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Novel efficient interface for 
NN and 3N interactions 
in a non-partial-wave basis

• First application to nuclear 
matter plus first fits of 3N 
couplings to nuclear matter

• applications to other systems 
and frameworks?
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Contributions of many-body forces at N3LO in neutron matter
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                    NN         3N           4N

• first calculations of N3LO 3NF and 4NF

contributions to EOS of neutron matter

• found large contributions in Hartree Fock appr.,

comparable to size of N2LO contributions
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FIG. 6. (Color online) Contributions from 3N forces in the Hartree-Fock approximation at N2LO plus N3LO (first three panels)
in comparison with the 3N contribution in a N2LO calculation (fourth panel). The first panel shows the N2LO 3N contribution
in the N3LO calculation, using the N3LO values of the ci couplings, and the second panel gives the N3LO 3N contribution.
The third panel shows the total 3N contribution at N3LO (the sum of the first two panels). This is compared in the fourth
panel to the 3N contribution at N2LO, using the ci values recommended for an N2LO calculation (see Table II). For the EGM
potentials the total 3N contribution at N3LO differs by less than 1MeV compared to the N2LO results. However, for the EM
potential, the result changes by almost 3MeV. All bands include the ci range from Table II and the 3N cutoff variation.

Fock level to the 3N contribution at N2LO (fourth panel),
which uses the c

i

values recommended for an N2LO cal-
culation (see Table II). For the EGM potentials the total
3N contribution changes by less than 1MeV going from
N2LO to N3LO. Because the N3LO 3N contribution is
small for the EM potential, this results in a difference of
about 3MeV when going from N2LO to N3LO for the
EM case, due to the modified c

i

couplings at N3LO.
Only three N3LO 4N topologies give nonvanishing

contributions to neutron matter. We show their re-
sults in Fig. 5. The two three-pion-exchange diagrams
V a and V e are attractive with energies of �0.16MeV
and �0.25MeV per particle at saturation density. The
pion-pion-interaction 4N forces (V f ) are repulsive with
0.22MeV per particle at n0. The latter two diagrams al-
most cancel each other, such that the total contribution
of the leading 4N forces is about �0.18MeV per particle
at n0. However, also for the 4N forces additional larger
contributions from � excitations may arise at N4LO [44].

At the Hartree-Fock level, the 3N/4N contributions
change by less than 5% if the cutoff is taken to infinity
(i.e., f

R

= 1). However, since we also include N2LO 3N
forces beyond Hartree Fock, a consistent regulator is re-
quired. Finally, we compare our 4N results with those of
Refs. [44, 47], which considered only the 4N interactions
V e and V f and found their sum to be about �11 keV per
particle at n0. This is in agreement with our results, if
we take f

R

= 1 as in Refs. [44, 47].

C. Complete calculation at N3LO

The complete N3LO result for neutron matter is shown
in Fig. 7, which includes all many-body interactions to
N3LO [3]. For all shown potentials the uncertainties in

the c
i

couplings dominate the width of the bands (com-
pare to the bands in the upper row of Fig. 4).

At saturation density, we obtain for the energy per
particle

E

N
(n0) = 14.1� 21.0MeV . (17)

This range is based on different NN potentials, a variation
of the couplings c1 = �(0.75 � 1.13)GeV�1 and c3 =
�(4.77�5.51)GeV�1, and on the 3N/4N-cutoff variation
⇤ = 2 � 2.5 fm�1. In addition, the uncertainty in the
many-body calculation is included, as discussed above.

As shown in Fig. 7, our results are consistent with pre-
vious calculations based on RG-evolved NN interactions
at N3LO and 3N interactions at N2LO [4]. These calcu-
lations adopted a conservative c

i

range but are based on
the EM 500 MeV NN potential only, which results in a
narrower band compared to the N3LO band. In Ref. [3],
we compared our results to calculations based on lattice
EFT [22] and quantum Monte Carlo at low densities [48],
as well as to variational methods [49] and auxiliary field
diffusion Monte Carlo [50] based on phenomenological
NN and 3N potentials, and found that they are also con-
sistent with the N3LO band. However, the latter calcu-
lations do not provide theoretical uncertainties.

In Fig. 8 we compare the convergence from N2LO to
N3LO in the same calculational setup. For this compar-
ison, we consider only the EGM potentials with cutoffs
450/500 and 450/700 MeV, since no EM N2LO poten-
tial is available. This leads to an N3LO energy range of
14.1 � 18.4MeV per particle at n0. For the N2LO band
in Fig. 8, we have estimated the theoretical uncertainties
in the same way and found an energy of 15.5� 21.4MeV
per particle at n0. The two bands overlap but the range
of the band is reduced only by a factor of 2/3, which is

Krüger, Tews, KH, Schwenk, 
PRC 88, 025802 (2013)
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• found large contributions in Hartree Fock appr.,

comparable to size of N2LO contributions

• 4NF contributions small
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FIG. 2. (Color online) Energy per particle versus density for all individual N3LO 3N and 4N force contributions to neutron
matter at the Hartree-Fock level. The bands are obtained by varying the 3N/4N cutoff Λ = 2 − 2.5 fm−1. For the two-pion-
exchange–contact and the relativistic-corrections 3N forces, the different bands correspond to the different NN contacts, CT

and CS , determined consistently for the N3LO EM/EGM potentials. The inset diagram illustrates the 3N/4N force topology.

ity of the energy to the single-particle spectrum used.
We find that the energy changes from second to third
order, employing a free or Hartree-Fock spectrum, by
0.8, 0.4, 1.3MeV (1.4, 0.9, 2.7MeV) per particle at n0/2
(n0) for the EGM 450/500, 450/700, EM 500 N3LO po-
tentials, respectively. The results, which include all these
uncertainties, are displayed by the bands in Fig. 1. Un-
derstanding the cutoff dependence and developing im-
proved power counting schemes remain important open
problems in chiral EFT [21]. For the neutron matter en-
ergy at n0, our first complete N3LO calculation yields
14.1 − 21.0MeV per particle. If we were to omit the
results based on the EM 500 N3LO potential, as it con-
verges slowest at n0, the range would be 14.1−18.4MeV.

As we find relatively large contributions from N3LO
3N forces, it is important to study the EFT convergence
from N2LO to N3LO. This is shown in Fig. 3 for the
EGM potentials (N2LO is not available for EM), where
the N3LO results are found to overlap with the N2LO
band across a ±1.5MeV range around 17MeV at satura-
tion density. As expected from the net-attractive N3LO
3N contributions in Fig. 2, the N3LO band yields lower
energies. For the N2LO band, we have estimated the the-
oretical uncertainties in the same way, and the neutron
matter energy ranges from 15.5 − 21.4MeV per particle

at n0. The theoretical uncertainty is reduced from N2LO
to N3LO to 14.1 − 18.4MeV, but not by a factor ∼ 1/3
based on the power counting estimate. This reflects the
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FIG. 3. (Color online) Neutron matter energy per particle as
a function of density at N2LO (upper/blue band that extends
to the dashed line) and N3LO (lower/red band). The bands
are based on the EGM NN potentials and include uncertainty
estimates as in Fig. 1.

Krüger, Tews, KH, Schwenk, 
PRC 88, 025802 (2013)

Power counting in chiral 3N sector:
Contributions of many-body forces at N3LO in neutron matter



KH et al.,
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nonlocal semilocal (coordinate space)
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• size of N3LO contribution not suppressed for shown nonlocal interactions
• N3LO contributions suppressed for semilocal interactions
• technical challenges for semilocal interactions: 
★ forces non-perturbative, large basis spaces/RG evolution needed
★ implementation of 3N forces hard, stability problems for scattering calculations
★ Derivation and implementation of nuclear currents hard Hermann’s talk 
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3NF power counting for different regulators 

Development of improved novel semilocal NN+3N 
interactions regularised in momentum space. 

Reinert et al., 
arXiv:1711.08821

V⇡(p,p
0) ! V⇡(p,p

0)e�(q2+m2
⇡)/⇤

2

Calculation of N2LO 3NFs completed.
Benchmarks and fits in progress!

semilocal (coordinate space)

Hermann’s 
talk 

Thomas Hüther’s 
talk 



Representation of 3N interactions in momentum space
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Representation of 3N interactions in momentum space

|pq�⇥ i � |piqi; [(LS)J(lsi)j]JJz(Tti)T Tz⇥
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Due to the large number of matrix elements, the traditional way of 

computing matrix elements requires extreme amounts of computer resources.

Np ' Nq ' 15

N↵ ' 30� 180
dim[hpq↵|V123|p0q0↵0i] ' 107 � 1010

A ‘new’ algorithm allows efficient calculation.
KH, Krebs, Epelbaum, Golak, Skibinski, PRC 91, 044001(2015)



Calculation of 3N forces in momentum 
partial-wave representation

traditional method:
• reduce dimension of angular integrals from 8 to 5 by using symmetry

• discretize angular integrals and perform all sums numerically

hpq|V123|p0q0i = V123(p� p0,q� q0
)

= V123(p� p0, q � q0, cos ✓)

much more efficient method:
• use that all interaction contributions (except rel. corr.) are local:

       allows to perform all except for 3 integrals analytically

• only a few small discrete internal sums need to be 

performed for each external momentum and angular momentum

hpq↵|V123|p0q0↵0i ⇠
X

mi

Z
dp̂ dq̂ dp̂0 dq̂0Y m

l (p̂)Y m̄
l̄ (q̂) hpqST |V123|p0q0S0T 0iY m0

l0 (p̂0)Y m̄0

l̄0 (q̂0)
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Semi-local regularization of 3NF (coordinate space)
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Computational strategy:
(1) calculate unregularized 3NF in sufficiently large partial-wave basis 
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• Calculation of matrix elements at N2LO completed

• all 3N topologies are calculated and stored separately,
allows to easily adjust values of LECs

• calculated matrix elements of Faddeev components 
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for nuclear matter (and other problems?)

Main code developer:

Christian Drischler

Problem: 
Evaluation of MBPT diagrams beyond second order in perturbation theory

becomes complicated and tedious in partial wave representation.

Present frameworks too inefficient for including matter properties in force fits.
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Novel efficient many-body framework  
for nuclear matter (and other problems?)

Main code developer:

Christian Drischler

Strategy:
Implementation of NN and 3N forces without partial wave decomposition. 

Calculate MBPT diagrams in vector basis

 

using Monte-Carlo techniques. Implementation efficient and very transparent.

Problem: 
Evaluation of MBPT diagrams beyond second order in perturbation theory
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Novel efficient many-body framework  
for nuclear matter (and other problems?)

Status:
Implementation of nonlocal NN plus 3N forces up to N3LO complete. 

Implemented MBPT diagrams up to 4th order for state-of-the-art interactions.

Main code developer:

Christian Drischler

Strategy:
Implementation of NN and 3N forces without partial wave decomposition. 

Calculate MBPT diagrams in vector basis

 

using Monte-Carlo techniques. Implementation efficient and very transparent.

Problem: 
Evaluation of MBPT diagrams beyond second order in perturbation theory

becomes complicated and tedious in partial wave representation.

Present frameworks too inefficient for including matter properties in force fits.

Entem et al. PRC 96, 024004 (2017)
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TABLE I. Contributions to the neutron matter energy due to the diagrams of Fig. 4. Results are given for Fermi momenta kF = 1.3, 1.5,
and 1.7 fm−1 and for different !/!3NF combinations. All energies are in MeV and kF, !/!3NF are in fm−1.

kF !/!3NF Ekin E
(1)
NN E

(1)
3N,full E

(1)
3N,eff E

(2)
1 E

(2)
2 + E

(2)
3 E

(2)
4

1.3 1.8/2.0 21.01 −12.86 0.95 0.94 −0.59 0.01 −0.02
1.3 2.0/2.0 21.01 −12.58 0.95 0.94 −0.78 0.00 −0.02
1.3 2.0/2.5 21.01 −12.58 1.05 1.00 −0.77 −0.01 −0.05
1.3 2.4/2.0 21.01 −12.11 0.95 0.94 −1.10 −0.02 −0.02
1.3 2.8/2.0 21.01 −11.75 0.95 0.94 −1.46 −0.03 −0.02
1.5 1.8/2.0 27.97 −18.62 2.18 2.24 −0.39 0.01 −0.05
1.5 2.0/2.0 27.97 −18.14 2.18 2.24 −0.64 −0.01 −0.05
1.5 2.0/2.5 27.97 −18.14 2.56 2.51 −0.63 −0.04 −0.14
1.5 2.4/2.0 27.97 −17.44 2.18 2.24 −1.16 −0.05 −0.05
1.5 2.8/2.0 27.97 −16.77 2.18 2.24 −1.78 −0.08 −0.05
1.7 1.8/2.0 35.93 −25.50 4.20 4.54 −0.22 0.01 −0.07
1.7 2.0/2.0 35.93 −24.93 4.20 4.54 −0.45 −0.02 −0.08
1.7 2.0/2.5 35.93 −24.93 5.36 5.40 −0.46 −0.06 −0.31
1.7 2.4/2.0 35.93 −23.64 4.20 4.54 −1.11 −0.07 −0.08
1.7 2.8/2.0 35.93 −22.51 4.20 4.54 −2.08 −0.12 −0.09

k = k1 − P/2 determines the argument k̂. As discussed
in Sec. II B, the antisymmetrized two-body interactions in
the first- and second-order terms are given by V (1)

as = (1 −
P12)Vlow k + V 3N/2 and V (2)

as = (1 − P12)Vlow k + V 3N, with
partial waves V

(1)
Sll′J = Vlow k,Sll′J + V 3N,Sll′J /4 and V

(2)
Sll′J =

Vlow k,Sll′J + V 3N,Sll′J /2.
We solve the Dyson equation, Eq. (28), self-consistently by

using the self-energies given by Eqs. (30) and (31). In Fig. 6,
we show the resulting effective mass at the Fermi surface,

m∗(kF)
m

=
(

m

k

dεk

dk

)−1 ∣∣∣∣
k=kF

. (32)

At the Hartree-Fock level, 3N contributions only change the
effective mass marginally. Including second-order contribu-
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FIG. 6. (Color online) Effective mass m∗(kF)/m at the Fermi
surface as a function of Fermi momentum kF in neutron matter.
Results for !/!3NF = 2.0 fm−1 are shown at the Hartree-Fock level,
plus second-order contributions, and based only on NN interactions
for comparison. At second order, the effective mass includes k-mass
and e-mass effects.

tions leads to the typical enhancement of the effective mass at
the Fermi surface, and we find a larger impact of 3N forces for
kF > 1.3 fm−1.

C. Second order: Energy per particle

We include the second-order contributions E
(2)
1 to E

(2)
4 of

Fig. 4, which are given by

E
(2)
NN+3N,eff = 1

4

[
4∏

i=1

Trσi

∫
dki

(2π )3

]
∣∣⟨12|V (2)

as |34⟩
∣∣2

× nk1nk2 (1 − nk3 )(1 − nk4 )
εk1 + εk2 − εk3 − εk4

(2π )3

× δ(k1 + k2 − k3 − k4). (33)

As in the second-order self-energy, the antisymmetrized two-
body interactions, when evaluating contributions beyond the
Hartree-Fock level, are given by V (2)

as = (1 − P12)Vlow k +
V 3N. The second-order calculations are carried out by using the
self-consistent single-particle energies determined by solving
the Dyson equation, Eq. (28), as discussed in Sec. III B, and
the intermediate-state phase-space integrations are performed
fully. By summing over the spins and by expanding in partial
waves, we have [25]

∑

S,MS,M ′
S

∣∣⟨kSMS |V (2)
as |k′SM ′

S⟩
∣∣2

=
∑

L

PL(cos θk,k′)
∑

J,l,l′,S

∑

J̃ ,̃l,̃l′

(4π )2i(l−l′+̃l−l̃′)(−1)l̃+l′+L

× CL0
l0̃l′0C

L0
l′0̃l0

√
(2l + 1)(2l′ + 1)(2̃l + 1)(2̃l′ + 1)

× (2J + 1)(2J̃ + 1)
{

l S J

J̃ L l̃′

} {
J S l′

l̃ L J̃

}

×⟨k|V (2)
Sl′lJ |k′⟩⟨k′|V (2)

Sl̃ ′̃lJ̃
|k⟩[1 − (−1)l+S+1]

× [1 − (−1)l̃+S+1], (34)
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FIG. 3. (Color online) Diagonal momentum-space matrix ele-
ments of the density-dependent two-body interaction V 3N for P = 0
in the spin-triplet P -wave channels. Results with !3NF = 2.0 fm−1

are shown versus relative momentum k for different Fermi momenta
kF = 1.0, 1.2, 1.4, and 1.6 fm−1 (which increase in strength). For
kF = 1.6 fm−1, the dotted lines represent the central parts (degenerate
in J ) of V 3N, whereas the dashed lines include the central plus tensor
interactions [without the cn

a terms in Eqs. (16) and (17)].

spin operators with more complex integral functions that can
depend on P but also on the angle of P with respect to k
and k′. Since V 3N has been derived by using MATHEMATICA
for general particle momenta ki , this is directly possible.
One could then explore angle averaging over P̂ or averaging
over the magnitude of P. However, as will be shown in
Sec. III, the P = 0 approximation is reliable for bulk
properties and neutron matter based on chiral low-momentum
interactions is sufficiently perturbative, which justifies using
the noninteracting density to sum over the third particle.

III. RESULTS

We apply the developed density-dependent two-body inter-
action V 3N to calculate the properties of neutron matter in a
loop expansion around the Hartree-Fock energy. These are the
first results for neutron matter based on chiral EFT interac-
tions including N2LO 3N forces. The many-body calculation
follows the strategy of Refs. [7,8,25], but with significant
improvements for the second-order contributions involving
V 3N and with fully self-consistent single-particle energies.

