Current Status of the ∆-full Chiral Nuclear Forces

A. M. Gasparyan, Ruhr-Universität Bochum

in collaboration with

H. Krebs and E. Epelbaum

February 27, 2018, TRIUMF

- ➔Introduction&Motivation
- →2-N forces with explicit Δ
- → 3-N forces with explicit Δ (2- π -exchange topology)
- → Summary and Outlook

Standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta} - m_N = 293 \text{MeV}$

- → Standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta} m_N = 293 \text{MeV}$
- -> Small scale expansion: $\epsilon \sim M_\pi \sim \Delta \ll \Lambda_\chi$ Hemmert, Holstein, Kambor '98

- → Standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta} m_N = 293 \text{MeV}$
- -> Small scale expansion: $\epsilon \sim M_\pi \sim \Delta \ll \Lambda_\chi$ Hemmert, Holstein, Kambor '98
- → ∆ gives a large contribution to LECs (c_i) via resonance saturation Bernard, Kaiser, Meißner '97

$h_A \approx 1.34$ large!

Δ -resonance saturation of the πN LECs

Krebs, AG, Epelbaum, to appear soon

$$c_{1}(\Delta) = 0, \quad c_{2}(\Delta) = \frac{4h_{A}^{2}}{9\Delta}, \quad c_{3}(\Delta) = -\frac{4h_{A}^{2}}{9\Delta}, \quad c_{4}(\Delta) = \frac{2h_{A}^{2}}{9\Delta}$$
$$d_{1}(\Delta) + d_{2}(\Delta) = \frac{h_{A}^{2}}{9\Delta^{2}}, \quad d_{3}(\Delta) = -\frac{h_{A}^{2}}{9\Delta^{2}}, \quad d_{14}(\Delta) - d_{15}(\Delta) = -\frac{2h_{A}^{2}}{9\Delta^{2}},$$

 $\bar{e}_{18}(\Delta) = \frac{h_A^2}{36\,\Delta^3} + \frac{h_A^2}{839808\,F_\pi^2\,\pi^2\,\Delta} \left(2025\,g_A^2 + 3456\,h_A^2 - 450\,g_A\,g_1 + 425\,g_1^2\right)$

Δ -resonance saturation of the πN LECs

Krebs, AG, Epelbaum, to appear soon

$$c_1(\Delta) = 0, \quad c_2(\Delta) = \frac{4h_A^2}{9\Delta}, \quad c_3(\Delta) = -\frac{4h_A^2}{9\Delta}, \quad c_4(\Delta) = \frac{2h_A^2}{9\Delta}$$

$$d_1(\Delta) + d_2(\Delta) = \frac{h_A^2}{9\,\Delta^2}, \quad d_3(\Delta) = -\frac{h_A^2}{9\,\Delta^2}, \quad d_{14}(\Delta) - d_{15}(\Delta) = -\frac{2\,h_A^2}{9\,\Delta^2},$$

 $\bar{e}_{18}(\Delta) = \frac{h_A^2}{36\,\Delta^3} + \frac{h_A^2}{839808\,F_\pi^2\,\pi^2\,\Delta} \left(2025\,g_A^2 + 3456\,h_A^2 - 450\,g_A\,g_1 + 425\,g_1^2\right)$

Fits to KH PWA, Koch' 86

	c_1	c_2	c_3	c_4	$\bar{d}_1 + \bar{d}_2$	\bar{d}_3	\bar{d}_5	$\bar{d}_{14} - \bar{d}_{15}$	\bar{e}_{14}	\bar{e}_{15}	\bar{e}_{16}	\bar{e}_{17}	\bar{e}_{18}
Q^4 , KH PWA	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-10.41	6.08	-0.37	3.26
$\epsilon^3 + Q^4$, KH PWA	-0.85	0.44	-1.91	1.49	2.07	-2.45	0.66	-3.86	-0.12	-7.05	3.39	-0.38	2.85
$\Delta\text{-resonance}$ saturation contribution	0	2.81	-2.81	1.40	2.39	-2.39	0	-4.77	1.87	-4.15	4.15	-0.17	1.32
level of Δ -resonance saturation, %	0	81	59	42	39	35	0	40	123	40	68	46	41

Δ -resonance saturation of the πN LECs

Krebs, AG, Epelbaum, to appear soon

$$c_1(\Delta) = 0, \quad c_2(\Delta) = \frac{4h_A^2}{9\Delta}, \quad c_3(\Delta) = -\frac{4h_A^2}{9\Delta}, \quad c_4(\Delta) = \frac{2h_A^2}{9\Delta}$$

$$d_1(\Delta) + d_2(\Delta) = \frac{h_A^2}{9\,\Delta^2}, \quad d_3(\Delta) = -\frac{h_A^2}{9\,\Delta^2}, \quad d_{14}(\Delta) - d_{15}(\Delta) = -\frac{2\,h_A^2}{9\,\Delta^2},$$

 $\bar{e}_{18}(\Delta) = \frac{h_A^2}{36\,\Delta^3} + \frac{h_A^2}{839808\,F_\pi^2\,\pi^2\,\Delta} \left(2025\,g_A^2 + 3456\,h_A^2 - 450\,g_A\,g_1 + 425\,g_1^2\right)$

