 ke % 10 20 30 40 ke
ke = 60 MeV ke = 150 MeV

% from [Kaiser 11]
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Assessing convergence of many-body observables a

Ladder calculations

Lo How to know if convergence is reached ?
1%

10 Ideal case :

8|

6 Analytically proven convergence

) ELd EDR EFG
aim =g (k) = == (k) # == (ke)

0 1000 2000 3000 4000 5000 6000 7000 A
ELd

2 Real world case :

Slight (e.g. numerical) error on resummation

ELd EFG
6 lim —22(A; k) = —— (k
d L aim, =5 (N ke) = == (ke)
2 Numerical approximation
0

01000 2000 3000 4000 5000 6000 7000 " should be treated with care

What about self-consistent calculations ?
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©® Numerical developments
m Self-Consistent Green's Functions
m Numerical results
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General aspects of SCGF E

e State-of-the-art SCGF code for nuclear matter
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e State-of-the-art SCGF code for nuclear matter

e Dyson equation to be
solved self-consistently — +

G=G"+GY/G
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General aspects of SCGF @

e State-of-the-art SCGF code for nuclear matter

e Dyson equation to be
solved self-consistently — +

G=G"+GY/G

e lLadder ansatz for the self-energy

@0 A0

SCHF 2" Born o Ladder
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Numerical results

E
e Good reproduction of HF A
40
) 35
e Discrepancy at ladder level 30N\ e
— Not adapted code o5l NG )
20
e Small effects from .
self-consistency A
4 5 6 7 8 9 ke
e Good precision on counter-terms cancellation Numerically
e Large range of cutoff variation demanding

EDR
A

Ew

EFe
A

£

o HF num.

» Ladder num.
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® Conclusion
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Summary and perspectives a

> Summary

e Many-body methods — Consistent with renormalization scheme
e Consistent approaches — Validity of power counting ?

e Analytical/numerical analysis
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Summary and perspectives @

> Summary

e Many-body methods — Consistent with renormalization scheme
e Consistent approaches — Validity of power counting ?
e Analytical/numerical analysis

— Many-body approximations can lead to cutoff-independent observables
— Better understanding of the apparent failure of Ladder approximation

— On-going control of critical numerical errors

> Perspectives

e Extend resummation while keeping observables L regularisation

— Does this will bring important modifications of observables ?
e Possible to find further truncation scheme ?
e Extend study to symmetric matter/NLOs

e What about error estimations ?
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General perturbation theory a

Choose a split of the hamiltonian H = Hy + V and consider (un)correlated
states, related by the Lippmann-Schwinger equation

1
Hol®) = E|9) ) = 16) + 7 o V)
H|¢> = E|1/)> - 1
VIv) = Tlo) T=VrhewT
Thus we get the perturbation expansion
1 1 1
T=V+ VE—HOV+ VE—HOVE—HOV+“.

Main features
— Choice of Hy ~ From what state to start the expansion
— Order of expansion
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Perturbation expansion

> Time-dependent perturbation expansion of one-body propagator

+°° _I)m oo 400 +o00
iGap(t,t') = m/ dtl/ dtz.../ dty,

— 00 — 00

<¢O\T[ (t0)V(22).V(tm)aa(£)a}(¢)] [0F)

OM

> Wick theorem — express G in terms of

(Y| TTaa(t)af(t')]|®f)
(og|of)
iGgﬁ(w): 0aa08b n 0aidgj

w—e+ie w—e —ie

iGYs(t t') =

where e, and ¢; are single particle/hole energies
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Observables from Green's function a

> One-body observables (generalisable to n-body)

wiowy) (W |al, ag|Wh)
O
(Wi Z Tl

= a G, «a
Z /C o Fon @ (w)
> Particular case : total energy by GMK sum rules (2-body interactions)

=30 [, o) Gl

whith T =3 5 tapalag the kinetic energy
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In-medium propagator a

e Unperturbed propagator

(®o|TTan(t)a)(t")]|o)
(®o|Po)

iGog(t,t') =

e Particle/hole representation

iG25(p,w) = bus [ 8(p— k) | O(kr —p) ]

w—E,+ie  w—E,—ie
e Rewrite it in vacuum/in-medium representation

1

G (Pr) = da L_H
P

+2imd(w — Ep)0( ks — p)]
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Analytical benchmarks a

e Hartree-Fock (Erf functions expanded for A > k)