Ekin

VNN

E (1)
NN

V3N

E (1)
3N

VNN

VNN

E (2)
1

VNN

V3N

E (2)
2

V3N

VNN

E (2)
3

V3N

V3N

E (2)
4

V3N

V3N

E (2)
5

FIG. 4. Top row: Diagrams contributing to the Hartree-Fock
energy. These include the kinetic energy Ekin and the first-order NN
and 3N interaction energies E

(1)
NN and E

(1)
3N. Middle and bottom rows:

Second-order contributions to the energy due to NN-NN interactions
E

(2)
1 , NN-3N and 3N-3N interactions, where 3N forces enter as

density-dependent two-body interactions E
(2)
2,3 and E

(2)
4 , respectively,

and the remaining 3N-3N diagram E
(2)
5 .

A. Hartree-Fock and P dependence of V 3N

The contributions to the Hartree-Fock energy are shown
diagrammatically in Fig. 4, and the first-order NN and 3N
interaction energies are given by

E
(1)
NN

V
= 1

2
Trσ1 Trσ2

∫
dk1

(2π )3

∫
dk2

(2π )3

× nk1nk2⟨12|(1 − P12)Vlow k|nn|12⟩, (24)

E
(1)
3N

V
= 1

6
Trσ1 Trσ2 Trσ3

∫
dk1

(2π )3

∫
dk2

(2π )3

∫
dk3

(2π )3

× nk1nk2nk3f
2
R(p, q)⟨123|A123V3N|nnn|123⟩, (25)

where V is the volume and we use the shorthand notation i ≡
kiσi in the bra and ket states. The momentum-conserving delta
functions are not included in the NN and 3N matrix elements.
It is evident from Eq. (25) that the correct 3N symmetry factor
is obtained when the antisymmetrized two-body interaction
V (0)

as = (1 − P12)Vlow k + V 3N/3 is used at the Hartree-Fock
level. With the expansion in two-body partial waves, we have

E
(1)
NN + E

(1)
3N

V
= 1

π3

∫
k2dk

∫
P 2dP

∫
d cos θk,P nP/2+k nP/2−k

×
∑

S,l,J

(2J + 1)⟨k|V (0)
SllJ |k⟩[1 − (−1)l+S+1].

(26)
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TABLE I. Contributions to the neutron matter energy due to the diagrams of Fig. 4. Results are given for Fermi momenta kF = 1.3, 1.5,
and 1.7 fm−1 and for different !/!3NF combinations. All energies are in MeV and kF, !/!3NF are in fm−1.

kF !/!3NF Ekin E
(1)
NN E

(1)
3N,full E

(1)
3N,eff E

(2)
1 E

(2)
2 + E

(2)
3 E

(2)
4

1.3 1.8/2.0 21.01 −12.86 0.95 0.94 −0.59 0.01 −0.02
1.3 2.0/2.0 21.01 −12.58 0.95 0.94 −0.78 0.00 −0.02
1.3 2.0/2.5 21.01 −12.58 1.05 1.00 −0.77 −0.01 −0.05
1.3 2.4/2.0 21.01 −12.11 0.95 0.94 −1.10 −0.02 −0.02
1.3 2.8/2.0 21.01 −11.75 0.95 0.94 −1.46 −0.03 −0.02
1.5 1.8/2.0 27.97 −18.62 2.18 2.24 −0.39 0.01 −0.05
1.5 2.0/2.0 27.97 −18.14 2.18 2.24 −0.64 −0.01 −0.05
1.5 2.0/2.5 27.97 −18.14 2.56 2.51 −0.63 −0.04 −0.14
1.5 2.4/2.0 27.97 −17.44 2.18 2.24 −1.16 −0.05 −0.05
1.5 2.8/2.0 27.97 −16.77 2.18 2.24 −1.78 −0.08 −0.05
1.7 1.8/2.0 35.93 −25.50 4.20 4.54 −0.22 0.01 −0.07
1.7 2.0/2.0 35.93 −24.93 4.20 4.54 −0.45 −0.02 −0.08
1.7 2.0/2.5 35.93 −24.93 5.36 5.40 −0.46 −0.06 −0.31
1.7 2.4/2.0 35.93 −23.64 4.20 4.54 −1.11 −0.07 −0.08
1.7 2.8/2.0 35.93 −22.51 4.20 4.54 −2.08 −0.12 −0.09

k = k1 − P/2 determines the argument k̂. As discussed
in Sec. II B, the antisymmetrized two-body interactions in
the first- and second-order terms are given by V (1)

as = (1 −
P12)Vlow k + V 3N/2 and V (2)

as = (1 − P12)Vlow k + V 3N, with
partial waves V

(1)
Sll′J = Vlow k,Sll′J + V 3N,Sll′J /4 and V

(2)
Sll′J =

Vlow k,Sll′J + V 3N,Sll′J /2.
We solve the Dyson equation, Eq. (28), self-consistently by

using the self-energies given by Eqs. (30) and (31). In Fig. 6,
we show the resulting effective mass at the Fermi surface,

m∗(kF)
m

=
(

m

k

dεk

dk

)−1 ∣∣∣∣
k=kF

. (32)

At the Hartree-Fock level, 3N contributions only change the
effective mass marginally. Including second-order contribu-
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FIG. 6. (Color online) Effective mass m∗(kF)/m at the Fermi
surface as a function of Fermi momentum kF in neutron matter.
Results for !/!3NF = 2.0 fm−1 are shown at the Hartree-Fock level,
plus second-order contributions, and based only on NN interactions
for comparison. At second order, the effective mass includes k-mass
and e-mass effects.

tions leads to the typical enhancement of the effective mass at
the Fermi surface, and we find a larger impact of 3N forces for
kF > 1.3 fm−1.

C. Second order: Energy per particle

We include the second-order contributions E
(2)
1 to E

(2)
4 of

Fig. 4, which are given by

E
(2)
NN+3N,eff = 1

4

[
4∏

i=1

Trσi

∫
dki

(2π )3

]
∣∣⟨12|V (2)

as |34⟩
∣∣2

× nk1nk2 (1 − nk3 )(1 − nk4 )
εk1 + εk2 − εk3 − εk4

(2π )3

× δ(k1 + k2 − k3 − k4). (33)

As in the second-order self-energy, the antisymmetrized two-
body interactions, when evaluating contributions beyond the
Hartree-Fock level, are given by V (2)

as = (1 − P12)Vlow k +
V 3N. The second-order calculations are carried out by using the
self-consistent single-particle energies determined by solving
the Dyson equation, Eq. (28), as discussed in Sec. III B, and
the intermediate-state phase-space integrations are performed
fully. By summing over the spins and by expanding in partial
waves, we have [25]

∑

S,MS,M ′
S

∣∣⟨kSMS |V (2)
as |k′SM ′

S⟩
∣∣2

=
∑

L

PL(cos θk,k′)
∑

J,l,l′,S

∑

J̃ ,̃l,̃l′

(4π )2i(l−l′+̃l−l̃′)(−1)l̃+l′+L

× CL0
l0̃l′0C

L0
l′0̃l0

√
(2l + 1)(2l′ + 1)(2̃l + 1)(2̃l′ + 1)

× (2J + 1)(2J̃ + 1)
{

l S J

J̃ L l̃′

} {
J S l′

l̃ L J̃

}

×⟨k|V (2)
Sl′lJ |k′⟩⟨k′|V (2)

Sl̃ ′̃lJ̃
|k⟩[1 − (−1)l+S+1]

× [1 − (−1)l̃+S+1], (34)
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Example: Second order diagram in MBPT

Partial wave representation:
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FIG. 3. (Color online) Diagonal momentum-space matrix ele-
ments of the density-dependent two-body interaction V 3N for P = 0
in the spin-triplet P -wave channels. Results with !3NF = 2.0 fm−1

are shown versus relative momentum k for different Fermi momenta
kF = 1.0, 1.2, 1.4, and 1.6 fm−1 (which increase in strength). For
kF = 1.6 fm−1, the dotted lines represent the central parts (degenerate
in J ) of V 3N, whereas the dashed lines include the central plus tensor
interactions [without the cn

a terms in Eqs. (16) and (17)].

spin operators with more complex integral functions that can
depend on P but also on the angle of P with respect to k
and k′. Since V 3N has been derived by using MATHEMATICA
for general particle momenta ki , this is directly possible.
One could then explore angle averaging over P̂ or averaging
over the magnitude of P. However, as will be shown in
Sec. III, the P = 0 approximation is reliable for bulk
properties and neutron matter based on chiral low-momentum
interactions is sufficiently perturbative, which justifies using
the noninteracting density to sum over the third particle.

III. RESULTS

We apply the developed density-dependent two-body inter-
action V 3N to calculate the properties of neutron matter in a
loop expansion around the Hartree-Fock energy. These are the
first results for neutron matter based on chiral EFT interac-
tions including N2LO 3N forces. The many-body calculation
follows the strategy of Refs. [7,8,25], but with significant
improvements for the second-order contributions involving
V 3N and with fully self-consistent single-particle energies.

Ekin

VNN

E (1)
NN

V3N

E (1)
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VNN

VNN

E (2)
1

VNN

V3N

E (2)
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V3N
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E (2)
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V3N
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FIG. 4. Top row: Diagrams contributing to the Hartree-Fock
energy. These include the kinetic energy Ekin and the first-order NN
and 3N interaction energies E

(1)
NN and E

(1)
3N. Middle and bottom rows:

Second-order contributions to the energy due to NN-NN interactions
E

(2)
1 , NN-3N and 3N-3N interactions, where 3N forces enter as

density-dependent two-body interactions E
(2)
2,3 and E

(2)
4 , respectively,

and the remaining 3N-3N diagram E
(2)
5 .

A. Hartree-Fock and P dependence of V 3N

The contributions to the Hartree-Fock energy are shown
diagrammatically in Fig. 4, and the first-order NN and 3N
interaction energies are given by

E
(1)
NN

V
= 1

2
Trσ1 Trσ2

∫
dk1

(2π )3

∫
dk2

(2π )3

× nk1nk2⟨12|(1 − P12)Vlow k|nn|12⟩, (24)

E
(1)
3N

V
= 1

6
Trσ1 Trσ2 Trσ3

∫
dk1

(2π )3

∫
dk2

(2π )3

∫
dk3

(2π )3

× nk1nk2nk3f
2
R(p, q)⟨123|A123V3N|nnn|123⟩, (25)

where V is the volume and we use the shorthand notation i ≡
kiσi in the bra and ket states. The momentum-conserving delta
functions are not included in the NN and 3N matrix elements.
It is evident from Eq. (25) that the correct 3N symmetry factor
is obtained when the antisymmetrized two-body interaction
V (0)

as = (1 − P12)Vlow k + V 3N/3 is used at the Hartree-Fock
level. With the expansion in two-body partial waves, we have

E
(1)
NN + E

(1)
3N

V
= 1

π3

∫
k2dk

∫
P 2dP

∫
d cos θk,P nP/2+k nP/2−k

×
∑

S,l,J

(2J + 1)⟨k|V (0)
SllJ |k⟩[1 − (−1)l+S+1].

(26)
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TABLE I. Contributions to the neutron matter energy due to the diagrams of Fig. 4. Results are given for Fermi momenta kF = 1.3, 1.5,
and 1.7 fm−1 and for different !/!3NF combinations. All energies are in MeV and kF, !/!3NF are in fm−1.

kF !/!3NF Ekin E
(1)
NN E

(1)
3N,full E

(1)
3N,eff E

(2)
1 E

(2)
2 + E

(2)
3 E

(2)
4

1.3 1.8/2.0 21.01 −12.86 0.95 0.94 −0.59 0.01 −0.02
1.3 2.0/2.0 21.01 −12.58 0.95 0.94 −0.78 0.00 −0.02
1.3 2.0/2.5 21.01 −12.58 1.05 1.00 −0.77 −0.01 −0.05
1.3 2.4/2.0 21.01 −12.11 0.95 0.94 −1.10 −0.02 −0.02
1.3 2.8/2.0 21.01 −11.75 0.95 0.94 −1.46 −0.03 −0.02
1.5 1.8/2.0 27.97 −18.62 2.18 2.24 −0.39 0.01 −0.05
1.5 2.0/2.0 27.97 −18.14 2.18 2.24 −0.64 −0.01 −0.05
1.5 2.0/2.5 27.97 −18.14 2.56 2.51 −0.63 −0.04 −0.14
1.5 2.4/2.0 27.97 −17.44 2.18 2.24 −1.16 −0.05 −0.05
1.5 2.8/2.0 27.97 −16.77 2.18 2.24 −1.78 −0.08 −0.05
1.7 1.8/2.0 35.93 −25.50 4.20 4.54 −0.22 0.01 −0.07
1.7 2.0/2.0 35.93 −24.93 4.20 4.54 −0.45 −0.02 −0.08
1.7 2.0/2.5 35.93 −24.93 5.36 5.40 −0.46 −0.06 −0.31
1.7 2.4/2.0 35.93 −23.64 4.20 4.54 −1.11 −0.07 −0.08
1.7 2.8/2.0 35.93 −22.51 4.20 4.54 −2.08 −0.12 −0.09

k = k1 − P/2 determines the argument k̂. As discussed
in Sec. II B, the antisymmetrized two-body interactions in
the first- and second-order terms are given by V (1)

as = (1 −
P12)Vlow k + V 3N/2 and V (2)

as = (1 − P12)Vlow k + V 3N, with
partial waves V

(1)
Sll′J = Vlow k,Sll′J + V 3N,Sll′J /4 and V

(2)
Sll′J =

Vlow k,Sll′J + V 3N,Sll′J /2.
We solve the Dyson equation, Eq. (28), self-consistently by

using the self-energies given by Eqs. (30) and (31). In Fig. 6,
we show the resulting effective mass at the Fermi surface,

m∗(kF)
m

=
(

m

k

dεk

dk

)−1 ∣∣∣∣
k=kF

. (32)

At the Hartree-Fock level, 3N contributions only change the
effective mass marginally. Including second-order contribu-
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FIG. 6. (Color online) Effective mass m∗(kF)/m at the Fermi
surface as a function of Fermi momentum kF in neutron matter.
Results for !/!3NF = 2.0 fm−1 are shown at the Hartree-Fock level,
plus second-order contributions, and based only on NN interactions
for comparison. At second order, the effective mass includes k-mass
and e-mass effects.

tions leads to the typical enhancement of the effective mass at
the Fermi surface, and we find a larger impact of 3N forces for
kF > 1.3 fm−1.

C. Second order: Energy per particle

We include the second-order contributions E
(2)
1 to E

(2)
4 of

Fig. 4, which are given by

E
(2)
NN+3N,eff = 1

4

[
4∏

i=1

Trσi

∫
dki

(2π )3

]
∣∣⟨12|V (2)

as |34⟩
∣∣2

× nk1nk2 (1 − nk3 )(1 − nk4 )
εk1 + εk2 − εk3 − εk4

(2π )3

× δ(k1 + k2 − k3 − k4). (33)

As in the second-order self-energy, the antisymmetrized two-
body interactions, when evaluating contributions beyond the
Hartree-Fock level, are given by V (2)

as = (1 − P12)Vlow k +
V 3N. The second-order calculations are carried out by using the
self-consistent single-particle energies determined by solving
the Dyson equation, Eq. (28), as discussed in Sec. III B, and
the intermediate-state phase-space integrations are performed
fully. By summing over the spins and by expanding in partial
waves, we have [25]

∑

S,MS,M ′
S

∣∣⟨kSMS |V (2)
as |k′SM ′

S⟩
∣∣2

=
∑

L

PL(cos θk,k′)
∑

J,l,l′,S

∑

J̃ ,̃l,̃l′

(4π )2i(l−l′+̃l−l̃′)(−1)l̃+l′+L

× CL0
l0̃l′0C

L0
l′0̃l0

√
(2l + 1)(2l′ + 1)(2̃l + 1)(2̃l′ + 1)

× (2J + 1)(2J̃ + 1)
{

l S J

J̃ L l̃′

} {
J S l′

l̃ L J̃

}

×⟨k|V (2)
Sl′lJ |k′⟩⟨k′|V (2)

Sl̃ ′̃lJ̃
|k⟩[1 − (−1)l+S+1]

× [1 − (−1)l̃+S+1], (34)
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TABLE I. Contributions to the neutron matter energy due to the diagrams of Fig. 4. Results are given for Fermi momenta kF = 1.3, 1.5,
and 1.7 fm−1 and for different !/!3NF combinations. All energies are in MeV and kF, !/!3NF are in fm−1.

kF !/!3NF Ekin E
(1)
NN E

(1)
3N,full E

(1)
3N,eff E

(2)
1 E

(2)
2 + E

(2)
3 E

(2)
4

1.3 1.8/2.0 21.01 −12.86 0.95 0.94 −0.59 0.01 −0.02
1.3 2.0/2.0 21.01 −12.58 0.95 0.94 −0.78 0.00 −0.02
1.3 2.0/2.5 21.01 −12.58 1.05 1.00 −0.77 −0.01 −0.05
1.3 2.4/2.0 21.01 −12.11 0.95 0.94 −1.10 −0.02 −0.02
1.3 2.8/2.0 21.01 −11.75 0.95 0.94 −1.46 −0.03 −0.02
1.5 1.8/2.0 27.97 −18.62 2.18 2.24 −0.39 0.01 −0.05
1.5 2.0/2.0 27.97 −18.14 2.18 2.24 −0.64 −0.01 −0.05
1.5 2.0/2.5 27.97 −18.14 2.56 2.51 −0.63 −0.04 −0.14
1.5 2.4/2.0 27.97 −17.44 2.18 2.24 −1.16 −0.05 −0.05
1.5 2.8/2.0 27.97 −16.77 2.18 2.24 −1.78 −0.08 −0.05
1.7 1.8/2.0 35.93 −25.50 4.20 4.54 −0.22 0.01 −0.07
1.7 2.0/2.0 35.93 −24.93 4.20 4.54 −0.45 −0.02 −0.08
1.7 2.0/2.5 35.93 −24.93 5.36 5.40 −0.46 −0.06 −0.31
1.7 2.4/2.0 35.93 −23.64 4.20 4.54 −1.11 −0.07 −0.08
1.7 2.8/2.0 35.93 −22.51 4.20 4.54 −2.08 −0.12 −0.09

k = k1 − P/2 determines the argument k̂. As discussed
in Sec. II B, the antisymmetrized two-body interactions in
the first- and second-order terms are given by V (1)

as = (1 −
P12)Vlow k + V 3N/2 and V (2)

as = (1 − P12)Vlow k + V 3N, with
partial waves V

(1)
Sll′J = Vlow k,Sll′J + V 3N,Sll′J /4 and V

(2)
Sll′J =

Vlow k,Sll′J + V 3N,Sll′J /2.
We solve the Dyson equation, Eq. (28), self-consistently by

using the self-energies given by Eqs. (30) and (31). In Fig. 6,
we show the resulting effective mass at the Fermi surface,

m∗(kF)
m

=
(

m

k

dεk

dk

)−1 ∣∣∣∣
k=kF

. (32)

At the Hartree-Fock level, 3N contributions only change the
effective mass marginally. Including second-order contribu-
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FIG. 6. (Color online) Effective mass m∗(kF)/m at the Fermi
surface as a function of Fermi momentum kF in neutron matter.
Results for !/!3NF = 2.0 fm−1 are shown at the Hartree-Fock level,
plus second-order contributions, and based only on NN interactions
for comparison. At second order, the effective mass includes k-mass
and e-mass effects.

tions leads to the typical enhancement of the effective mass at
the Fermi surface, and we find a larger impact of 3N forces for
kF > 1.3 fm−1.

