

Canada's national laboratory for particle and nuclear physics and accelerator-based science

SRG Evolution of One-, Two- and Three-body Operators

Peter Gysbers^{1,2} P. Navrátil² & S. Quaglioni³ ¹University of British Columbia, ²TRIUMF, ³LLNL Feb 28, 2018

Want to solve the eigenvalue problem:

$$H \ket{\Psi_k} = E_k \ket{\Psi_k}$$
, where $H = \sum_i^A T_i + \sum_{i < j} V_{ij} + \sum_{i < j < f} V_{ijf} + \cdots$

Expand in anti-symmetrized products of harmonic oscillator single-particle states

$$\ket{\Psi_k} = \sum_{\textit{N}=0}^{\textit{N}_{max}} \sum_j c^k_{\textit{N}j} \ket{\Phi_{\textit{N}j}}$$

Calculations should converge to the exact value as $N_{max} \rightarrow \infty$ Problem: the size of the model space increases rapidly with particle number

The SRG method uses a unitary transformation to decouple high and low momentum physics allowing faster convergence of calculations

$$H_{\alpha} = U_{\alpha}HU_{\alpha}^{\dagger}$$

 $\frac{\mathrm{d}H_{\alpha}}{\mathrm{d}\alpha} = [[T, H_{\alpha}], H_{\alpha}] \text{ where } H_{\alpha=0} = H$

Note: SRG transformations introduce higher-body terms in the Hamiltonian

$$U_{\alpha}HU_{\alpha}^{\dagger}=H_{\alpha}^{(1)}+H_{\alpha}^{(2)}+H_{\alpha}^{(3)}+\ldots$$

$$H \ket{\Psi_k} = E_k \ket{\Psi_k} \rightarrow H_\alpha \ket{\Psi_{k,\alpha}} = E_k \ket{\Psi_{k,\alpha}}$$

General operators must also be transformed:

$$egin{aligned} egin{aligned} \left\langle \Psi_{f}
ight| \left. \hat{O} \left| \Psi_{i}
ight
angle &= \left\langle \Psi_{f,lpha}
ight| \left. \hat{O}_{lpha} \left| \Psi_{i,lpha}
ight
angle \end{aligned}$$
 where $\hat{O}_{lpha} = U_{lpha} \hat{O} U_{lpha}^{\dagger}$
 $U_{lpha} &= \sum_{k} \left| \Psi_{k,lpha}
ight
angle \left\langle \Psi_{k}
ight|$

Implementation in two-body relative coordinates:

For $|\Psi_k\rangle = |kJ^{\pi}TT_z\rangle$, U_{α} is constructed in blocks: $U_{\alpha}^{J^{\pi}TT_z}$ Non-scalar operators may connect states with different quantum numbers:

$$\langle k'J'^{\pi'}T'T'_{z}||\hat{O}^{(K)}||kJ^{\pi}TT_{z}\rangle = \langle k'J'^{\pi'}T'T'_{z},\alpha||U_{\alpha}^{J'^{\pi'}T'T'_{z}}\hat{O}^{(K)}U_{\alpha}^{\dagger J^{\pi}TT_{z}}||kJ^{\pi}TT_{z},\alpha\rangle$$

 H_{α} , O_{α} : 2-body part determined in A=2 system

PHYSICAL REVIEW C 67, 055206 (2003)

Parameter-free effective field theory calculation for the solar proton-fusion and hep processes

T.-S. Park,^{1,2,3} L. E. Marcucci,^{4,5} R. Schiavilla,^{6,7} M. Viviani,^{5,4} A. Kievsky,^{5,4} S. Rosati,^{5,4} K. Kubodera,^{1,2} D.-P. Min,⁸ and M. Rho^{1,9}

• 1-body: Gamow-Teller (GT)

$$\mathbf{A}_{l} = -g_{A}\boldsymbol{\tau}_{l}^{-}e^{-i\boldsymbol{q}\cdot\boldsymbol{r}_{l}}\left[\boldsymbol{\sigma}_{l} + \frac{2(\boldsymbol{\bar{p}}_{l}\boldsymbol{\sigma}_{l}\cdot\boldsymbol{\bar{p}}_{l}-\boldsymbol{\sigma}_{l}\boldsymbol{\bar{p}}_{l}^{2}) + i\boldsymbol{q}\times\boldsymbol{\bar{p}}_{l}}{4m_{N}^{2}}\right]$$

