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Motivations

• Great progress of ab initio calculations in nuclei and nuclear matter

• Chiral interactions and SRG play a crucial role
→ Soft → improved convergence of many-body expansions
→ QCD rooted + systematic
→ Estimation of its theoretical error

• However in practice, RG invariance not fulfilled
→ Additional complications in many-body systems
→ Cutoff dependence of observables

Long term : develop many-body schemes fulfilling EFT requirements

Short term : avoiding cutoff dependence of observables
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Interface EFT interaction / Many-body methods

• Traditional view : Vint as black box

• Adapt many-body scheme to assess proposed power counting
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Modelisation of neutron matter

. Interaction lagrangian

L = N†
(

i∂0 +
~∇2

2M

)
N + C0(Λ)N†N†NN

. Cutoff regularisation

V (k, k ′; Λ) = C0(Λ) vΛ(k)vΛ(k ′) Generic

= C0(Λ) exp− k2

Λ2 exp−
k ′2

Λ2 Gaussian

. Matching C0(Λ) to the scattering lenght a0 = −18.9 fm

. Many-body schemes considered

• Hartree-Fock (HF)

• Particle-particle/hole-hole resummation ladder

}
Analytically & numerically

• Self Consistent Green’s Function (SCGF)
}
Only numerically
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Importance of renormalisation consistency
Hartree-Fock : (expanded in 2

√
2kF
Λ for convenience)

EHF

A (Λ; kF ) = k2F
2m

3
5 −

mC0(Λ)
(2π)2 8kF

 1
12 + O

(2
√
2kF
Λ

)2


Ladder pp/hh resummation :

ELd

A (Λ; kF ) = k2F
2m

3
5 −

48
π

∫ 1

0
ds s2

∫ √1−s2

0
dκ κ arctan

 kF I kF
Λ

(s, κ)
4π

mC0(Λ) + kF
π R̃ kF

Λ
(s, κ)



C0(Λ) matched at first order to a0

C0(Λ) = 4π
M a0

C0(Λ) exactly matched to a0

C0(Λ) = 4π
M

1
1
a0 −

Λ√
2π
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Assessing convergence of many-body observables
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Ladder calculations
How to know if convergence is reached ?

Ideal case :
Analytically proven convergence

lim
Λ→∞

E Ld

A (Λ; kF ) = EDR

A (kF ) 6= EFG

A (kF )

Real world case :
Slight (e.g. numerical) error on resummation

lim
Λ→∞

E Ld
app

A (Λ; kF ) = EFG

A (kF )

Numerical approximation
should be treated with care

What about self-consistent calculations ?
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General aspects of SCGF

• State-of-the-art SCGF code for nuclear matter

• Dyson equation to be
solved self-consistently

G = G0 + G0ΣIG

= + ΣI

• Ladder ansatz for the self-energy

ΣI = + + + . . .

SCHF 2ndBorn . . . Ladder
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Numerical results

• Good reproduction of HF

• Discrepancy at ladder level
→ Not adapted code

• Small effects from
self-consistency

○ ○ ○ ○ ○ ○ ○

△ △ △ △ △ △ △
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• Good precision on counter-terms cancellation

• Large range of cutoff variation

 Numerically
demanding
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Summary and perspectives

. Summary

• Many-body methods → Consistent with renormalization scheme

• Consistent approaches → Validity of power counting ?
• Analytical/numerical analysis

→ Many-body approximations can lead to cutoff-independent observables
→ Better understanding of the apparent failure of Ladder approximation
→ On-going control of critical numerical errors

. Perspectives
• Extend resummation while keeping observables ⊥⊥ regularisation

→ Does this will bring important modifications of observables ?

• Possible to find further truncation scheme ?

• Extend study to symmetric matter/NLOs

• What about error estimations ?
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Thank you !

Advisor : V. Somá

Co-advisor : T. Duguet
Collaborators : U. Van Kolck, M. Pavon Valderrama

J. Yang
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General perturbation theory

Choose a split of the hamiltonian H ≡ H0 + V and consider (un)correlated
states, related by the Lippmann-Schwinger equation

H0|φ〉 ≡ E |φ〉
H|ψ〉 ≡ E |ψ〉
V |ψ〉 ≡ T |φ〉

=⇒
|ψ〉 = |φ〉+ 1

E − H0
V |ψ〉

T = V + 1
E − H0

T

Thus we get the perturbation expansion

T = V + V 1
E − H0

V + V 1
E − H0

V 1
E − H0

V + . . .