C. Second order: Energy per particle

We include the second-order contributions E
(2)
1 to E

(2)
4 of

Fig. 4, which are given by

E
(2)
NN+3N,eff = 1

4

[
4∏

i=1

Trσi

∫
dki

(2π )3

]
∣∣⟨12|V (2)

as |34⟩
∣∣2

× nk1nk2 (1 − nk3 )(1 − nk4 )
εk1 + εk2 − εk3 − εk4

(2π )3

× δ(k1 + k2 − k3 − k4). (33)

As in the second-order self-energy, the antisymmetrized two-
body interactions, when evaluating contributions beyond the
Hartree-Fock level, are given by V (2)

as = (1 − P12)Vlow k +
V 3N. The second-order calculations are carried out by using the
self-consistent single-particle energies determined by solving
the Dyson equation, Eq. (28), as discussed in Sec. III B, and
the intermediate-state phase-space integrations are performed
fully. By summing over the spins and by expanding in partial
waves, we have [25]

∑

S,MS,M ′
S

∣∣⟨kSMS |V (2)
as |k′SM ′

S⟩
∣∣2

=
∑

L

PL(cos θk,k′)
∑

J,l,l′,S

∑

J̃ ,̃l,̃l′

(4π )2i(l−l′+̃l−l̃′)(−1)l̃+l′+L

× CL0
l0̃l′0C

L0
l′0̃l0

√
(2l + 1)(2l′ + 1)(2̃l + 1)(2̃l′ + 1)

× (2J + 1)(2J̃ + 1)
{

l S J

J̃ L l̃′

} {
J S l′

l̃ L J̃

}

×⟨k|V (2)
Sl′lJ |k′⟩⟨k′|V (2)

Sl̃ ′̃lJ̃
|k⟩[1 − (−1)l+S+1]

× [1 − (−1)l̃+S+1], (34)
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FIG. 3. (Color online) Diagonal momentum-space matrix ele-
ments of the density-dependent two-body interaction V 3N for P = 0
in the spin-triplet P -wave channels. Results with !3NF = 2.0 fm−1

are shown versus relative momentum k for different Fermi momenta
kF = 1.0, 1.2, 1.4, and 1.6 fm−1 (which increase in strength). For
kF = 1.6 fm−1, the dotted lines represent the central parts (degenerate
in J ) of V 3N, whereas the dashed lines include the central plus tensor
interactions [without the cn

a terms in Eqs. (16) and (17)].

spin operators with more complex integral functions that can
depend on P but also on the angle of P with respect to k
and k′. Since V 3N has been derived by using MATHEMATICA
for general particle momenta ki , this is directly possible.
One could then explore angle averaging over P̂ or averaging
over the magnitude of P. However, as will be shown in
Sec. III, the P = 0 approximation is reliable for bulk
properties and neutron matter based on chiral low-momentum
interactions is sufficiently perturbative, which justifies using
the noninteracting density to sum over the third particle.

III. RESULTS

We apply the developed density-dependent two-body inter-
action V 3N to calculate the properties of neutron matter in a
loop expansion around the Hartree-Fock energy. These are the
first results for neutron matter based on chiral EFT interac-
tions including N2LO 3N forces. The many-body calculation
follows the strategy of Refs. [7,8,25], but with significant
improvements for the second-order contributions involving
V 3N and with fully self-consistent single-particle energies.

Ekin

VNN

E (1)
NN

V3N

E (1)
3N

VNN

VNN

E (2)
1

VNN

V3N

E (2)
2
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FIG. 4. Top row: Diagrams contributing to the Hartree-Fock
energy. These include the kinetic energy Ekin and the first-order NN
and 3N interaction energies E

(1)
NN and E

(1)
3N. Middle and bottom rows:

Second-order contributions to the energy due to NN-NN interactions
E

(2)
1 , NN-3N and 3N-3N interactions, where 3N forces enter as

density-dependent two-body interactions E
(2)
2,3 and E

(2)
4 , respectively,

and the remaining 3N-3N diagram E
(2)
5 .

A. Hartree-Fock and P dependence of V 3N

The contributions to the Hartree-Fock energy are shown
diagrammatically in Fig. 4, and the first-order NN and 3N
interaction energies are given by

E
(1)
NN

V
= 1

2
Trσ1 Trσ2

∫
dk1

(2π )3

∫
dk2

(2π )3

× nk1nk2⟨12|(1 − P12)Vlow k|nn|12⟩, (24)

E
(1)
3N

V
= 1

6
Trσ1 Trσ2 Trσ3

∫
dk1

(2π )3

∫
dk2

(2π )3

∫
dk3

(2π )3

× nk1nk2nk3f
2
R(p, q)⟨123|A123V3N|nnn|123⟩, (25)

where V is the volume and we use the shorthand notation i ≡
kiσi in the bra and ket states. The momentum-conserving delta
functions are not included in the NN and 3N matrix elements.
It is evident from Eq. (25) that the correct 3N symmetry factor
is obtained when the antisymmetrized two-body interaction
V (0)

as = (1 − P12)Vlow k + V 3N/3 is used at the Hartree-Fock
level. With the expansion in two-body partial waves, we have

E
(1)
NN + E

(1)
3N

V
= 1

π3

∫
k2dk

∫
P 2dP

∫
d cos θk,P nP/2+k nP/2−k

×
∑

S,l,J

(2J + 1)⟨k|V (0)
SllJ |k⟩[1 − (−1)l+S+1].

(26)
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TABLE I. Contributions to the neutron matter energy due to the diagrams of Fig. 4. Results are given for Fermi momenta kF = 1.3, 1.5,
and 1.7 fm−1 and for different !/!3NF combinations. All energies are in MeV and kF, !/!3NF are in fm−1.

kF !/!3NF Ekin E
(1)
NN E

(1)
3N,full E

(1)
3N,eff E

(2)
1 E

(2)
2 + E

(2)
3 E

(2)
4

1.3 1.8/2.0 21.01 −12.86 0.95 0.94 −0.59 0.01 −0.02
1.3 2.0/2.0 21.01 −12.58 0.95 0.94 −0.78 0.00 −0.02
1.3 2.0/2.5 21.01 −12.58 1.05 1.00 −0.77 −0.01 −0.05
1.3 2.4/2.0 21.01 −12.11 0.95 0.94 −1.10 −0.02 −0.02
1.3 2.8/2.0 21.01 −11.75 0.95 0.94 −1.46 −0.03 −0.02
1.5 1.8/2.0 27.97 −18.62 2.18 2.24 −0.39 0.01 −0.05
1.5 2.0/2.0 27.97 −18.14 2.18 2.24 −0.64 −0.01 −0.05
1.5 2.0/2.5 27.97 −18.14 2.56 2.51 −0.63 −0.04 −0.14
1.5 2.4/2.0 27.97 −17.44 2.18 2.24 −1.16 −0.05 −0.05
1.5 2.8/2.0 27.97 −16.77 2.18 2.24 −1.78 −0.08 −0.05
1.7 1.8/2.0 35.93 −25.50 4.20 4.54 −0.22 0.01 −0.07
1.7 2.0/2.0 35.93 −24.93 4.20 4.54 −0.45 −0.02 −0.08
1.7 2.0/2.5 35.93 −24.93 5.36 5.40 −0.46 −0.06 −0.31
1.7 2.4/2.0 35.93 −23.64 4.20 4.54 −1.11 −0.07 −0.08
1.7 2.8/2.0 35.93 −22.51 4.20 4.54 −2.08 −0.12 −0.09

k = k1 − P/2 determines the argument k̂. As discussed
in Sec. II B, the antisymmetrized two-body interactions in
the first- and second-order terms are given by V (1)

as = (1 −
P12)Vlow k + V 3N/2 and V (2)

as = (1 − P12)Vlow k + V 3N, with
partial waves V

(1)
Sll′J = Vlow k,Sll′J + V 3N,Sll′J /4 and V

(2)
Sll′J =

Vlow k,Sll′J + V 3N,Sll′J /2.
We solve the Dyson equation, Eq. (28), self-consistently by

using the self-energies given by Eqs. (30) and (31). In Fig. 6,
we show the resulting effective mass at the Fermi surface,

m∗(kF)
m

=
(

m

k

dεk

dk

)−1 ∣∣∣∣
k=kF

. (32)

At the Hartree-Fock level, 3N contributions only change the
effective mass marginally. Including second-order contribu-
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FIG. 6. (Color online) Effective mass m∗(kF)/m at the Fermi
surface as a function of Fermi momentum kF in neutron matter.
Results for !/!3NF = 2.0 fm−1 are shown at the Hartree-Fock level,
plus second-order contributions, and based only on NN interactions
for comparison. At second order, the effective mass includes k-mass
and e-mass effects.

tions leads to the typical enhancement of the effective mass at
the Fermi surface, and we find a larger impact of 3N forces for
kF > 1.3 fm−1.

C. Second order: Energy per particle

We include the second-order contributions E
(2)
1 to E

(2)
4 of

Fig. 4, which are given by

E
(2)
NN+3N,eff = 1

4

[
4∏

i=1

Trσi

∫
dki

(2π )3

]
∣∣⟨12|V (2)

as |34⟩
∣∣2

× nk1nk2 (1 − nk3 )(1 − nk4 )
εk1 + εk2 − εk3 − εk4

(2π )3

× δ(k1 + k2 − k3 − k4). (33)

As in the second-order self-energy, the antisymmetrized two-
body interactions, when evaluating contributions beyond the
Hartree-Fock level, are given by V (2)

as = (1 − P12)Vlow k +
V 3N. The second-order calculations are carried out by using the
self-consistent single-particle energies determined by solving
the Dyson equation, Eq. (28), as discussed in Sec. III B, and
the intermediate-state phase-space integrations are performed
fully. By summing over the spins and by expanding in partial
waves, we have [25]

∑

S,MS,M ′
S

∣∣⟨kSMS |V (2)
as |k′SM ′

S⟩
∣∣2

=
∑

L

PL(cos θk,k′)
∑

J,l,l′,S

∑

J̃ ,̃l,̃l′

(4π )2i(l−l′+̃l−l̃′)(−1)l̃+l′+L

× CL0
l0̃l′0C

L0
l′0̃l0

√
(2l + 1)(2l′ + 1)(2̃l + 1)(2̃l′ + 1)

× (2J + 1)(2J̃ + 1)
{

l S J

J̃ L l̃′

} {
J S l′

l̃ L J̃

}

×⟨k|V (2)
Sl′lJ |k′⟩⟨k′|V (2)

Sl̃ ′̃lJ̃
|k⟩[1 − (−1)l+S+1]

× [1 − (−1)l̃+S+1], (34)
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• hard to automatize and generalize 

to higher order diagrams

• prone to mistakes 

Single-particle vector

representation:

One has for NN interactions 1, 3, 39, . . . Hugenholtz diagram(s) at second, third, fourth order, respectively,
and so on [122, 129]. Figure 6 shows these at second and third order; for the fourth-order diagrams we
refer to Ref. [130]. Below, we summarize the underlying analytic expressions up to fourth order, as this
is the highest order considered in the present thesis. They are expressed in the particle-hole formalism,
where only the particle (hole) states created above (below) the Fermi surface are considered (see, e.g.,
Ref. [118]). For brevity we define E(n)NN := E(n)0 . In the following Sec. 1.3.2, we will discuss normal-ordering
and the inclusion of many-body forces at and beyond the Hartree-Fock level.

Energy relations up to second order

The energy contributions up to second order based on antisymmetrized NN interactionsA12VNN are given
by the following expressions (see also Refs. [43, 118, 119])

T
V
= +
X

i

hi|T |ii , (1.23)

E(1)NN

V
= +

1
2

X

i j

hi j|A12VNN|i ji , (1.24)

E(2)NN

V
= +

1
4

X

i j
ab

hi j|A12VNN|abi hab|A12VNN|i ji
Di jab

. (1.25)

Equation (1.25) is associated with diagram (a) in Fig. 6. We use the short-hand notation for the single-
particle states |ii = |ki�i⌧ii, having the momentum ki, the spin and isospin projections �i = ±1

2 and
⌧i = ±1

2 , respectively. Furthermore, particles are labeled by a, b, . . . and holes by i, j, . . ., so the sums
transform into, e.g.,

X

a

�!X
�a⌧a

Z
dka

(2⇡)3
Ä
1� n⌧a

ka

ä
, and

X

i

�!X
�i⌧i

Z
dki

(2⇡)3
n⌧i

ki
, (1.26)

where n⌧i
ki

is the Heaviside step function. Intermediate states beyond first order are weighted in terms of
the single-particle energies,

Di jk...abc... = "ki + "k j + "kk
+ . . .� "

ka � "kb
� "

kc � . . . . (1.27)

The trivial partition in Eq. (1.15), H0 = T and H1 = V , corresponds to the free spectrum with "
ki =

k

2
i /(2m), whereas H0 = T + VHF and H1 = V � VHF adds first-order self-energy corrections to the kinetic

energy, called Hartree-Fock spectrum. Due to translational invariance, both, the kinetic-energy operator
T and the Hartree-Fock potential VHF are diagonal in the plane-wave basis (see also Ref. [121]). We
have thus the second-quantized Fock operator H0 =

P
i j fi j a†

j ai with fi j = �i j "i and the single-particle
energies

"i =
k

2
i

2m
+
X

j

hi j |A12VNN | i ji . (1.28)

In our calculations, we average Eq. (1.28) over spin as well as isospin quantum numbers. The two
employed spectra lead to the same Hartree-Fock energy, i.e., the sum of all zero- and first-order terms.
Adding 3N contributions to Eq. (1.28) will be addressed in Sec. 1.3.2.
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• each diagram a compact 
single line of code

• straightforward to 
automatize code generation

• adaptive evaluation of 
integrals using Monte-Carlo 
techniques

e.g., KH, Schwenk
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For completeness, we note that there is an additional single-excitation diagram at second order, which is
anomalous due to momentum conservation. It cancels using a Hartree-Fock spectrum [118].

Energy relations at third order

One has in total three diagrams at third order when using a Hartree-Fock spectrum, depicted by (b–d) in
Fig. 6. This results from a fine cancellation of several diagrams driven by the Hartree-Fock Hamiltonian. In
a free spectrum, however, eleven additional (partly anomalous) terms arise [118]. We therefore consider
solely Hartree-Fock single-particle energies beyond second order. Specifically, one has then contributions
from hole-hole, particle-hole, and particle-particle excitations with respect to the Hartree-Fock reference
state. These correspond to the following expressions, respectively, (see also Refs. [112, 118, 119])

E(3)1

V
= +

1
8

X

i jkl
ab

hi j|A12VNN|abi hkl|A12VNN|i ji hab|A12VNN|kli
Di jabDklab

, (1.29a)

E(3)2

V
= +
X

i jk
abc

hi j|A12VNN|abi hak|A12VNN|ici hbc|A12VNN| jki
Di jabDjkbc

, (1.29b)

E(3)3

V
= +

1
8

X

i j
abcd

hi j|A12VNN|abi hab|A12VNN|cdi hcd|A12VNN|i ji
Di jabDi jcd

. (1.29c)

Time reversal (exchanging holes and particles) relates the hole-hole and particle-particle terms, unfortu-
nately, without reducing the number of diagrams to be computed. In total, the third-order contribution is
given by

E(3)NN

V
=

E(3)1

V

����
hh
+

E(3)2

V

����
ph
+

E(3)3

V

����
pp

. (1.30)

Energy relations at fourth order: an overview

The fourth order consists of 39 linked diagrams when using a Hartree-Fock spectrum [118, 122]. They
are categorized according to the level of excitations obtained after the second interaction with respect to
the Fermi sea [131]. One has thus 4 single-, 12 double-, 16 triple-, and 7 quadruple-excitation diagrams,
hence, the total energy of all fourth-order terms is given by

E(4)NN

V
=

4X

i=1

E(4)i

V

����
single

+
16X

i=5

E(4)i

V

����
double

+
32X

i=17

E(4)i

V

����
triple
+

39X

i=33

E(4)i

V

����
quadruple

. (1.31)

The sum of all contributions is order-by-order real in perturbation theory because the nuclear Hamiltonian
is hermitian. This is also the case for each individual term up to third order. However, starting at fourth
order we encounter complex-conjugated pairs of diagrams, which in total are again real [130]. Exploiting
momentum conservation, in addition, reduces the number of diagrams to be computed to effectively 24.
In the following, we carefully provide the complete set of energy expressions (including time-reversed
pairs) as preparation for Sec. 5. These are more familiar in quantum chemistry but have not been studied
to the best of our knowledge in infinite-matter calculations.
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Higher-order contributions

(a) (b) (c) (d)

Figure 6: Hugenholtz diagrams for NN forces at second (a) and third order (b–d). Particles (holes) are
indicated by up (down) arrows. The dots correspond to antisymmetrized interaction vertices.
At third order, one has contributions from particle-particle (b), particle-hole (c), and hole-hole
excitations (d). The figure has been modified from Ref. [122].

which is iterated in Eq. (1.18) to read

| 0i= |�0i+ Q
⇣� H0

(�H1 � E0 + ⇣) | 0i=
1X

n=0

Å
Q

⇣� H0
(�H1 � E0 + ⇣)
ãn
|�0i . (1.20)

We employ Rayleigh-Schrödinger perturbation theory, i.e., ⇣ := E(0)0 , and evaluate Eq. (1.17)

�E = E0 � E(0)0 =
1X

n=0

h�0|�H1 (R0 (�H1 ��E))n |�0i , with R0 =
Q

E(0)0 � H0

=
X

k 6=0

|�ki h�k|
E(0)0 � E(0)k

. (1.21)

Furthermore, we expand in a perturbation series, �E =
P1

n=1�
nE(n)0 . Organizing the terms in powers of

�! 1 determines the desired coefficients of the expansion, here given up to fourth order [118],

E(0)0 = h�0|H0|�0i , E(1)0 = h�0|H1|�0i , (1.22a)

E(2)0 = h�0|H1R0H1|�0i , E(3)0 = h�0|H1R0(H1 � E(1)0 )R0H1|�0i , (1.22b)

E(4)0 = h�0|H1R0(H1 � E(1)0 )R0(H1 � E(1)0 )R0H1|�0i
� E(2)0 h�0|H1R2

0H1|�0i .
(1.22c)

The presented analytic derivation of perturbation theory comes along with an equivalent pictorial ap-
proach, so-called diagrammatic perturbation theory, which is conceptionally similar to Feynman tech-
niques. One draws all possible (e.g., Hugenholtz) diagrams with n vertices (dots) and connects them by
continuous lines, following remarkable simple rules [120, 122]. Because of Goldstone’s linked-diagram
theorem [123] only connected diagrams contribute to the expansion. The explicit cancellation of size-
inconsistent terms (see also Ref. [124]) related to unlinked diagrams transforms Rayleigh-Schrödinger
perturbation theory to MBPT [118, 125]. In practice, the diagrammatic approach is more convienient
and thus typically the method of choice, especially, regarding automation on a computer [122, 126–128].
Rules to translate diagrams to analytic expressions are given in the cited literature.