• 2-body: Axial Meson Exchange Current (MEC)

$$A_{12} = \frac{g_A}{2m_N f_\pi^2} \frac{1}{m_\pi^2 + k^2} \bigg[-\frac{i}{2} \tau_{\times} \boldsymbol{p} (\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2) \cdot \boldsymbol{k} \\ + 4\hat{c}_3 \boldsymbol{k} \boldsymbol{k} \cdot (\tau_1^- \boldsymbol{\sigma}_1 + \tau_2^- \boldsymbol{\sigma}_2) + \left(\hat{c}_4 + \frac{1}{4}\right) \tau_{\times}^- \boldsymbol{k} \times [\boldsymbol{\sigma}_{\times} \times \boldsymbol{k}] \bigg] \\ + \frac{g_A}{m_N f_\pi^2} [2\hat{d}_1 (\tau_1^- \boldsymbol{\sigma}_1 + \tau_2^- \boldsymbol{\sigma}_2) + \hat{d}_2 \tau_{\times}^{\mu} \boldsymbol{\sigma}_{\times}], \qquad (19)$$

Results: β -decay ³H \rightarrow ³He

$$\hat{O} = GT^{(1)} \rightarrow \hat{O}_{lpha} = GT^{(1)} + GT^{(2)}_{lpha} + \dots$$

Operator:

 $\begin{array}{l} \mathsf{Gamow-Teller (1-body)} \\ \langle \mathsf{GT}_{\alpha}^{(2)} \rangle_{\mathcal{A}=2} = \langle (\mathsf{GT}^{(1)})_{\alpha} \rangle_{\mathcal{A}=2} - \langle \mathsf{GT}^{(1)} \rangle_{\mathcal{A}=2} \end{array}$

Potential: "N⁴LO NN"

 chiral NN @ N⁴LO, Machleidt PRC96 (2017), 500MeV cutoff

$$\hat{O} = GT^{(1)} + MEC^{(2)} \rightarrow \hat{O}_{\alpha} = GT^{(1)} + GT^{(2)}_{\alpha} + MEC^{(2)}_{\alpha} + \dots$$

Operator:

Gamow-Teller (1-body) + chiral meson exchange current (2-body) Park (2003)

Potential: "N⁴LO NN"

- chiral NN @ N⁴LO, Machleidt PRC96 (2017), 500MeV cutoff
- LEC $c_D = -1.8$ determined

- Does inclusion of the MEC explain g_A quenching?
- The effect of the inclusion is greater in heavier nuclei
- SRG evolved matrix elements used in coupled-cluster and IM-SRG methods (up to Sn¹⁰⁰)

Summer 2017 at Lawrence Livermore National Laboratory - with S. Quaglioni

- Added functionality for evolving operators in 3-body space
- 2-body operators must be embedded into antisymmetric 3-body basis
- 2-body 0uetaeta matrix elements & 3-body GTimesMEC product terms
 - produced by J. Engel (UNC)

 H_{α} , O_{α} :

- 2-body part determined in A=2 system
- 3-body part determined in A=3 system

^{• • • •}

- Operators must be SRG evolved to converge to the correct result
- A method was developed for arbitrary operators
- So far implemented: GT, axial MEC, $0\nu\beta\beta$, radius, E2
- Results for β -decay strengths: ³H \rightarrow ³He, ⁶He \rightarrow ⁶Li and other nuclei
- ${}^{3}H \rightarrow {}^{3}He$ used to determine the low-energy constant c_{D} in chiral MEC

• To do:

- Benchmark $0
 u\beta\beta$ matrix elements
- Implement electromagnetic operators (M1, E1)
- Analyze 3-body vs. 2-body evolution
- so far: SRG induced 3-body contributions are not significant in GT+MEC