EHF /&{3 '"CO(A)Skf 1+O<<2ﬁkf)2>]}
12 A

5 (2n)2

(A kf) =
A Nk =5

e 2" Born approximation

E** 3K 6GNK [P o (VT )
. - = — I 2k k,
A (A; ke) 59m = /0 ds s /0 dk Kk Io(s, k) va(2k kf)

e Ladder pp/hh resummation with cutoff regularisation

Ld 2 1 1-s2 kf/ki (S, H)
E—(/\; ke) = k)3 _ 48 / ds s dk r arctan =
A 2m | 5 T Jo 0 m—l—?{/‘_\’u(s,ﬁ)
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Analytical convergences a

e Hartree-Fock r . re
EMF 3k _E
2 Nk = 55, = & (k)

e 2"¥ Born approximation
E2B FG

E
7(/\? ke) — T(kf)

e Ladder pp/hh resummation with cutoff regularisation

Ld
£ (/\ k) — 77—/d s/ dnmarctan %
*ng;Ro(svﬂ)

FG
# E—(kf)
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Dyson’s equation a

> Define self-energy from equation of motion of G (2-body interactions)

12
<,at, n Z) G(1,1) = 6(1,1') i/dr2 V(= 0)Go(1L, s, t1: 1, 1o, )
/d3 Z 1 3)G(3 1 /df2 I’l —r2)62(1 r2,t1 1 r27t1)

> Hence the Dyson’s equation

Gap(w) Z (w)Gig(w) +
Gap(w) = Z (w)Gsp(w)

where ¥/ is the irreducible self-energy.
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Implementation of self-consistent ladder calculations a

GO
Gﬁ = H H ‘ T |[= e---—-= + :-‘ L




Brief history of nuclear interactions a

e 1935 : Yukawa potential
— Birth of Meson Theory

e 40s -50s : Pions Theories

— Troubles with multi-pions,
anti-nucleons diagrams, ...
e 60s -00s : One-Boson-Exchange No renormalization group invariance
Model (p,o,w,...)
— Good data fitting
— But no systematic

e 90s - today : EFT based interactions [sweinberg 90 91]
— Pragmatic view : Break RG invariance + estimate error
[Entem, Machleidt 03] [Epelbaum, Gléckle, Meissner 05]

— Canonical view : Modify power counting and adapt Many-body methods

[Kaplan, Savage, Wise 96] [Nogga, Timmermans, van Kolck 05]
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Motivations for interaction based on EFTs @

> Degrees of Freedom

The quantum field theory

generated by the most general e Nucleons
Lagrangian with some assumed e Pions
symmetries will produce the most O s

general S matrix incorporating
quantum mechanics, Lorentz
invariance, unitarity, cluster

> Symmetries

e Space-time

decomposition and the assumed O Imiaoe
Symmetries. [sweinberg 79] > LECs — Fit to data
Advantages

e Direct connection to underlying theory
e Hierarchy of terms in potential — Power counting rules
e Same framework for all A-body interactions

e Estimations of uncertainty and range of validity
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How to make an EFT well-defined @

Regularization procedure needed
— Regulator = modify high-energy physics

— Introduce an arbitrary cut-off scale A

EFT + Regulator = Well-defined theory

Matching procedure
— Compute observables O (c;(A), A) at a given order
— Fit LECs to experimental data or to the underlying theory
— High-energy physics taken into account in ¢;(A)

Renormalization features
e High-energy physics fully included in LECs

e Independence of the observables from the regularization
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EFTs for nuclear systems a

e Low energy observables in nuclear systems : Q < m,

Degrees of freedom : non-relativistic nucleons (4 photons, ...)

=2
—  Lyerr = N'(i0o + %)N + Go(NTN)? + Do(NTN)® + ...
N

o If @~ m, : D.o.F Nucleons + pions ( + delta + ...)

= Lyerr

Truncation scheme

— What diagrams to compute for /' order ?
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Expansion of observables a

Separation of scale

— Low energy observable Q
— Breakdown scale M
Q

Expansion of observables O o (m)N

What diagram gives a contribution of this order 7

Start with a guess on LECs size then do power counting

Consistency check

e Convergent observables in negative power of A
— Observable L higher energy scale (except through LECs)

e Convergence of observable to experiment when /\/ increases

— Fail ? Try another guess on LECs
— No consistent power counting works ? might be wrong D.o.F
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fEFT for Nuclear systems @

e Guess on LECs size — Proposed power counting for f EFT

[Van Kolck 97] [Kaplan, Savage, Wise 98] [Bedaque, Hammer, van Kolck 98 99] ...

2-body 3-body 4-body

LO X * X Un-natural scattering length a
U
NLO X ?

N2LO X * ?

e Consistency check : LO A=4,6, 16 & NLOuptoA=3

[Contessi, Lovato, Pederiva, Roggero, Kirsher, van Kolck 17] [Vanasse et al. 13][Kénig et al. 16]

Need to extend consistency check to general A-body observables !

This is where ab initio many-body methods enter the game
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