It is however a nontrivial assumption that the perturbation series convergences at a useful rate. The
efficiency of MBPT clearly depends on the underlying interaction as well as the chosen partition in
Eq. (1.15). To quantify the perturbativeness of recent NN potentials in free space, we make use of Weinberg
eigenvalues in Sec. 3 as a powerful diagnostic tool. Additionally, in Sec. 4.3 we benchmark the neutron-
matter equation of state involving NN plus 3N interactions up to N3LO order-by-order to a nonperturbative
method, where calculations using two partitions serve as a many-body uncertainty.
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Status: 

• implemented all NN diagrams up to fourth order in MBPT, 3N 
interactions up to third order

• implemented all NN and 3N interactions (nonlocal) up to N3LO

• possible to also use NN matrix elements stored in partial wave basis 
by partial wave resummation

• interaction interface suitable for all many-body frameworks that 
require matrix elements in a momentum vector single-particle basis

example: third order (particle-particle, hole-hole, particle-hole)



Proof of principle:
Fits of 3N interactions to saturation properties of nuclear matter

• incorporation of saturation properties in fits was not possible so far 
due to insufficient efficiency of many-body calculations

• performed calculations up to 4th order for set of presently used 
NN interactions, natural convergence pattern
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FIG. 1. (Color online) Energy per particle of neutron mat-
ter (top row) and symmetric nuclear matter (bottom row)
based on the Hebeler+ [16] and NNLOsim [6] NN and 3N
interactions (columns). Results are shown for �/⇤3N for the
interactions of Ref. [16] and ⇤NN = ⇤3N for those of Ref. [6].
For symmetric matter, the gray box denotes the saturation re-
gion, n0 = 0.164± 0.007 fm�3 and E/A = �15.86± 0.57MeV.
We also give the calculated range for the symmetry energy
Esym and its slope parameter L at n0 = 0.16 fm�3 (indicated
by the dashed vertical line).

Specifically, in this first application, we consider all con-
tributions from NN interactions up to fourth order in
MBPT (around the Hartree-Fock reference state). Contri-
butions from 3N interactions are included exactly up to
second order, including residual 3N-3N terms, which have
only been evaluated so far for contact interactions [44].
At third order, we neglect all terms that involve at least
one residual 3N contribution, whereas at fourth order we
neglect all 3N contributions. These contributions turn out
to be smaller (see discussion below). This amounts to 4,
20 = 3 ·23�4, and 24 = 39�15 diagrams at second, third,
and fourth order, respectively, with up to 21-dimensional
momentum integrals per diagram. The number of dia-
grams at third (fourth) order can be reduced by 4 (15) at
zero temperature. In comparison, a full calculation would
involve 39 · 24 = 624 fourth-order diagrams. We also eval-
uate the 4N Hartree-Fock energy, but it is generally small,
in agreement with Ref. [18].
We assess the numerical convergence of the integra-

tion by varying the number of sampling points as well as
employing two di↵erent Monte-Carlo algorithms [28], in

FIG. 2. (Color online) Correlation between the calculated
saturation density n0 and saturation energy E/A for the
Hebeler+ [16] and NNLOsim [6] NN and 3N interactions ob-
tained at second, third, and fourth order in MBPT. The values
of �/⇤3N and ⇤NN = ⇤3N, as well as the saturation region are
as in Fig. 1. The diamond refers to the NNLOsat result [1].

addition to the variance as statistical uncertainty. The
framework is remarkably e�cient due to performance opti-
mization and parallelization. Most diagrams up to fourth
order can be evaluated within about 10 minutes to a
precision of . 10 keV. The precise evaluation of a few
specific third-order diagrams involving three 3N interac-
tions requires more time due to the higher dimensionality
of the momentum integrals. However, the strength of the
present Monte-Carlo approach is that the precision can be
controlled in a systematic way using the uncertainty esti-
mates, as short runtimes are important when optimizing
nuclear interactions. For this purpose, one could start con-
straining a fit with lower accuracy around the saturation
point and then successively become more accurate.
Results for nuclear matter.– In Fig. 1 we present re-

sults for the energy per particle in symmetric nuclear
matter and neutron matter based on the Hebeler+ [16]
and NNLOsim [6] NN and 3N interactions up to fourth
order in MBPT. For symmetric matter we show the em-
pirical saturation region by a box with boundaries n0 =
0.164± 0.007 fm�3 and E/A = �15.86± 0.37± 0.2MeV
where the first uncertainties are as in Ref. [22] and we add
an additional 0.2MeV from Ref. [45]. In addition, we give
results for symmetry energy range Esym = E/N � E/A
as well as its slope parameter L = 3n0@nEsym at n0 =
0.16 fm�3. Both are predicted with narrow ranges.
The Hebeler+ interactions were obtained by a simi-

larity renormalization group evolution [46] of the N3LO
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only been evaluated so far for contact interactions [44].
At third order, we neglect all terms that involve at least
one residual 3N contribution, whereas at fourth order we
neglect all 3N contributions. These contributions turn out
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20 = 3 ·23�4, and 24 = 39�15 diagrams at second, third,
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addition to the variance as statistical uncertainty. The
framework is remarkably e�cient due to performance opti-
mization and parallelization. Most diagrams up to fourth
order can be evaluated within about 10 minutes to a
precision of . 10 keV. The precise evaluation of a few
specific third-order diagrams involving three 3N interac-
tions requires more time due to the higher dimensionality
of the momentum integrals. However, the strength of the
present Monte-Carlo approach is that the precision can be
controlled in a systematic way using the uncertainty esti-
mates, as short runtimes are important when optimizing
nuclear interactions. For this purpose, one could start con-
straining a fit with lower accuracy around the saturation
point and then successively become more accurate.
Results for nuclear matter.– In Fig. 1 we present re-

sults for the energy per particle in symmetric nuclear
matter and neutron matter based on the Hebeler+ [16]
and NNLOsim [6] NN and 3N interactions up to fourth
order in MBPT. For symmetric matter we show the em-
pirical saturation region by a box with boundaries n0 =
0.164± 0.007 fm�3 and E/A = �15.86± 0.37± 0.2MeV
where the first uncertainties are as in Ref. [22] and we add
an additional 0.2MeV from Ref. [45]. In addition, we give
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0.16 fm�3. Both are predicted with narrow ranges.
The Hebeler+ interactions were obtained by a simi-
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FIG. 4. (Color online) Saturation density and energy of symmetric nuclear matter at di↵erent orders in MBPT for the NN and
3N interactions at N2LO and N3LO of Fig. 3. The points are for di↵erent values of cD (annotated numbers), while the red-dotted,
green-dashed, and blue-solid lines correspond to calculations at second, third, and fourth order in MBPT. The left (right) two
panels are for N2LO (N3LO) with ⇤ = 450MeV and ⇤ = 500MeV. The diamonds in each panel represent the calculations with
a simultaneous good reproduction of both saturation density and energy at fourth order in MBPT. The empirical saturation
region is given by the gray box (see Fig. 1).

small for the “1.8/2.0” interaction, but also in the other
cases smaller than the third-order contributions.
Fit to saturation region.– The observed convergence

pattern indicates that the studied nonlocal interactions
are su�ciently perturbative and allow calculations with
controlled many-body uncertainties. This o↵ers the possi-
bility to use the newMonte-Carlo framework for constrain-
ing the 3N couplings using information from nuclear mat-
ter. In this Letter, we demonstrate this using the N2LO
and N3LO NN potentials of Entem, Machleidt, and Nosyk
(ENM) [39] with ⇤ = 450MeV and ⇤ = 500MeV, which
are very promising also in terms of their Weinberg eigen-
values [52]. As a first step, we fit to the 3H binding energy,
which leads to a relation of the 3N couplings cD and cE
shown in Fig. 3. For the fits, we include all 3N contri-
butions consistently up to N2LO and N3LO, respectively.
The corresponding 3N matrix elements were computed
as in Ref. [43]. We use ⇤3N = ⇤NN = ⇤ and a nonlocal
regulator of the form f⇤(p, q) = exp[�((p2+3/4q2)/⇤2)4]
for the Jacobi momenta p and q of the initial and final
states [33]. For both cuto↵s and chiral orders, we obtain
cE couplings of natural size in the wide cD range explored.
As a second step, we calculate nuclear matter for the

range of 3N couplings and determine the saturation point.
In Fig. 4, we present the saturation points at N2LO and
N3LO as a function of the cD and at di↵erent orders in
MBPT. Similar to the interactions shown in Fig. 2, we
find a natural convergence pattern. Note that the shown
points on the trajectories correspond to di↵erent cD val-
ues at second order compared to third and fourth order.
Contributions at third order are therefore more signifi-
cant in these cases, whereas fourth-order corrections are
again much smaller as is shown in Table I. In general,
Fig. 4 demonstrates that it is possible to determine natu-

ral cD/cE combinations at N2LO and N3LO with reason-
able saturation properties for both cuto↵ cases considered.
However, with respect to our N2LO results, N3LO contri-
butions provide slightly too much repulsion.
In each panel of Fig. 4, we mark the three couplings

that provide a reasonable fit to the saturation region
by black diamonds, whereas the actual cD/cE values are
given in the annotations in Fig. 3. The resulting equa-
tions of state of symmetric nuclear matter and neutron
matter at N2LO and N3LO are shown in Fig. 5. Note
that only two lines are present in neutron matter since
the shorter-range 3N interactions do not contribute [25].
For completeness, the calculated N3LO 4N Hartree-Fock
energies at n0 are ⇡ 150 keV for both cuto↵s, which is
negligible compared to the overall uncertainty [18]. As
for the Hebeler+ and NNLOsim results, the symmetry
energy and the L parameter are predicted with a remark-
ably narrow range. In symmetric matter, we also observe
a weak cuto↵ dependence at N3LO, whereas the results
for ⇤ = 450MeV are clearly separated from ⇤ = 500MeV
at N2LO, with the former achieving the best fits to the
saturation region. Finally, we estimate the theoretical un-
certainty from the chiral expansion following Ref. [38],
using Q = p/⇤b with breakdown scale ⇤b = 500MeV
and average momentum p =

p
3/5 kF. The bands overlap

from N2LO to N3LO, and we clearly see that the theoret-
ical uncertainties are significantly reduced at N3LO.
Summary.– We have presented a new Monte-Carlo

framework for calculations of nuclear matter, which al-
lows to include higher order contributions from chiral
interactions and is capable of going to high enough or-
ders in the many-body expansion for suitable interac-
tions. The new method was applied to the calculation of
the symmetric-matter and neutron-matter energy in an

3

TABLE I. Contributions to the energy per particle at n0 = 0.16 fm�3 in symmetric nuclear matter at consecutive orders in
MBPT based on the Hebeler+ [16] interaction with �/⇤ = 1.8/2.0 fm�1 and the N2LO and N3LO interactions of this work
with ⇤/cD [for the central cD fit value (black diamonds) in Fig. 4]. All energies are in MeV.

chiral order ⇤/cD second order third order fourth order
NN-only NN+3N 3N res. NN+3N NN-only NN+3Na

N3LO/N2LO �/⇤ = 1.8/2.0 fm�1 �2.30 �2.24 �0.40 �0.10 �0.20 �0.07

N2LO
450/+ 2.50 �6.23 �13.38 �0.42 �2.08 0.07 0.24
500/� 1.50 �8.61 �14.49 �0.66 �0.77 0.32 0.75

N3LO
450/+ 0.50 �8.93 �15.54 �0.38 �2.85 0.61 0.92
500/� 3.00 �10.63 �14.65 �0.87 �1.00 0.65 1.10

a
Contributions from 3N forces at fourth order in MBPT are not included in our fits. These values here are an uncertainty estimate using

normal-ordered 3N contributions in the P = 0 approximation (see Refs. [22, 25]).

NN potential of Ref. [47] to di↵erent resolution scales �,
whereas the 3N couplings cD and cE were fixed at these
resolution scales by fits to the 3H binding energy and the
4He charge radius. Despite being fitted to only few-body
data, these interactions are able to reproduce empirical
saturation in Fig. 1 within uncertainties given by the
band of the Hebeler+ interactions [16]. In addition, re-
cent calculations of medium-mass and heavy nuclei based
on some of these interactions show remarkable agreement
with experimental data [2, 4, 8–10, 48] and thus o↵er new
ab initio possibilities to investigate the nuclear chart.

The second column of Fig. 1 shows results for the
NNLOsim potentials [6] (using Trel = 290MeV) for dif-
ferent cuto↵ values (see legend). These interactions were
obtained by a simultaneous fit of all low-energy couplings
to two-body and few-body data. We observe a weak cut-
o↵ dependence for these potentials in neutron matter
over the entire density range and in symmetric matter
up to n . 0.08 fm�3. At higher densities, the variation
of the energy per particle increases up to ⇠ 3MeV at
n0 = 0.16 fm�1 with a very similar density dependence.
Overall, all the NNLOsim interactions turn out to be too
repulsive compared to the empirical saturation region.

We study the many-body convergence of the Hebeler+
and NNLOsim interactions by plotting in Fig. 2 the cal-
culated saturation energy as a function of the calculated
saturation density at second, third, and fourth order in
MBPT. The annotated values denote the cuto↵ scales
of the di↵erent potentials (see legend of Fig. 1). For all
shown interactions, we observe a very good convergence
in the many-body expansion, indicating that these chi-
ral interactions are perturbative over this density regime.
Moreover, we find a pronounced linear correlation band
(similar to the Coester line [49] for NN potentials), which
however overlaps with the empirical saturation region as
3N forces are included. Note that the Hebeler+ inter-
action that breaks most from the linear correlation is
“2.0/2.0 (PWA)”, for which the ci values in the 3N forces
are significantly larger.

Finally, in Table I we show the hierarchy of contri-
butions from second, third, and fourth order at n0 =

FIG. 3. (Color online) Three-nucleon couplings cD and cE
that reproduce the 3H binding energy using the EMN NN
potentials of Ref. [39] with ⇤ = 450MeV (dashed) and ⇤ =
500MeV (solid line) at N2LO (red) and N3LO (blue) combined
with consistent 3N interactions at these orders using ⇤3N =
⇤NN. The points (diamonds) on each line correspond to the
fits to the empirical saturation region (see Fig. 4), while the
annotated numbers give the corresponding values of cD/cE .