Main features
→ Choice of H0 ∼ From what state to start the expansion
→ Order of expansion
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Perturbation expansion

. Time-dependent perturbation expansion of one-body propagator

iGαβ(t, t ′) =
+∞∑
m=0

(−i)m

m!

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2 ...

∫ +∞

−∞
dtm

〈ΦN
0 |T

[
V (t1)V (t2)...V (tm)aα(t)a†β(t ′)

]
|ΦN

0 〉

. Wick theorem → express G in terms of

iG0
αβ(t, t ′) ≡

〈ΦN
0 |T [aα(t)a†β(t ′)]|ΦN

0 〉
〈ΦN

0 |ΦN
0 〉

iG0
αβ(ω) = δαaδβb

ω − ea + iε + δαiδβj
ω − ei − iε

where ea and ei are single particle/hole energies
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Observables from Green’s function

. One-body observables (generalisable to n-body)

〈ΨN
0 |O|ΨN

0 〉
〈ΨN

0 |ΨN
0 〉

=
∑
αβ

Oαβ
〈ΨN

0 |a†αaβ |ΨN
0 〉

〈ΨN
0 |ΨN

0 〉

=
∑
αβ

∫
C↑

dω
2πi OαβGβα(ω)

. Particular case : total energy by GMK sum rules (2-body interactions)

E
A = 1

2
∑
αβ

∫
C↑

dω
2πi (tαβ + ωδαβ)Gβα(ω)

whith T =
∑
αβ tαβa†αaβ the kinetic energy
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In-medium propagator

• Unperturbed propagator

iG0
αβ(t, t ′) ≡

〈Φ0|T [aα(t)a†β(t ′)]|Φ0〉
〈Φ0|Φ0〉

• Particle/hole representation

iG0
αβ(p, ω) = δαβ

[
θ(p − kf )
ω − Ep + iε + θ(kf − p)

ω − Ep − iε

]
• Rewrite it in vacuum/in-medium representation

iG0
αβ(p, ω) = δαβ

[
1

ω − Ep + iε + 2iπδ(ω − Ep)θ(kf − p)
]
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Analytical benchmarks

• Hartree-Fock (Erf functions expanded for Λ� kf )

EHF

A (Λ; kf ) = k2
f

2m

{
3
5 −

mC0(Λ)
(2π)2 8kf

[
1
12 + O

((
2
√
2kf

Λ

)2
)]}

• 2nd Born approximation

E 2B

A (Λ; kf ) = 3
5

k2
f

2m −
6C0(Λ)k3

f
π2

∫ 1

0
ds s2

∫ √1−s2

0
dκ κ I0(s, κ) v 2

Λ(2κ kf )

×
[
1− mC0(Λ)

(2π)2 kf R̃ kf
Λ

(s, κ)
]

• Ladder pp/hh resummation with cutoff regularisation

E Ld

A (Λ; kf ) = k2
f

2m

{
3
5 −

48
π

∫ 1

0
ds s2

∫ √1−s2

0
dκ κ arctan

(
kf I kf

Λ
(s, κ)

4π
mC0(Λ) + kf

π
R̃ kf

Λ
(s, κ)

)}
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Analytical convergences

• Hartree-Fock
EHF

A (Λ; kf )→ 3
5

k2
f

2m = EFG

A (kf )

• 2nd Born approximation

E 2B

A (Λ; kf )→ EFG

A (kf )

• Ladder pp/hh resummation with cutoff regularisation

E Ld

A (Λ; kf )→ k2
f

2m

{
3
5 −

48
π

∫ 1

0
ds s2

∫ √1−s2

0
dκ κ arctan

(
kf I0(s, κ)

− 1
a0

+ kf
π

R0(s, κ)

)}

6= EFG

A (kf )
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Dyson’s equation

. Define self-energy from equation of motion of G (2-body interactions)(
i∂t′

1
+ ∇

′2
1

2m

)
G(1, 1′) = δ(1, 1′)− i

∫
dr2 V (r1 − r2)G2(1, r2, t1; 1′, r2, t+

1 )∫
C

d3 Σ(1, 3)G(3, 1′) ≡ −i
∫

dr2 V (r1 − r2)G2(1, r2, t1; 1′, r2, t+
1 )

. Hence the Dyson’s equation

Gαβ(ω) = G0
αβ(ω) +

∑
γδ

G0
αγ(ω)ΣI

γδ(ω)G0
δβ(ω) + . . .