Fits to KH PWA, Koch' 86

	c_1	c_2	c_3	c_4	$\bar{d}_1 + \bar{d}_2$	\bar{d}_3	\bar{d}_5	$\bar{d}_{14} - \bar{d}_{15}$	\bar{e}_{14}	\bar{e}_{15}	\bar{e}_{16}	\bar{e}_{17}	\bar{e}_{18}
Q^4 , KH PWA	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-10.41	6.08	-0.37	3.26
$\epsilon^3 + Q^4$, KH PWA	-0.85	0.44	-1.91	1.49	2.07	-2.45	0.66	-3.86	-0.12	-7.05	3.39	-0.38	2.85
$\Delta\text{-resonance}$ saturation contribution	0	2.81	-2.81	1.40	2.39	-2.39	0	-4.77	1.87	-4.15	4.15	-0.17	1.32
level of Δ -resonance saturation, %	0	81	59	42	39	35	0	40	123	40	68	46	41

N³LO 2N-forces with explicit Δ

- Only 2-pion-exchange contribution are considered (the long range part)
- $\rightarrow 1/m_{_{N}}$ corrections to NLO diagrams are included
- → Results for peripheral phases, no refitting of LEC's
- → No additional parameters, h_A and g_1 ($\pi N\Delta$ and $\pi\Delta\Delta$) are extracted from the fit to πN scattering
- → Sensitivity to the choice of c_i is studied

LECs from fit to KH PWA

Bands:0.5 GeV<cut off<1.5 GeV

LECs from fit to KH PWA

Bands:0.5 GeV<cut off<1.5 GeV

Comparable discription of the data in Δ-less and Δ-full case at N⁴LO

LECs from fit to KH PWA

LO
NLO
N²LO
N³LO
N⁴LO

LECs from fit to KH PWA

Comparable description of the data in Δ -less and Δ -full case at N⁴LO

----- N²LO ----- N³LO ----- N⁴LO

LECs from fit to KH PWA

Comparable description of the data in Δ-less and Δ-full case at N⁴LO

> Convergence of chiral expansion is slightly better in Δ -full case

H and I waves

LECs from fit to KH PWA

H and I waves

 Δ -less

∆-full

LECs from Roy-Steiner Equation (subthreshold expansion)

∆-full

Siemens et al. '17

LECs from Roy-Steiner Equation

- - - NLO - - NLO ---- N²LO ---- N³LO ---- N⁴LO

H and I waves

LECs from Roy-Steiner Equation

F-waves: Impact of using different LECs

F-waves: Impact of using different LECs

F-waves: Impact of using different LECs

3NF topologies

exchange

exchange

r ir i

3NF topologies

➔ Only the longest-range part considered (coordinate space)

- ➔ Scheme independent
- ➔ No unknown parameters

2– π –exchange diagrams for 3NF at N3LO (ϵ^3) (Δ -contributions)

Most general structure of a local 3NF

Epelbaum, AG, Krebs, Schat '15

Up to N⁴LO all considered contributions are local

Constraints:

- → Locality
- → Isospin symmetry
- Parity and time-reversal invariance

Most general structure of a local 3NF

Epelbaum, AG, Krebs, Schat '15

Up to N⁴LO all considered contributions are local

Constraints:

- → Locality
- → Isospin symmetry
- Parity and time-reversal invariance

 $\qquad \qquad \blacktriangleright V_{3N}^{\text{full}} = \sum_{i=1}^{20} \tilde{\mathcal{G}}_i \mathcal{F}_i(r_{12}, r_{23}, r_{31}) + 5 \text{ permutations}$

Krebs, AG, Epelbaum, to appear soon

Krebs, AG, Epelbaum, to appear soon

 \rightarrow Δ -saturation at "short" distances (1-1.5 fm): F_6 , F_{16} , F_{18} , F_{19} , F_{20}

Krebs, AG, Epelbaum, to appear soon

→ Δ -saturation at "short" distances (1-1.5 fm): F_6 , F_{16} , F_{18} , F_{19} , F_{20} → Δ -saturation at large distances (2.5-3.0 fm): all F_1

Krebs, AG, Epelbaum, to appear soon

- \rightarrow Δ -saturation at "short" distances (1-1.5 fm): F_6 , F_{16} , F_{18} , F_{19} , F_{20}
- \rightarrow Δ -saturation at large distances (2.5-3.0 fm): all F_i
- ➔ Convergence of chiral expansion at large distances

Summary

- → Current results for ∆-full chiral 2-nucleon and 3-nucleon forces at N³LO (N⁴LO) are presented
- → 2-nucleon forces (peripheral phases): description of the data is comparable to the Δ-less case, convergence pattern is better, dependence on the choice of LECs is weaker
- → 3-nucleon forces: at large distances resonance Δ -saturation works, chiral expansion seems to converge

Outlook

- **\rightarrow** Fitting short-range part of Δ -full chiral 2N forces to data.
- → Calculating shorter-range Δ -full 3N forces.