0.16 fm�3 for the Hebeler+ “1.8/2.0” interaction, which
is most commonly used in the recent ab initio calculations
of medium-mass and heavy nuclei. At second order, we
give the contributions from NN interactions (NN-only),
from NN plus 3N contributions that can be represented in
form of a density-dependent NN interactions (NN+3N),
and the residual 3N contribution (3N res.). We find that
the residual 3N term is significantly smaller compared
to the other contributions. This justifies that this con-
tribution was usually neglected in previous calculations
because it requires an explicit treatment of 3N forces in
MBPT. However, note that this in general depends on de-
tails of the NN and 3N interactions [50, 51]. Furthermore,
we find that the third-order contributions are significantly
smaller than the second-order terms for all studied inter-
actions. The fourth order contributions are particularly

• incorporation of saturation properties in fits was not possible so far 
due to insufficient efficiency of many-body calculations

• performed fits for 3NF at N2LO and N3LO                                  
to 3H and matter for new family of NN forces by                  
Entem, Machleidt and Nosyk Entem et al. PRC 96, 024004 (2017)

Proof of principle:
Fits of 3N interactions to saturation properties of nuclear matter
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FIG. 4. (Color online) Saturation density and energy of symmetric nuclear matter at di↵erent orders in MBPT for the NN and
3N interactions at N2LO and N3LO of Fig. 3. The points are for di↵erent values of cD (annotated numbers), while the red-dotted,
green-dashed, and blue-solid lines correspond to calculations at second, third, and fourth order in MBPT. The left (right) two
panels are for N2LO (N3LO) with ⇤ = 450MeV and ⇤ = 500MeV. The diamonds in each panel represent the calculations with
a simultaneous good reproduction of both saturation density and energy at fourth order in MBPT. The empirical saturation
region is given by the gray box (see Fig. 1).

small for the “1.8/2.0” interaction, but also in the other
cases smaller than the third-order contributions.
Fit to saturation region.– The observed convergence

pattern indicates that the studied nonlocal interactions
are su�ciently perturbative and allow calculations with
controlled many-body uncertainties. This o↵ers the possi-
bility to use the newMonte-Carlo framework for constrain-
ing the 3N couplings using information from nuclear mat-
ter. In this Letter, we demonstrate this using the N2LO
and N3LO NN potentials of Entem, Machleidt, and Nosyk
(ENM) [39] with ⇤ = 450MeV and ⇤ = 500MeV, which
are very promising also in terms of their Weinberg eigen-
values [52]. As a first step, we fit to the 3H binding energy,
which leads to a relation of the 3N couplings cD and cE
shown in Fig. 3. For the fits, we include all 3N contri-
butions consistently up to N2LO and N3LO, respectively.
The corresponding 3N matrix elements were computed
as in Ref. [43]. We use ⇤3N = ⇤NN = ⇤ and a nonlocal
regulator of the form f⇤(p, q) = exp[�((p2+3/4q2)/⇤2)4]
for the Jacobi momenta p and q of the initial and final
states [33]. For both cuto↵s and chiral orders, we obtain
cE couplings of natural size in the wide cD range explored.
As a second step, we calculate nuclear matter for the

range of 3N couplings and determine the saturation point.
In Fig. 4, we present the saturation points at N2LO and
N3LO as a function of the cD and at di↵erent orders in
MBPT. Similar to the interactions shown in Fig. 2, we
find a natural convergence pattern. Note that the shown
points on the trajectories correspond to di↵erent cD val-
ues at second order compared to third and fourth order.
Contributions at third order are therefore more signifi-
cant in these cases, whereas fourth-order corrections are
again much smaller as is shown in Table I. In general,
Fig. 4 demonstrates that it is possible to determine natu-

ral cD/cE combinations at N2LO and N3LO with reason-
able saturation properties for both cuto↵ cases considered.
However, with respect to our N2LO results, N3LO contri-
butions provide slightly too much repulsion.
In each panel of Fig. 4, we mark the three couplings

that provide a reasonable fit to the saturation region
by black diamonds, whereas the actual cD/cE values are
given in the annotations in Fig. 3. The resulting equa-
tions of state of symmetric nuclear matter and neutron
matter at N2LO and N3LO are shown in Fig. 5. Note
that only two lines are present in neutron matter since
the shorter-range 3N interactions do not contribute [25].
For completeness, the calculated N3LO 4N Hartree-Fock
energies at n0 are ⇡ 150 keV for both cuto↵s, which is
negligible compared to the overall uncertainty [18]. As
for the Hebeler+ and NNLOsim results, the symmetry
energy and the L parameter are predicted with a remark-
ably narrow range. In symmetric matter, we also observe
a weak cuto↵ dependence at N3LO, whereas the results
for ⇤ = 450MeV are clearly separated from ⇤ = 500MeV
at N2LO, with the former achieving the best fits to the
saturation region. Finally, we estimate the theoretical un-
certainty from the chiral expansion following Ref. [38],
using Q = p/⇤b with breakdown scale ⇤b = 500MeV
and average momentum p =

p
3/5 kF. The bands overlap

from N2LO to N3LO, and we clearly see that the theoret-
ical uncertainties are significantly reduced at N3LO.
Summary.– We have presented a new Monte-Carlo

framework for calculations of nuclear matter, which al-
lows to include higher order contributions from chiral
interactions and is capable of going to high enough or-
ders in the many-body expansion for suitable interac-
tions. The new method was applied to the calculation of
the symmetric-matter and neutron-matter energy in an

3

TABLE I. Contributions to the energy per particle at n0 = 0.16 fm�3 in symmetric nuclear matter at consecutive orders in
MBPT based on the Hebeler+ [16] interaction with �/⇤ = 1.8/2.0 fm�1 and the N2LO and N3LO interactions of this work
with ⇤/cD [for the central cD fit value (black diamonds) in Fig. 4]. All energies are in MeV.

chiral order ⇤/cD second order third order fourth order
NN-only NN+3N 3N res. NN+3N NN-only NN+3Na

N3LO/N2LO �/⇤ = 1.8/2.0 fm�1 �2.30 �2.24 �0.40 �0.10 �0.20 �0.07

N2LO
450/+ 2.50 �6.23 �13.38 �0.42 �2.08 0.07 0.24
500/� 1.50 �8.61 �14.49 �0.66 �0.77 0.32 0.75

N3LO
450/+ 0.50 �8.93 �15.54 �0.38 �2.85 0.61 0.92
500/� 3.00 �10.63 �14.65 �0.87 �1.00 0.65 1.10

a
Contributions from 3N forces at fourth order in MBPT are not included in our fits. These values here are an uncertainty estimate using

normal-ordered 3N contributions in the P = 0 approximation (see Refs. [22, 25]).

NN potential of Ref. [47] to di↵erent resolution scales �,
whereas the 3N couplings cD and cE were fixed at these
resolution scales by fits to the 3H binding energy and the
4He charge radius. Despite being fitted to only few-body
data, these interactions are able to reproduce empirical
saturation in Fig. 1 within uncertainties given by the
band of the Hebeler+ interactions [16]. In addition, re-
cent calculations of medium-mass and heavy nuclei based
on some of these interactions show remarkable agreement
with experimental data [2, 4, 8–10, 48] and thus o↵er new
ab initio possibilities to investigate the nuclear chart.

The second column of Fig. 1 shows results for the
NNLOsim potentials [6] (using Trel = 290MeV) for dif-
ferent cuto↵ values (see legend). These interactions were
obtained by a simultaneous fit of all low-energy couplings
to two-body and few-body data. We observe a weak cut-
o↵ dependence for these potentials in neutron matter
over the entire density range and in symmetric matter
up to n . 0.08 fm�3. At higher densities, the variation
of the energy per particle increases up to ⇠ 3MeV at
n0 = 0.16 fm�1 with a very similar density dependence.
Overall, all the NNLOsim interactions turn out to be too
repulsive compared to the empirical saturation region.

We study the many-body convergence of the Hebeler+
and NNLOsim interactions by plotting in Fig. 2 the cal-
culated saturation energy as a function of the calculated
saturation density at second, third, and fourth order in
MBPT. The annotated values denote the cuto↵ scales
of the di↵erent potentials (see legend of Fig. 1). For all
shown interactions, we observe a very good convergence
in the many-body expansion, indicating that these chi-
ral interactions are perturbative over this density regime.
Moreover, we find a pronounced linear correlation band
(similar to the Coester line [49] for NN potentials), which
however overlaps with the empirical saturation region as
3N forces are included. Note that the Hebeler+ inter-
action that breaks most from the linear correlation is
“2.0/2.0 (PWA)”, for which the ci values in the 3N forces
are significantly larger.

Finally, in Table I we show the hierarchy of contri-
butions from second, third, and fourth order at n0 =

FIG. 3. (Color online) Three-nucleon couplings cD and cE
that reproduce the 3H binding energy using the EMN NN
potentials of Ref. [39] with ⇤ = 450MeV (dashed) and ⇤ =
500MeV (solid line) at N2LO (red) and N3LO (blue) combined
with consistent 3N interactions at these orders using ⇤3N =
⇤NN. The points (diamonds) on each line correspond to the
fits to the empirical saturation region (see Fig. 4), while the
annotated numbers give the corresponding values of cD/cE .

0.16 fm�3 for the Hebeler+ “1.8/2.0” interaction, which
is most commonly used in the recent ab initio calculations
of medium-mass and heavy nuclei. At second order, we
give the contributions from NN interactions (NN-only),
from NN plus 3N contributions that can be represented in
form of a density-dependent NN interactions (NN+3N),
and the residual 3N contribution (3N res.). We find that
the residual 3N term is significantly smaller compared
to the other contributions. This justifies that this con-
tribution was usually neglected in previous calculations
because it requires an explicit treatment of 3N forces in
MBPT. However, note that this in general depends on de-
tails of the NN and 3N interactions [50, 51]. Furthermore,
we find that the third-order contributions are significantly
smaller than the second-order terms for all studied inter-
actions. The fourth order contributions are particularly

• incorporation of saturation properties in fits was not possible so far 
due to insufficient efficiency of many-body calculations

• performed fits for 3NF at N2LO and N3LO                                  
to 3H and matter for new family of NN forces by                  
Entem, Machleidt and Nosyk Entem et al. PRC 96, 024004 (2017)

Applications:
Inclusion of matter information within automatized

fitting frameworks for NN+3N interactions.
see e.g. Carlsson et al., PRX 6, 011019 (2016)

Proof of principle:
Fits of 3N interactions to saturation properties of nuclear matter
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Status of 3NF matrix element calculation
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FIG. 1. (a) Couplings cE vs cD obtained by fitting the 4He binding energy for di↵erent 3N-operator forms. Triangles are
obtained by using VD1 and VE⌧ , while the other symbols are obtained for VD2 and three di↵erent VE-operator structures. The
blue and green lines (lower and upper) correspond to R0 = 1.0 fm, while the red lines (central) correspond to R0 = 1.2 fm. The
GFMC statistical errors are smaller than the symbols. The stars correspond to the values of cD and cE which simultaneously
fit the n-↵ P -wave phase shifts (see Table I and the right panel). No fit to both observables can be obtained for the case with
R0 = 1.2 fm and VD1. (b) P -wave n-↵ elastic scattering phase shifts compared with an R-matrix analysis of experimental data.
Colors and symbols correspond to the left panel. We also include phase shifts calculated at NLO which clearly indicate the
necessity of 3N interactions to fit the P -wave splitting.

TABLE I. Fit values for the couplings cD and cE for di↵erent
choices of 3N forces and cuto↵s.

V3N R0 (fm) cE cD

N2LO (D1, E⌧)
1.0 �0.63 0.0

1.2

N2LO (D2, E⌧)
1.0 �0.63 0.0

1.2 0.09 3.5

N2LO (D2, E ) 1.0 0.62 0.5

N2LO (D2, EP) 1.0 0.59 0.0

results in n-↵ P -wave scattering show a substantial sen-
sitivity: VD1

appears to have a smaller e↵ect than VD2

.

In Fig. 2, we show ground-state energies and point pro-
ton radii for A = 3, 4 nuclei at NLO and N2LO using VD2

and VE⌧ for R
0

= 1.0 fm and R
0

= 1.2 fm, in compar-
ison with experiment. The ground-state energies of the
A = 3 systems compare well with experimental values.
The ground-state energy of 4He is used in fitting cD and
cE , and so it is forced to match the experimental value to
within ⇡ 0.03 MeV. The point proton radii also compare
well with values extracted from experiment. The theo-
retical uncertainty at each order is estimated through the
expected size of higher-order contributions; see Ref. [32]
for details. We include results from LO, NLO, and N2LO

in the analysis using the Fermi momentum and the pion
mass as the small scales for neutron matter (discussed
below) and nuclei, respectively. The error bars presented
here are comparable to those shown in Ref. [33], although
it is worth emphasizing that our calculations represent a
complete estimate of the uncertainty at N2LO since we
include 3N interactions. Other choices for 3N structures
give similar results.

It is noteworthy that NN and 3N interactions derived
from chiral EFT up to N2LO have su�cient freedom such
that n-↵ scattering phase shifts in Fig. 1(b) and proper-
ties of light nuclei in Fig. 2 can be simultaneously de-
scribed. The failures of the Urbana IX model in under-
binding nuclei and underpredicting the spin-orbit split-
ting in neutron-rich systems, including the n-↵, system
were among the factors motivating the addition of the
three-pion exchange diagrams in the Illinois 3N mod-
els [7]. Our results show that chiral 3N forces at N2LO,
including the shorter-range parts in the pion exchanges,
allow the simultaneous fit. These interactions should be
tested further in light p-shell nuclei.

Finally, we study the full chiral N2LO forces, includ-
ing all 3N contributions, in neutron matter to extend the
results from Ref. [24]. More specifically, we examine the
e↵ects of di↵erent VD and VE structures on the equation
of state of neutron matter. Although these terms vanish

Gezerlis et al.,
PRL 111, 032501 (2013)
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FIG. 1. (Color online) Neutron-proton phase shifts as a function of laboratory energy Elab = 2p2/m in the 1S0, 3P0, 3P1, and
3P2 partial waves (from left to right) in comparison to the Nijmegen partial-wave analysis (PWA) [43]. The LO, NLO, and

N2LO bands are obtained by varying R0 between 0.8 − 1.2 fm (with a spectral-function cutoff Λ̃ = 800MeV).

and provide a measure of the theoretical uncertainty. For
the R0 = 1.2 fm N2LO NN potential, we list the low-
energy couplings at LO, NLO, and N2LO in Table I. At
N2LO, an isospin-symmetry-breaking contact interaction
(Cnn for neutrons) is added in the spin S = 0 channel (to
CS−3CT ), which is fit to a scattering length of −18.8 fm.
As shown in Fig. 1, the comparison with NN phase shifts
is very good for Elab ! 150MeV. This is similar for
higher partial waves and isospin T = 0 channels, which
will be reported in a later paper that will also study im-
proved fits. In cases where there are deviations for higher
energies (such as in the 3P2 channel of Fig. 1), the width
of the band signals significant theoretical uncertainties
due to the chiral EFT truncation at N2LO. The NLO
and N2LO bands nicely overlap (as shown for the cases
in Fig. 1), or are very close, but it is also apparent that
the N2LO bands are of a similar size as at NLO. This is
because the width of the bands at both NLO and N2LO
shows effects of the neglected order-Q4 contact interac-
tions.

Finally, we emphasize that the newly introduced local
chiral EFT potentials include the same physics as the
momentum-space versions. This is especially clear when
antisymmetrizing. Besides the new idea of removing the
k2 terms, there are no conceptual differences between the
two ways of regularizing (see also the early work [44]).

We then apply the developed local LO, NLO, and
N2LO chiral EFT interactions in systematic QMC cal-
culations for the first time. Since nuclear forces con-
tain quadratic spin, isospin, and tensor operators (of the
form σ

α
i Aαβ

ij σ
β
j ), the many-body wave function cannot

be expressed as a product of single-particle spin-isospin
states. All possible spin-isospin nucleon-pair states need
to be explicitly accounted for, leading to an exponential
increase in the number of possible states. As a result,
Green’s Function Monte Carlo (GFMC) calculations are
presently limited to 12 nucleons and 16 neutrons [30]. In
this Letter, we would like to simulate O(100) neutrons
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FIG. 2. (Color online) Neutron matter energy per particle
E/N as a function of density n calculated using AFDMC
with chiral EFT NN interactions at LO, NLO, and N2LO.
The statistical errors are smaller than the points shown. The
lines give the range of the energy band obtained by varying
R0 between 0.8 − 1.2 fm (as for the phase shifts in Fig. 1),
which provides an estimate of the theoretical uncertainty at
each order. The N2LO band is comparable to the one at NLO
due to the large ci couplings in the N2LO two-pion exchange.

to access the thermodynamic limit. We therefore turn
to the auxiliary-field diffusion Monte Carlo (AFDMC)
method [45], which is capable of efficiently handling spin-
dependent Hamiltonians.
Schematically, AFDMC rewrites the Green’s function

by applying a Hubbard-Stratonovich transformation us-
ing auxiliary fields to change the quadratic spin-isospin
operator dependences to linear. As a result, when applied
to a wave function that is a product of single-particle

4

in the limit of infinite cuto↵, they contribute for finite
cuto↵s. In Fig. 3 we show results for the neutron mat-
ter energy per particle as a function of the density calcu-
lated with the AFDMC method described in Refs. [3, 34].
We show the energies for R

0

= 1.0 fm for the NN and
full 3N interactions. We use VD2

and the three di↵erent
VE structures: VE⌧ (blue band), VE (red band), and
VEP (green band). The error bands are determined as in
the light nuclei case. The VEP interaction fits A = 4, 5
with a vanishing cD; hence, this choice of VE leads to
an equation of state identical to the equation of state
with NN+ VC as in Ref. [24] (the projector P is zero for
pure neutron systems), and qualitatively similar to pre-
vious results using chiral interactions at N2LO [35] and
next-to-next-to-next-to-leading order [36].

As discussed, the contributions of VD and VE are only
regulator e↵ects for neutrons. However, they are sizable
and result in a larger error band. At saturation den-
sity n

0

⇠ 0.16 fm�3, the di↵erence of the central value
of the energy per neutron after inclusion of the 3N con-
tacts VE or VE⌧ is ⇠ 2 MeV, leading to a total error
band with a range of ⇠ 6.5 MeV when considering di↵er-
ent VE structures. This relatively large uncertainty can
be qualitatively explained when considering the following
e↵ects. Because the expectation value h

P
i<j ⌧ i ·⌧ ji has

a sign opposite to that of the expectation value h i in
4He, cE will also have opposite signs in the two cases to
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FIG. 2. Ground-state energies and point proton radii for A =
3, 4 nuclei calculated at NLO and N2LO (with VD2 and VE⌧ )
compared with experiment. Blue (red) symbols correspond
to R0 = 1.0 fm (R0 = 1.2 fm). The errors are obtained as
described in the text and also include the GFMC statistical
uncertainties.

FIG. 3. The energy per particle in neutron matter as a
function of density for the NN and full 3N interactions at
N2LO with R0 = 1.0 fm. We use VD2 and di↵erent 3N contact
structures: The blue band corresponds to VE⌧ , the red band
to VE , and the green band to VEP . The green band coincides
with the NN+ 2⇡-exchange-only result because both VD and
VE vanish in this case. The bands are calculated as described
in the text.

fit the binding energy. However, in neutron matter both
operators are the same, spreading the uncertainty band.
A similar argument was made in Ref. [37].