Gαβ(ω) = G0
αβ(ω) +

∑
γδ

G0
αγ(ω)ΣI

γδ(ω)Gδβ(ω)

where ΣI is the irreducible self-energy.
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Implementation of self-consistent ladder calculations
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Brief history of nuclear interactions

• 1935 : Yukawa potential
→ Birth of Meson Theory

• 40s -50s : Pions Theories
→ Troubles with multi-pions,

anti-nucleons diagrams, . . .

• 60s -00s : One-Boson-Exchange
Model (ρ, σ, ω, . . . )
→ Good data fitting
→ But no systematic


No renormalization group invariance

• 90s - today : EFT based interactions [S.Weinberg 90 91]

→ Pragmatic view : Break RG invariance + estimate error
[Entem, Machleidt 03] [Epelbaum, Glöckle, Meissner 05]

→ Canonical view : Modify power counting and adapt Many-body methods
[Kaplan, Savage, Wise 96] [Nogga, Timmermans, van Kolck 05]
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Motivations for interaction based on EFTs

Folk Theorem

The quantum field theory
generated by the most general
Lagrangian with some assumed
symmetries will produce the most
general S matrix incorporating
quantum mechanics, Lorentz
invariance, unitarity, cluster
decomposition and the assumed
symmetries. [S.Weinberg 79]

Inputs
. Degrees of Freedom

• Nucleons
• Pions
• ...

. Symmetries
• Space-time
• Internal

. LECs → Fit to data

Advantages
• Direct connection to underlying theory
• Hierarchy of terms in potential → Power counting rules
• Same framework for all A-body interactions
• Estimations of uncertainty and range of validity
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How to make an EFT well-defined

Regularization procedure needed
→ Regulator = modify high-energy physics
→ Introduce an arbitrary cut-off scale Λ

EFT + Regulator ≡ Well-defined theory

Matching procedure
→ Compute observables O (ci (Λ),Λ) at a given order N
→ Fit LECs to experimental data or to the underlying theory
→ High-energy physics taken into account in ci (Λ)

Renormalization features
• High-energy physics fully included in LECs
• Independence of the observables from the regularization
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EFTs for nuclear systems

• Low energy observables in nuclear systems : Q � mπ

Degrees of freedom : non-relativistic nucleons (+ photons, ...)

→ L/πEFT = N†(i∂0 +
~∇2

2mN
)N + C0(N†N)2 + D0(N†N)3 + . . .

• If Q ∼ mπ : D.o.F Nucleons + pions ( + delta + . . . )

→ LχEFT

Truncation scheme

→ What diagrams to compute for Nth order ?

Mehdi Drissi RG invariance of many-body observables 27/14
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Expansion of observables

• Separation of scale
→ Low energy observable Q
→ Breakdown scale M

• Expansion of observables ON ∝
( Q

M
)N

• What diagram gives a contribution of this order ?

• Start with a guess on LECs size then do power counting

Consistency check

• Convergent observables in negative power of Λ
→ Observable ⊥⊥ higher energy scale (except through LECs)

• Convergence of observable to experiment when N increases
→ Fail ? Try another guess on LECs
→ No consistent power counting works ? might be wrong D.o.F
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/πEFT for Nuclear systems

• Guess on LECs size → Proposed power counting for /πEFT
[Van Kolck 97] [Kaplan, Savage, Wise 98] [Bedaque, Hammer, van Kolck 98 99] . . .

2-body 3-body 4-body

LO x

NLO x ?

N2LO x ?

Un-natural scattering length a

⇓

+ + . . . at LO

• Consistency check : LO A = 4, 6, 16 & NLO up to A = 3
[Contessi, Lovato, Pederiva, Roggero, Kirsher, van Kolck 17] [Vanasse et al. 13][König et al. 16]

Need to extend consistency check to general A-body observables !
This is where ab initio many-body methods enter the game
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