With the regulators used here, the Fierz-
rearrangement invariance valid at infinite cuto↵ is
only approximate at finite cuto↵, and hence the di↵erent
choices of VD and VE can lead to di↵erent results.
The di↵erent local structures can lead to finite relative
P -wave contributions. These can be eliminated by
choosing VEP , which has a projection onto even-parity
waves (predominantly S waves). The usual nonlocal
regulator in momentum space does not couple S and P
waves.

In conclusion, we find for the first time that chiral in-
teractions can simultaneously fit light nuclei and low-
energy P -wave n-↵ scattering and provide reasonable es-
timates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not pro-
vide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to de-
scribe global properties of nuclear systems.

We also find that the ambiguities associated with
contact-operator choices can be significant when mov-
ing from light nuclei to neutron matter and possibly to
medium-mass nuclei, where the T = 3

2

triples play a

Recent and current developments of novel nuclear interactions

Lynn et al.,
PRL 116, 062501 (2016)  

1. local EFT interactions, suitable for Quantum Monte Carlo calculations
   status: NN plus 3N up to N2LO, calculations of few-body systems and neutron matter

Gezerlis et al.,
PRC 90, 054323 (2014)
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FIG. 1. (a) Couplings cE vs cD obtained by fitting the 4He binding energy for di↵erent 3N-operator forms. Triangles are
obtained by using VD1 and VE⌧ , while the other symbols are obtained for VD2 and three di↵erent VE-operator structures. The
blue and green lines (lower and upper) correspond to R0 = 1.0 fm, while the red lines (central) correspond to R0 = 1.2 fm. The
GFMC statistical errors are smaller than the symbols. The stars correspond to the values of cD and cE which simultaneously
fit the n-↵ P -wave phase shifts (see Table I and the right panel). No fit to both observables can be obtained for the case with
R0 = 1.2 fm and VD1. (b) P -wave n-↵ elastic scattering phase shifts compared with an R-matrix analysis of experimental data.
Colors and symbols correspond to the left panel. We also include phase shifts calculated at NLO which clearly indicate the
necessity of 3N interactions to fit the P -wave splitting.

TABLE I. Fit values for the couplings cD and cE for di↵erent
choices of 3N forces and cuto↵s.

V3N R0 (fm) cE cD

N2LO (D1, E⌧)
1.0 �0.63 0.0

1.2

N2LO (D2, E⌧)
1.0 �0.63 0.0

1.2 0.09 3.5

N2LO (D2, E ) 1.0 0.62 0.5

N2LO (D2, EP) 1.0 0.59 0.0

results in n-↵ P -wave scattering show a substantial sen-
sitivity: VD1

appears to have a smaller e↵ect than VD2

.

In Fig. 2, we show ground-state energies and point pro-
ton radii for A = 3, 4 nuclei at NLO and N2LO using VD2

and VE⌧ for R
0

= 1.0 fm and R
0

= 1.2 fm, in compar-
ison with experiment. The ground-state energies of the
A = 3 systems compare well with experimental values.
The ground-state energy of 4He is used in fitting cD and
cE , and so it is forced to match the experimental value to
within ⇡ 0.03 MeV. The point proton radii also compare
well with values extracted from experiment. The theo-
retical uncertainty at each order is estimated through the
expected size of higher-order contributions; see Ref. [32]
for details. We include results from LO, NLO, and N2LO

in the analysis using the Fermi momentum and the pion
mass as the small scales for neutron matter (discussed
below) and nuclei, respectively. The error bars presented
here are comparable to those shown in Ref. [33], although
it is worth emphasizing that our calculations represent a
complete estimate of the uncertainty at N2LO since we
include 3N interactions. Other choices for 3N structures
give similar results.

It is noteworthy that NN and 3N interactions derived
from chiral EFT up to N2LO have su�cient freedom such
that n-↵ scattering phase shifts in Fig. 1(b) and proper-
ties of light nuclei in Fig. 2 can be simultaneously de-
scribed. The failures of the Urbana IX model in under-
binding nuclei and underpredicting the spin-orbit split-
ting in neutron-rich systems, including the n-↵, system
were among the factors motivating the addition of the
three-pion exchange diagrams in the Illinois 3N mod-
els [7]. Our results show that chiral 3N forces at N2LO,
including the shorter-range parts in the pion exchanges,
allow the simultaneous fit. These interactions should be
tested further in light p-shell nuclei.

Finally, we study the full chiral N2LO forces, includ-
ing all 3N contributions, in neutron matter to extend the
results from Ref. [24]. More specifically, we examine the
e↵ects of di↵erent VD and VE structures on the equation
of state of neutron matter. Although these terms vanish

Gezerlis et al.,
PRL 111, 032501 (2013)
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FIG. 1. (Color online) Neutron-proton phase shifts as a function of laboratory energy Elab = 2p2/m in the 1S0, 3P0, 3P1, and
3P2 partial waves (from left to right) in comparison to the Nijmegen partial-wave analysis (PWA) [43]. The LO, NLO, and

N2LO bands are obtained by varying R0 between 0.8 − 1.2 fm (with a spectral-function cutoff Λ̃ = 800MeV).

and provide a measure of the theoretical uncertainty. For
the R0 = 1.2 fm N2LO NN potential, we list the low-
energy couplings at LO, NLO, and N2LO in Table I. At
N2LO, an isospin-symmetry-breaking contact interaction
(Cnn for neutrons) is added in the spin S = 0 channel (to
CS−3CT ), which is fit to a scattering length of −18.8 fm.
As shown in Fig. 1, the comparison with NN phase shifts
is very good for Elab ! 150MeV. This is similar for
higher partial waves and isospin T = 0 channels, which
will be reported in a later paper that will also study im-
proved fits. In cases where there are deviations for higher
energies (such as in the 3P2 channel of Fig. 1), the width
of the band signals significant theoretical uncertainties
due to the chiral EFT truncation at N2LO. The NLO
and N2LO bands nicely overlap (as shown for the cases
in Fig. 1), or are very close, but it is also apparent that
the N2LO bands are of a similar size as at NLO. This is
because the width of the bands at both NLO and N2LO
shows effects of the neglected order-Q4 contact interac-
tions.

Finally, we emphasize that the newly introduced local
chiral EFT potentials include the same physics as the
momentum-space versions. This is especially clear when
antisymmetrizing. Besides the new idea of removing the
k2 terms, there are no conceptual differences between the
two ways of regularizing (see also the early work [44]).

We then apply the developed local LO, NLO, and
N2LO chiral EFT interactions in systematic QMC cal-
culations for the first time. Since nuclear forces con-
tain quadratic spin, isospin, and tensor operators (of the
form σ

α
i Aαβ

ij σ
β
j ), the many-body wave function cannot

be expressed as a product of single-particle spin-isospin
states. All possible spin-isospin nucleon-pair states need
to be explicitly accounted for, leading to an exponential
increase in the number of possible states. As a result,
Green’s Function Monte Carlo (GFMC) calculations are
presently limited to 12 nucleons and 16 neutrons [30]. In
this Letter, we would like to simulate O(100) neutrons

0 0.05 0.1 0.15

n [fm-3]

0

5

10

15

20

E/
N

 [M
eV

]

AFDMC LO
AFDMC NLO
AFDMC N2LO

R 0
=0

.8
 fm

R 0
=1

.2
 fm

FIG. 2. (Color online) Neutron matter energy per particle
E/N as a function of density n calculated using AFDMC
with chiral EFT NN interactions at LO, NLO, and N2LO.
The statistical errors are smaller than the points shown. The
lines give the range of the energy band obtained by varying
R0 between 0.8 − 1.2 fm (as for the phase shifts in Fig. 1),
which provides an estimate of the theoretical uncertainty at
each order. The N2LO band is comparable to the one at NLO
due to the large ci couplings in the N2LO two-pion exchange.

to access the thermodynamic limit. We therefore turn
to the auxiliary-field diffusion Monte Carlo (AFDMC)
method [45], which is capable of efficiently handling spin-
dependent Hamiltonians.
Schematically, AFDMC rewrites the Green’s function

by applying a Hubbard-Stratonovich transformation us-
ing auxiliary fields to change the quadratic spin-isospin
operator dependences to linear. As a result, when applied
to a wave function that is a product of single-particle

4

in the limit of infinite cuto↵, they contribute for finite
cuto↵s. In Fig. 3 we show results for the neutron mat-
ter energy per particle as a function of the density calcu-
lated with the AFDMC method described in Refs. [3, 34].
We show the energies for R

0

= 1.0 fm for the NN and
full 3N interactions. We use VD2

and the three di↵erent
VE structures: VE⌧ (blue band), VE (red band), and
VEP (green band). The error bands are determined as in
the light nuclei case. The VEP interaction fits A = 4, 5
with a vanishing cD; hence, this choice of VE leads to
an equation of state identical to the equation of state
with NN+ VC as in Ref. [24] (the projector P is zero for
pure neutron systems), and qualitatively similar to pre-
vious results using chiral interactions at N2LO [35] and
next-to-next-to-next-to-leading order [36].

As discussed, the contributions of VD and VE are only
regulator e↵ects for neutrons. However, they are sizable
and result in a larger error band. At saturation den-
sity n

0

⇠ 0.16 fm�3, the di↵erence of the central value
of the energy per neutron after inclusion of the 3N con-
tacts VE or VE⌧ is ⇠ 2 MeV, leading to a total error
band with a range of ⇠ 6.5 MeV when considering di↵er-
ent VE structures. This relatively large uncertainty can
be qualitatively explained when considering the following
e↵ects. Because the expectation value h

P
i<j ⌧ i ·⌧ ji has

a sign opposite to that of the expectation value h i in
4He, cE will also have opposite signs in the two cases to
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FIG. 2. Ground-state energies and point proton radii for A =
3, 4 nuclei calculated at NLO and N2LO (with VD2 and VE⌧ )
compared with experiment. Blue (red) symbols correspond
to R0 = 1.0 fm (R0 = 1.2 fm). The errors are obtained as
described in the text and also include the GFMC statistical
uncertainties.

FIG. 3. The energy per particle in neutron matter as a
function of density for the NN and full 3N interactions at
N2LO with R0 = 1.0 fm. We use VD2 and di↵erent 3N contact
structures: The blue band corresponds to VE⌧ , the red band
to VE , and the green band to VEP . The green band coincides
with the NN+ 2⇡-exchange-only result because both VD and
VE vanish in this case. The bands are calculated as described
in the text.

fit the binding energy. However, in neutron matter both
operators are the same, spreading the uncertainty band.
A similar argument was made in Ref. [37].

With the regulators used here, the Fierz-
rearrangement invariance valid at infinite cuto↵ is
only approximate at finite cuto↵, and hence the di↵erent
choices of VD and VE can lead to di↵erent results.
The di↵erent local structures can lead to finite relative
P -wave contributions. These can be eliminated by
choosing VEP , which has a projection onto even-parity
waves (predominantly S waves). The usual nonlocal
regulator in momentum space does not couple S and P
waves.

In conclusion, we find for the first time that chiral in-
teractions can simultaneously fit light nuclei and low-
energy P -wave n-↵ scattering and provide reasonable es-
timates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not pro-
vide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to de-
scribe global properties of nuclear systems.

We also find that the ambiguities associated with
contact-operator choices can be significant when mov-
ing from light nuclei to neutron matter and possibly to
medium-mass nuclei, where the T = 3
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FIG. 1. (a) Couplings cE vs cD obtained by fitting the 4He binding energy for di↵erent 3N-operator forms. Triangles are
obtained by using VD1 and VE⌧ , while the other symbols are obtained for VD2 and three di↵erent VE-operator structures. The
blue and green lines (lower and upper) correspond to R0 = 1.0 fm, while the red lines (central) correspond to R0 = 1.2 fm. The
GFMC statistical errors are smaller than the symbols. The stars correspond to the values of cD and cE which simultaneously
fit the n-↵ P -wave phase shifts (see Table I and the right panel). No fit to both observables can be obtained for the case with
R0 = 1.2 fm and VD1. (b) P -wave n-↵ elastic scattering phase shifts compared with an R-matrix analysis of experimental data.
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TABLE I. Fit values for the couplings cD and cE for di↵erent
choices of 3N forces and cuto↵s.

V3N R0 (fm) cE cD

N2LO (D1, E⌧)
1.0 �0.63 0.0

1.2

N2LO (D2, E⌧)
1.0 �0.63 0.0

1.2 0.09 3.5

N2LO (D2, E ) 1.0 0.62 0.5

N2LO (D2, EP) 1.0 0.59 0.0

results in n-↵ P -wave scattering show a substantial sen-
sitivity: VD1

appears to have a smaller e↵ect than VD2

.

In Fig. 2, we show ground-state energies and point pro-
ton radii for A = 3, 4 nuclei at NLO and N2LO using VD2

and VE⌧ for R
0

= 1.0 fm and R
0

= 1.2 fm, in compar-
ison with experiment. The ground-state energies of the
A = 3 systems compare well with experimental values.
The ground-state energy of 4He is used in fitting cD and
cE , and so it is forced to match the experimental value to
within ⇡ 0.03 MeV. The point proton radii also compare
well with values extracted from experiment. The theo-
retical uncertainty at each order is estimated through the
expected size of higher-order contributions; see Ref. [32]
for details. We include results from LO, NLO, and N2LO

in the analysis using the Fermi momentum and the pion
mass as the small scales for neutron matter (discussed
below) and nuclei, respectively. The error bars presented
here are comparable to those shown in Ref. [33], although
it is worth emphasizing that our calculations represent a
complete estimate of the uncertainty at N2LO since we
include 3N interactions. Other choices for 3N structures
give similar results.

It is noteworthy that NN and 3N interactions derived
from chiral EFT up to N2LO have su�cient freedom such
that n-↵ scattering phase shifts in Fig. 1(b) and proper-
ties of light nuclei in Fig. 2 can be simultaneously de-
scribed. The failures of the Urbana IX model in under-
binding nuclei and underpredicting the spin-orbit split-
ting in neutron-rich systems, including the n-↵, system
were among the factors motivating the addition of the
three-pion exchange diagrams in the Illinois 3N mod-
els [7]. Our results show that chiral 3N forces at N2LO,
including the shorter-range parts in the pion exchanges,
allow the simultaneous fit. These interactions should be
tested further in light p-shell nuclei.

Finally, we study the full chiral N2LO forces, includ-
ing all 3N contributions, in neutron matter to extend the
results from Ref. [24]. More specifically, we examine the
e↵ects of di↵erent VD and VE structures on the equation
of state of neutron matter. Although these terms vanish

Gezerlis et al.,
PRL 111, 032501 (2013)
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FIG. 1. (Color online) Neutron-proton phase shifts as a function of laboratory energy Elab = 2p2/m in the 1S0, 3P0, 3P1, and
3P2 partial waves (from left to right) in comparison to the Nijmegen partial-wave analysis (PWA) [43]. The LO, NLO, and

N2LO bands are obtained by varying R0 between 0.8 − 1.2 fm (with a spectral-function cutoff Λ̃ = 800MeV).

and provide a measure of the theoretical uncertainty. For
the R0 = 1.2 fm N2LO NN potential, we list the low-
energy couplings at LO, NLO, and N2LO in Table I. At
N2LO, an isospin-symmetry-breaking contact interaction
(Cnn for neutrons) is added in the spin S = 0 channel (to
CS−3CT ), which is fit to a scattering length of −18.8 fm.
As shown in Fig. 1, the comparison with NN phase shifts
is very good for Elab ! 150MeV. This is similar for
higher partial waves and isospin T = 0 channels, which
will be reported in a later paper that will also study im-
proved fits. In cases where there are deviations for higher
energies (such as in the 3P2 channel of Fig. 1), the width
of the band signals significant theoretical uncertainties
due to the chiral EFT truncation at N2LO. The NLO
and N2LO bands nicely overlap (as shown for the cases
in Fig. 1), or are very close, but it is also apparent that
the N2LO bands are of a similar size as at NLO. This is
because the width of the bands at both NLO and N2LO
shows effects of the neglected order-Q4 contact interac-
tions.

Finally, we emphasize that the newly introduced local
chiral EFT potentials include the same physics as the
momentum-space versions. This is especially clear when
antisymmetrizing. Besides the new idea of removing the
k2 terms, there are no conceptual differences between the
two ways of regularizing (see also the early work [44]).

We then apply the developed local LO, NLO, and
N2LO chiral EFT interactions in systematic QMC cal-
culations for the first time. Since nuclear forces con-
tain quadratic spin, isospin, and tensor operators (of the
form σ

α
i Aαβ

ij σ
β
j ), the many-body wave function cannot

be expressed as a product of single-particle spin-isospin
states. All possible spin-isospin nucleon-pair states need
to be explicitly accounted for, leading to an exponential
increase in the number of possible states. As a result,
Green’s Function Monte Carlo (GFMC) calculations are
presently limited to 12 nucleons and 16 neutrons [30]. In
this Letter, we would like to simulate O(100) neutrons

0 0.05 0.1 0.15

n [fm-3]

0

5

10

15

20

E/
N

 [M
eV

]

AFDMC LO
AFDMC NLO
AFDMC N2LO

R 0
=0

.8
 fm

R 0
=1

.2
 fm

FIG. 2. (Color online) Neutron matter energy per particle
E/N as a function of density n calculated using AFDMC
with chiral EFT NN interactions at LO, NLO, and N2LO.
The statistical errors are smaller than the points shown. The
lines give the range of the energy band obtained by varying
R0 between 0.8 − 1.2 fm (as for the phase shifts in Fig. 1),
which provides an estimate of the theoretical uncertainty at
each order. The N2LO band is comparable to the one at NLO
due to the large ci couplings in the N2LO two-pion exchange.

to access the thermodynamic limit. We therefore turn
to the auxiliary-field diffusion Monte Carlo (AFDMC)
method [45], which is capable of efficiently handling spin-
dependent Hamiltonians.
Schematically, AFDMC rewrites the Green’s function

by applying a Hubbard-Stratonovich transformation us-
ing auxiliary fields to change the quadratic spin-isospin
operator dependences to linear. As a result, when applied
to a wave function that is a product of single-particle

4

in the limit of infinite cuto↵, they contribute for finite
cuto↵s. In Fig. 3 we show results for the neutron mat-
ter energy per particle as a function of the density calcu-
lated with the AFDMC method described in Refs. [3, 34].
We show the energies for R

0

= 1.0 fm for the NN and
full 3N interactions. We use VD2

and the three di↵erent
VE structures: VE⌧ (blue band), VE (red band), and
VEP (green band). The error bands are determined as in
the light nuclei case. The VEP interaction fits A = 4, 5
with a vanishing cD; hence, this choice of VE leads to
an equation of state identical to the equation of state
with NN+ VC as in Ref. [24] (the projector P is zero for
pure neutron systems), and qualitatively similar to pre-
vious results using chiral interactions at N2LO [35] and
next-to-next-to-next-to-leading order [36].

As discussed, the contributions of VD and VE are only
regulator e↵ects for neutrons. However, they are sizable
and result in a larger error band. At saturation den-
sity n

0

⇠ 0.16 fm�3, the di↵erence of the central value
of the energy per neutron after inclusion of the 3N con-
tacts VE or VE⌧ is ⇠ 2 MeV, leading to a total error
band with a range of ⇠ 6.5 MeV when considering di↵er-
ent VE structures. This relatively large uncertainty can
be qualitatively explained when considering the following
e↵ects. Because the expectation value h

P
i<j ⌧ i ·⌧ ji has

a sign opposite to that of the expectation value h i in
4He, cE will also have opposite signs in the two cases to
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FIG. 2. Ground-state energies and point proton radii for A =
3, 4 nuclei calculated at NLO and N2LO (with VD2 and VE⌧ )
compared with experiment. Blue (red) symbols correspond
to R0 = 1.0 fm (R0 = 1.2 fm). The errors are obtained as
described in the text and also include the GFMC statistical
uncertainties.

FIG. 3. The energy per particle in neutron matter as a
function of density for the NN and full 3N interactions at
N2LO with R0 = 1.0 fm. We use VD2 and di↵erent 3N contact
structures: The blue band corresponds to VE⌧ , the red band
to VE , and the green band to VEP . The green band coincides
with the NN+ 2⇡-exchange-only result because both VD and
VE vanish in this case. The bands are calculated as described
in the text.

fit the binding energy. However, in neutron matter both
operators are the same, spreading the uncertainty band.
A similar argument was made in Ref. [37].

With the regulators used here, the Fierz-
rearrangement invariance valid at infinite cuto↵ is
only approximate at finite cuto↵, and hence the di↵erent
choices of VD and VE can lead to di↵erent results.
The di↵erent local structures can lead to finite relative
P -wave contributions. These can be eliminated by
choosing VEP , which has a projection onto even-parity
waves (predominantly S waves). The usual nonlocal
regulator in momentum space does not couple S and P
waves.

In conclusion, we find for the first time that chiral in-
teractions can simultaneously fit light nuclei and low-
energy P -wave n-↵ scattering and provide reasonable es-
timates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not pro-
vide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to de-
scribe global properties of nuclear systems.

We also find that the ambiguities associated with
contact-operator choices can be significant when mov-
ing from light nuclei to neutron matter and possibly to
medium-mass nuclei, where the T = 3
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good description of all A ≤ 4 data. Some of the πN LECs
display large variations, but the χ2=Ndof (without model
error) for the πN data is within 2.28(4) for all of these
potentials. The subleading πN LECs become more positive
when NN scattering data at higher energies are included,
and c1, in particular, carries a larger (relative) statistical
uncertainty than the others. It is noteworthy that for a given
Tmax
Lab , and up to 1σ precision, the πN LECs exhibit Λ

independence. The NNN LECs, cD and cE, tend to depend
less on Tmax

Lab at larger values of Λ. However, they always
remain natural. It is also interesting to note that the tensor
contact CE1

is insensitive to Λ variations but strongly
dependent on the Tmax

Lab cut. It was shown in Fig. 6 that CE1

and c4 correlate strongly. This effect can already be
expected from the structure of the underlying expression
for the NNLO interaction.
To gauge the magnitude of model variations in heavier

nuclei, we computed the binding energies of 4He and 16O
by using the previously mentioned family of 42 NNLO
potentials. The resulting binding energies for 4He and 16O,
computed in the NCSM and CC, respectively, are shown in
Fig. 11. The NCSM calculations were carried out in a HO
model space with Nmax ¼ 20 and ℏω ¼ 36 MeV. The CC
calculations were carried out in the so-called Λ−CCSD(T)
approximation [7] in 15 major oscillator shells with
ℏω ¼ 22 MeV. The largest energy difference when going
from 13 to 15 oscillator shells was 3.6 MeV (observed
for Λ ¼ 600 MeV). From the observed convergence of the
correlation energy we estimate the uncertainty of excluded
higher rank excitation clusters to "5 MeV. For our
purposes, this provides well-enough converged results.
The NNN force was truncated at the normal-ordered
two-body level in the Hartree-Fock basis.

The Eð4HeÞ predictions vary within about a 2-MeV
range. For Eð16OÞ, this variation increases dramatically to
about 35 MeV. Irrespective of the discrepancy with the
measured value, the spread of the central values indicates
the presence of a surprisingly large systematic error when
extrapolating to heavier systems.
The statistical uncertainties remain small: tens of keV for

4He and a few hundred keV for 16O. These uncertainties are
obtained from the quadratic approximation with the com-
puted Jacobian and Hessian for 4He, while a brute-force
Monte Carlo simulation with 2.5 × 104 CC calculations
was performed for 16O. This massive set of CC calculations
employed the singles and doubles approximation (CCSD)
in nine major oscillator shells. We conclude that the
statistical uncertainties of the predictions for Eð4HeÞ and
Eð16OÞ at NNLO are much smaller than the variations due
to changing Λ or Tmax

Lab . However, this is only true for
simultaneously optimized potentials. For the separately
optimized NNLO potential (NNLOsep), the statistical
uncertainty of the Eð4HeÞ prediction is five times larger
than the observed variations due to changing Λ and Tmax

Lab .

V. OUTLOOK

The extended analysis of systematic uncertainties pre-
sented above suggests that large fluctuations are induced in
heavier nuclei (see Fig. 11). Furthermore, while predictions
for 4He are accurate over a rather wide range of regulator
parameters, the binding energy for 16O turns out to be
underestimated for the entire range used in this study. In
fact, there is no overlap between the theoretical predictions
and the experimental results, even though the former ones
have large error bars.
Based on our findings, we recommend that continued

efforts towards an ab initio framework based on χEFT
should involve additional work in, at least, three different
directions:
(1) Explore the alternative strategy of informing the

model about low-energy many-body observables.
(2) Diversify and extend the statistical analysis and

perform a sensitivity analysis of input data.
(3) Continue efforts towards higher orders of the chiral

expansion, and possibly revisit the power counting.
Let us comment briefly on these research directions. The
poor many-body scaling observed in Fig. 11 was prag-
matically accounted for in the construction of the so-called
NNLOsat potential presented in Ref. [35], where heavier
nuclei were also included in the fit. The accuracy of many-
body predictions was shown to be much improved, but the
uncertainty analysis is much more difficult within such a
strategy.
Second, to get a handle on possible bias in the statistical

analysis due to the choice of statistical technique, it is
important to apply different types of optimization and
uncertainty quantification methods. Various choices exist,

FIG. 11. Binding-energy predictions for (a) 4He and (b) 16O
with the different reoptimizations of NNLOsim. On the x axis
is the employed cutoff Λ. Vertically aligned red markers
correspond to different Tmax

Lab for the NN scattering data used
in the optimization. The experimental binding energies are
Eð4HeÞ ≈ −28.30 MeV, represented by a gray band in panel
(a), and Eð16OÞ≈−127.6MeV [98]. Statistical error bars on the
theoretical results are smaller than the marker size on this
energy scale.
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potentials, there were no signs of convergence in the
description of, e.g., np scattering data.
If the experimental database of πN scattering cross

sectionswas complete, then itwould be possible to separately
constrain,with zerovariances, the correspondingLECs.Only
this scenario would render it unnecessary to include the πN
scattering data in the simultaneous objective function.
Implicitly, this scenario also assumes a perfect theory, i.e.,
that the employed χEFT can account for the dynamics of
pionic interactions. Of course, reality lies somewhere in
between, and a simultaneous optimization approach is
preferable in the present situation. There exists ongoing
efforts where the πN sector of χEFT is extrapolated and fitted
separately in the unphysical kinematical region, where it
exhibits a stronger curvature with respect to the data [96].
Overall, the importance of applying simultaneous

optimization is most prominent at higher chiral orders
since the subleading πN LECs enter first at NNLO. In
fact, the separately optimized NNLOsep potential contains
a large systematic uncertainty by construction. We find
that the scaling factor for the NN scattering model error,
CNN , decreases from 1.6 to 1.0 mb1=2 when going from
NNLOsep to the simultaneously optimized NNLOsim.
This implies that the separate, or sequential, optimization
protocol introduces additional artificial systematic errors
not due to the chiral expansion but due to incorrectly fitted
LECs. This scenario is avoided in a simultaneous opti-
mization. The scaling factor for the πN scattering model
error, CπN, remains at 3.6 mb1=2 for both NNLOsep and
NNLOsim.

The size of the model error is determined such that the
overall scattering χ2=Ndof is unity, which means that it
depends on the observables entering the optimization. We
can explore the stability of our approach by reoptimizing
NNLOsim with respect to different truncations of the
input NN scattering data. To this end, we adjust the allowed
Tmax
lab between 125 and 290 MeV in six steps. It turns out

that our procedure for extracting the model error is very
stable. The resulting normalization constants CNN vary
between 1.0 mb1=2 and 1.3 mb1=2 as shown in Fig. 10(a).

FIG. 9. Comparison between selected NN and πN experimental data sets and theoretical calculations for chiral interactions at LO,
NLO, and NNLO. The bands indicate the total errors (statistical plus model errors). (a) np total cross section for the sequentially
optimized interactions with no clear signature of convergence with increasing chiral order. All other results are for the simultaneously
optimized interactions: LOsim, NLOsim, and NNLOsim. (b) np total cross section; (c) np differential cross section; (d) πN charge-
exchange, differential cross section; (e) πN elastic, differential cross section.

FIG. 10. Predictions for the different reoptimizations of NNLO-
sim. On the x axis is the maximum T lab for the NN scattering
data used in the optimization. (a) Model error amplitude (20)
reoptimized so that χ2=Ndof ¼ 1 for the respective data subset.
(b) Model prediction for the np total cross section at T lab ¼
300 MeV with error bars representing statistical and model
errors for the different reoptimizations.
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potentials, there were no signs of convergence in the
description of, e.g., np scattering data.
If the experimental database of πN scattering cross

sectionswas complete, then itwould be possible to separately
constrain,with zerovariances, the correspondingLECs.Only
this scenario would render it unnecessary to include the πN
scattering data in the simultaneous objective function.
Implicitly, this scenario also assumes a perfect theory, i.e.,
that the employed χEFT can account for the dynamics of
pionic interactions. Of course, reality lies somewhere in
between, and a simultaneous optimization approach is
preferable in the present situation. There exists ongoing
efforts where the πN sector of χEFT is extrapolated and fitted
separately in the unphysical kinematical region, where it
exhibits a stronger curvature with respect to the data [96].
Overall, the importance of applying simultaneous

optimization is most prominent at higher chiral orders
since the subleading πN LECs enter first at NNLO. In
fact, the separately optimized NNLOsep potential contains
a large systematic uncertainty by construction. We find
that the scaling factor for the NN scattering model error,
CNN , decreases from 1.6 to 1.0 mb1=2 when going from
NNLOsep to the simultaneously optimized NNLOsim.
This implies that the separate, or sequential, optimization
protocol introduces additional artificial systematic errors
not due to the chiral expansion but due to incorrectly fitted
LECs. This scenario is avoided in a simultaneous opti-
mization. The scaling factor for the πN scattering model
error, CπN, remains at 3.6 mb1=2 for both NNLOsep and
NNLOsim.

The size of the model error is determined such that the
overall scattering χ2=Ndof is unity, which means that it
depends on the observables entering the optimization. We
can explore the stability of our approach by reoptimizing
NNLOsim with respect to different truncations of the
input NN scattering data. To this end, we adjust the allowed
Tmax
lab between 125 and 290 MeV in six steps. It turns out

that our procedure for extracting the model error is very
stable. The resulting normalization constants CNN vary
between 1.0 mb1=2 and 1.3 mb1=2 as shown in Fig. 10(a).

FIG. 9. Comparison between selected NN and πN experimental data sets and theoretical calculations for chiral interactions at LO,
NLO, and NNLO. The bands indicate the total errors (statistical plus model errors). (a) np total cross section for the sequentially
optimized interactions with no clear signature of convergence with increasing chiral order. All other results are for the simultaneously
optimized interactions: LOsim, NLOsim, and NNLOsim. (b) np total cross section; (c) np differential cross section; (d) πN charge-
exchange, differential cross section; (e) πN elastic, differential cross section.

FIG. 10. Predictions for the different reoptimizations of NNLO-
sim. On the x axis is the maximum T lab for the NN scattering
data used in the optimization. (a) Model error amplitude (20)
reoptimized so that χ2=Ndof ¼ 1 for the respective data subset.
(b) Model prediction for the np total cross section at T lab ¼
300 MeV with error bars representing statistical and model
errors for the different reoptimizations.
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2. simultaneous fit of NN and 3N forces to two- and few-body observables
    status: NN plus 3N up to N2LO, N3LO currently in development

Gezerlis et al.,
PRC 90, 054323 (2014)
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FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a [40,41], b [24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = −0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths a and effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d-state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp −7.8258 −7.8188 −7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann −18.929 −18.900 −18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp −23.728 −23.732 −23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]

051301-2

RAPID COMMUNICATIONS
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FIG. 2. (Color online) Selected neutron-proton scattering phase-
shifts as a function of the laboratory scattering energy TLab. (Top)
NNLOsat prediction (solid lines) compared to the Nijmegen phase
shift analysis [95] (symbols) at low energies TLab < 35 MeV. Note
the two vertical scales. (Bottom) Neutron-proton scattering phase
shifts from NNLOsat (red diamonds) compared to the Nijmegen
phase shift analysis (black squares) and the NNLO potentials (green)
from Ref. [77].

dominated by about 90% of 1p-1h(p1/2 → d5/2) excitations,
at 6.34 MeV. The energy of the 3−

1 state is strongly correlated
with the charge radius of 16O, with smaller charge radii
leading to higher excitation energies. For 1p-1h excited states,
the excitation energy depends on the particle-hole gap and
therefore on one-nucleon separation energies of the A = 16
and A = 17 systems. The charge radius depends also on the
proton separation energy Sp. For 16O we find Sp = 10.69 MeV
and the neutron separation energy Sn(17O) = 4.0 MeV, in an
acceptable agreement with the experimental values of 12.12
and 4.14 MeV, respectively. For 17F we find Sp = 0.5 MeV, to
be compared with the experimental threshold at 0.6 MeV.

The inset of Fig. 4 shows that the 2−
1 state in 16O also comes

out well, suggesting a 1p-1h nature. However, the 1−
1 state is

about 1.5 MeV too high compared with experiment. This state
is dominated by 1p-1h excitations from the occupied p1/2 to
the unoccupied s1/2 orbitals. In 17O the 1/2+ state is computed
at an excitation energy of 2.2 MeV, which is about 1.4 MeV

FIG. 3. (Color online) Energies (in MeV) of selected excited
states for various nuclei using NNLOsat. For 6Li we also include
spectra from the NCSM (dotted lines), and isospin quantum numbers
are also given. The NCSM results were obtained with Nmax = 10 and
!! = 16 MeV. Parenthesis denote tentative spins assignments for
experimental levels. Data are from Refs. [100–103].

too high. This probably explains the discrepancy observed for
the 1− state in 16O.

Figure 4 shows that the experimental charge-density of 16O
is well reproduced with NNLOsat, and our charge form factor
is, for momenta up to the second diffraction maximum, similar
in quality to what Mihaila and Heisenberg [11] achieved with
the Av18 + UIX potential. For the heavier isotopes 22,24O and
22,24F Fig. 3 shows good agreement between theory and experi-
ment for excited states. For 22F our computed spin assignments
agree with results from shell-model Hamiltonians [106] and
with recent ab initio results [89]. The binding energies for
14N, 22,24F are 103.7, 163, and 175.1 MeV, respectively, in
good agreement with data (104.7, 167.7, and 179.1 MeV). We
also computed the intrinsic charge (matter) radii of 22,24O and
obtained 2.72 fm (2.80 fm) and 2.76 fm (2.95 fm), respectively.
The matter radius of 22O agrees with the experimental result
from Ref. [91]. We note that the computed spectra in 18O is too

FIG. 4. (Color online) Charge density in 16O computed as in
Ref. [110] compared to the experimental charge density [111].
The inset compares computed low-lying negative-parity states with
experiment.
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FIG. 5. (Color online) Equation of state for symmetric nuclear
matter from chiral interactions. Solid red line is the prediction of
NNLOsat. Blue dashed-dotted and black dashed lines: Ref. [56].
Symbols (red diamond, blue circle, black square) mark the corre-
sponding saturation points. Triangles are saturation points from other
models (upward triangles [33], rightward triangles [112], downward
triangles [36]). The corresponding incompressibilities (in MeV) are
indicated by numbers. Green box shows empirical saturation point.

compressed compared to experiment (theory yields 0.7 MeV
compared to 1.9 MeV for the first excited 2+ state), possibly
due to the too-high 1/2+ excited state in 17O. In general,
the quality of our spectra for sd-shell nuclei is comparable
to those of recent state-of-the-art calculations with chiral
Hamiltonians [44,107–109], while radii are much improved.

For 40Ca the computed binding energy E = 326 MeV,
charge radius rch = 3.48 fm, and E(3−

1 ) = 3.81 MeV all agree
well with the experimental values of 342 MeV, 3.4776(19)
fm [65], and 3.736 MeV respectively. We checked that our
energies for the 3−

1 states in 16O and 40Ca are practically
free from spurious center-of-mass effects. The results for 40Ca
illustrate the predictive power of NNLOsat when extrapolating
to medium-mass nuclei.

Finally, we present predictions for infinite nuclear mat-
ter. The accurate reproduction of the saturation point and
incompressibility of symmetric nuclear matter has been a
challenge for ab initio approaches, with representative results
from chiral interactions shown in Fig. 5. The solid line shows
the equation of state for NNLOsat. Its saturation point is close
to the empirical point, and its incompressibility K = 253
lies within the accepted empirical range [21]. At saturation
density, coupled-cluster with doubles yields about 6 MeV per
particle in correlation energy, while triples corrections (and
residual NNN forces beyond the normal-ordered two-body
approximation) yield another 1.5 MeV.

Let us briefly discuss the saturation mechanism. Similar
to Vlow k potentials [5], the NN interaction of NNLOsat
is soft and yields nuclei with too-large binding energies
and too-small radii. The NNN interactions of NNLOsat are
essential to arrive at physical nuclei, similarly to the role
of NNN forces in the saturation of nuclear matter with
low-momentum potentials [33]. This situation is reminiscent
of the role the three-body terms play in nuclear density
functional theory [113].

Summary. We have developed a consistently optimized
interaction from chiral EFT at NNLO that can be applied
to nuclei and infinite nuclear matter. Our guideline was the
simultaneous optimization of NN and NNN forces to experi-
mental data, including two-body and few-body data, as well as
properties of selected light nuclei such as carbon and oxygen
isotopes. The optimization is based on low-energy observables
including binding energies and radii. The predictions made
with the new interaction NNLOsat include accurate charge radii
and binding energies. Spectra for 40Ca and selected isotopes
of lithium, nitrogen, oxygen and fluorine isotopes are well
reproduced, as well as the energies of 3−

1 excitations in 16O
and 40Ca. To our knowledge, NNLOsat is currently the only
microscopically founded interaction that allows for a good
description of nuclei (including their masses and radii) in a
wide mass range from few-body systems to medium mass.
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FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a [40,41], b [24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = −0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths a and effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d-state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp −7.8258 −7.8188 −7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann −18.929 −18.900 −18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp −23.728 −23.732 −23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]
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FIG. 2. (Color online) Selected neutron-proton scattering phase-
shifts as a function of the laboratory scattering energy TLab. (Top)
NNLOsat prediction (solid lines) compared to the Nijmegen phase
shift analysis [95] (symbols) at low energies TLab < 35 MeV. Note
the two vertical scales. (Bottom) Neutron-proton scattering phase
shifts from NNLOsat (red diamonds) compared to the Nijmegen
phase shift analysis (black squares) and the NNLO potentials (green)
from Ref. [77].

dominated by about 90% of 1p-1h(p1/2 → d5/2) excitations,
at 6.34 MeV. The energy of the 3−

1 state is strongly correlated
with the charge radius of 16O, with smaller charge radii
leading to higher excitation energies. For 1p-1h excited states,
the excitation energy depends on the particle-hole gap and
therefore on one-nucleon separation energies of the A = 16
and A = 17 systems. The charge radius depends also on the
proton separation energy Sp. For 16O we find Sp = 10.69 MeV
and the neutron separation energy Sn(17O) = 4.0 MeV, in an
acceptable agreement with the experimental values of 12.12
and 4.14 MeV, respectively. For 17F we find Sp = 0.5 MeV, to
be compared with the experimental threshold at 0.6 MeV.

The inset of Fig. 4 shows that the 2−
1 state in 16O also comes

out well, suggesting a 1p-1h nature. However, the 1−
1 state is

about 1.5 MeV too high compared with experiment. This state
is dominated by 1p-1h excitations from the occupied p1/2 to
the unoccupied s1/2 orbitals. In 17O the 1/2+ state is computed
at an excitation energy of 2.2 MeV, which is about 1.4 MeV

FIG. 3. (Color online) Energies (in MeV) of selected excited
states for various nuclei using NNLOsat. For 6Li we also include
spectra from the NCSM (dotted lines), and isospin quantum numbers
are also given. The NCSM results were obtained with Nmax = 10 and
!! = 16 MeV. Parenthesis denote tentative spins assignments for
experimental levels. Data are from Refs. [100–103].

too high. This probably explains the discrepancy observed for
the 1− state in 16O.

Figure 4 shows that the experimental charge-density of 16O
is well reproduced with NNLOsat, and our charge form factor
is, for momenta up to the second diffraction maximum, similar
in quality to what Mihaila and Heisenberg [11] achieved with
the Av18 + UIX potential. For the heavier isotopes 22,24O and
22,24F Fig. 3 shows good agreement between theory and experi-
ment for excited states. For 22F our computed spin assignments
agree with results from shell-model Hamiltonians [106] and
with recent ab initio results [89]. The binding energies for
14N, 22,24F are 103.7, 163, and 175.1 MeV, respectively, in
good agreement with data (104.7, 167.7, and 179.1 MeV). We
also computed the intrinsic charge (matter) radii of 22,24O and
obtained 2.72 fm (2.80 fm) and 2.76 fm (2.95 fm), respectively.
The matter radius of 22O agrees with the experimental result
from Ref. [91]. We note that the computed spectra in 18O is too

FIG. 4. (Color online) Charge density in 16O computed as in
Ref. [110] compared to the experimental charge density [111].
The inset compares computed low-lying negative-parity states with
experiment.
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FIG. 1. Chiral expansion of the 3H Eg.s. based on the NN potentials of Refs. [15,16] for the regulator R = 1.0 fm and using Q = Mπ/"b.
Panel (a) shows incomplete results based on NN forces only, with uncertainties being estimated via Eqs. (5) and (6). Panel (b) shows incomplete
results based on NN forces only, with uncertainties being estimated via Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for
i ! 3. Panel (c) shows the projected results assuming that the LECs in the N2LO 3NF are tuned to reproduce the 3H Eg.s. and using Eqs. (5)
and (6) to specify the uncertainty.

long-range part of the NN potential is regularized in position
space by multiplying with the function

f

(
r

R

)
=

[
1 − exp

(
− r2

R2

)]6

, (1)

with the cutoff R chosen in the range 0.8–1.2 fm.
In this paper we, for the first time, apply these novel chiral

NN forces beyond the two-nucleon system and demonstrate
their suitability for modern ab initio few- and many-body
methods. By applying the new method for error analysis, we
present unambiguous evidence for missing 3NF effects and
demonstrate that the size of the required 3NF contributions
agrees well with expectations based on Weinberg’s power
counting. We also estimate the theoretical accuracy for various
observables achievable at N4LO and identify the energy region
in elastic Nd scattering that is best suited for testing the chiral
3NF.

II. UNCERTAINTY QUANTIFICATION

We first describe our procedure for estimating the the-
oretical uncertainty. Let X(p) be some observable with p
referring to the corresponding momentum scale and X(i)(p),
i = 0,2,3, . . ., a prediction at order Qi in the chiral expansion.

We further define the order-Qi corrections to X(p) via

#X(2) ≡ X(2) − X(0), #X(i) ≡ X(i) − X(i−1), i ! 3, (2)

so that the chiral expansion for X takes the form

X(i) = X(0) + #X(2) + · · · + #X(i). (3)

Generally, the size of the corrections is expected to be

#X(i) = O(QiX(0)). (4)

In Ref. [16], the validity of this estimate was confirmed
for the total neutron-proton cross section. In Refs. [15,16],
quantitative estimates of the theoretical uncertainty δX(i) of the
chiral EFT prediction X(i) were made by using the expected
and actual sizes of higher-order contributions. Specifically, the
following procedure was employed:

δX(0) = Q2|X(0)|,
δX(i) = max

2"j"i
(Qi+1|X(0)|, Qi+1−j |#X(j )|), (5)

where i ! 2 and Q = max(p/"b, Mπ/"b) with "b =
600, 500, and 400 MeV for the regulator choices of R =
0.8–1.0, 1.1, and 1.2 fm, respectively. The sizes of actual
higher-order calculations provide additional information on

TABLE I. Ground-state energies Eg.s. of 3H and 4He (in MeV) and the point-proton radius rp of 4He (in fm) calculated by using the
improved NN chiral potentials of Refs. [15,16] up to N4LO for the cutoff R = 1.0 fm in comparison with empirical information. The quoted
uncertainties for the theoretical predictions are estimated via Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for i ! 3.

LO NLO N2LO N3LO N4LO Empirical

Eg.s. (3H) −11.3(3.7) −8.36(83) −8.26(20) −7.53(5) −7.63(1) −8.48
Eg.s. (4He) −45.5(21.7) −28.6(4.8) −28.1(1.2) −23.75(28) −24.27(6) −28.30
rp (4He) 1.064(499) 1.389(174) 1.405(41) 1.563(9) 1.547(2) 1.462(6)
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FIG. 3. Predictions for the differential cross section and nucleon
Ay in elastic Nd scattering based on the NN potentials of Refs. [15,16]
for R = 1.0 fm without including the 3NF. Theoretical uncertainties
are estimated via Eqs. (5) and (6) for chiral order i = 2 and via
Eqs. (7) and (8) for i ! 3. The bands of increasing width show the
estimated theoretical uncertainty at N4LO (red), N3LO (blue), N2LO
(green), and NLO (yellow). The dotted (dashed) lines show the results
based on the CD Bonn NN potential [20] (CD Bonn NN potential in
combination with the Tucson–Melbourne 3NF [21]). For references
to proton-deuteron data (symbols), see Ref. [5].

only, while using Eqs. (5) and (6) amounts to overestimating
the actual error. The N3LO (N4LO) results for the 3H Eg.s. are
expected to be accurate at the level of ∼50 keV (∼10 keV)
for the regulator choices of R = 0.8, 0.9, and 1.0 fm. Note
that the size of the inferred 3NF contribution agrees well
with the uncertainty at NLO, which reflects the estimated
impact of the N2LO contributions to the Hamiltonian. This
is fully in line with expectations based on the Weinberg
power counting [1,2]. We further emphasize that the sizable
underbinding of the triton with the NN potentials at N3LO
and N4LO is not limited to the employed regulator choice of
R = 1.0 fm. We find Eg.s. = −7.47 . . . − 7.56 MeV (Eg.s. =
−7.48 . . . − 7.63 MeV) for the variation of the regulator in the
range R = 0.8 . . . 1.2 fm at N3LO (N4LO).

We now turn to Nd scattering observables, which are
calculated by solving the Faddeev equation in the partial-wave

FIG. 4. Predictions for the tensor analyzing powers Ayy and Axx

in elastic Nd scattering based on the NN potentials of Refs. [15,16]
for R = 1.0 fm without including the 3NF. For notations see Fig. 3.

basis. We take into account all partial waves up to the
total angular momentum jmax = 5 in two-nucleon subsystems.
Isospin-breaking effects are taken into account in the standard
way as described in Ref. [18]. Our predictions for the Nd
total cross section are visualized in Fig. 2, see also Table II.
Similar to the 3H Eg.s., one observes a significant discrepancy
between the theoretical predictions based on the NN forces
only and data, which provides clear evidence for missing 3NF
contributions. The size of the discrepancy agrees within 1.5
times the estimated size of N2LO corrections shown by the
NLO error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated size of
N2LO contributions. Given that the cross section at low energy
is governed by the S-wave spin-doublet and spin-quartet Nd
scattering lengths, this observation can be naturally explained.
Indeed, the spin-quartet scattering length is almost an order of
magnitude larger than that of the spin-doublet and much less
sensitive to the 3NF as a consequence of the Pauli principle.

Our predictions for Nd differential cross section and
analyzing powers Ay(N),Ayy , and Axx are shown in Figs. 3 and
4. At the lowest energy of 10 MeV, there is little apparent need
for 3NF effects except for Ay . Interestingly, the fine-tuning
nature of this observable is clearly reflected in large theoretical
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FIG. 5. (Color online) Equation of state for symmetric nuclear
matter from chiral interactions. Solid red line is the prediction of
NNLOsat. Blue dashed-dotted and black dashed lines: Ref. [56].
Symbols (red diamond, blue circle, black square) mark the corre-
sponding saturation points. Triangles are saturation points from other
models (upward triangles [33], rightward triangles [112], downward
triangles [36]). The corresponding incompressibilities (in MeV) are
indicated by numbers. Green box shows empirical saturation point.

compressed compared to experiment (theory yields 0.7 MeV
compared to 1.9 MeV for the first excited 2+ state), possibly
due to the too-high 1/2+ excited state in 17O. In general,
the quality of our spectra for sd-shell nuclei is comparable
to those of recent state-of-the-art calculations with chiral
Hamiltonians [44,107–109], while radii are much improved.

For 40Ca the computed binding energy E = 326 MeV,
charge radius rch = 3.48 fm, and E(3−

1 ) = 3.81 MeV all agree
well with the experimental values of 342 MeV, 3.4776(19)
fm [65], and 3.736 MeV respectively. We checked that our
energies for the 3−

1 states in 16O and 40Ca are practically
free from spurious center-of-mass effects. The results for 40Ca
illustrate the predictive power of NNLOsat when extrapolating
to medium-mass nuclei.

Finally, we present predictions for infinite nuclear mat-
ter. The accurate reproduction of the saturation point and
incompressibility of symmetric nuclear matter has been a
challenge for ab initio approaches, with representative results
from chiral interactions shown in Fig. 5. The solid line shows
the equation of state for NNLOsat. Its saturation point is close
to the empirical point, and its incompressibility K = 253
lies within the accepted empirical range [21]. At saturation
density, coupled-cluster with doubles yields about 6 MeV per
particle in correlation energy, while triples corrections (and
residual NNN forces beyond the normal-ordered two-body
approximation) yield another 1.5 MeV.

Let us briefly discuss the saturation mechanism. Similar
to Vlow k potentials [5], the NN interaction of NNLOsat
is soft and yields nuclei with too-large binding energies
and too-small radii. The NNN interactions of NNLOsat are
essential to arrive at physical nuclei, similarly to the role
of NNN forces in the saturation of nuclear matter with
low-momentum potentials [33]. This situation is reminiscent
of the role the three-body terms play in nuclear density
functional theory [113].

Summary. We have developed a consistently optimized
interaction from chiral EFT at NNLO that can be applied
to nuclei and infinite nuclear matter. Our guideline was the
simultaneous optimization of NN and NNN forces to experi-
mental data, including two-body and few-body data, as well as
properties of selected light nuclei such as carbon and oxygen
isotopes. The optimization is based on low-energy observables
including binding energies and radii. The predictions made
with the new interaction NNLOsat include accurate charge radii
and binding energies. Spectra for 40Ca and selected isotopes
of lithium, nitrogen, oxygen and fluorine isotopes are well
reproduced, as well as the energies of 3−

1 excitations in 16O
and 40Ca. To our knowledge, NNLOsat is currently the only
microscopically founded interaction that allows for a good
description of nuclei (including their masses and radii) in a
wide mass range from few-body systems to medium mass.
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Recent and current developments of novel nuclear interactions
3. fits of NN plus 3N forces to two-, few- and many-body observables
   status: NN plus 3N up to N2LO, NN phase shifts only fitted up to Tlab~35 MeV

4. semilocal NN forces, development of improved method to estimate uncertainties
    status: NN up to N4LO, 3NF up to N3LOS. BINDER et al. PHYSICAL REVIEW C 93, 044002 (2016)

FIG. 1. Chiral expansion of the 3H Eg.s. based on the NN potentials of Refs. [15,16] for the regulator R = 1.0 fm and using Q = Mπ/"b.
Panel (a) shows incomplete results based on NN forces only, with uncertainties being estimated via Eqs. (5) and (6). Panel (b) shows incomplete
results based on NN forces only, with uncertainties being estimated via Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for
i ! 3. Panel (c) shows the projected results assuming that the LECs in the N2LO 3NF are tuned to reproduce the 3H Eg.s. and using Eqs. (5)
and (6) to specify the uncertainty.

long-range part of the NN potential is regularized in position
space by multiplying with the function

f

(
r

R

)
=

[
1 − exp

(
− r2

R2

)]6

, (1)

with the cutoff R chosen in the range 0.8–1.2 fm.
In this paper we, for the first time, apply these novel chiral

NN forces beyond the two-nucleon system and demonstrate
their suitability for modern ab initio few- and many-body
methods. By applying the new method for error analysis, we
present unambiguous evidence for missing 3NF effects and
demonstrate that the size of the required 3NF contributions
agrees well with expectations based on Weinberg’s power
counting. We also estimate the theoretical accuracy for various
observables achievable at N4LO and identify the energy region
in elastic Nd scattering that is best suited for testing the chiral
3NF.

II. UNCERTAINTY QUANTIFICATION

We first describe our procedure for estimating the the-
oretical uncertainty. Let X(p) be some observable with p
referring to the corresponding momentum scale and X(i)(p),
i = 0,2,3, . . ., a prediction at order Qi in the chiral expansion.

We further define the order-Qi corrections to X(p) via

#X(2) ≡ X(2) − X(0), #X(i) ≡ X(i) − X(i−1), i ! 3, (2)

so that the chiral expansion for X takes the form

X(i) = X(0) + #X(2) + · · · + #X(i). (3)

Generally, the size of the corrections is expected to be

#X(i) = O(QiX(0)). (4)

In Ref. [16], the validity of this estimate was confirmed
for the total neutron-proton cross section. In Refs. [15,16],
quantitative estimates of the theoretical uncertainty δX(i) of the
chiral EFT prediction X(i) were made by using the expected
and actual sizes of higher-order contributions. Specifically, the
following procedure was employed:

δX(0) = Q2|X(0)|,
δX(i) = max

2"j"i
(Qi+1|X(0)|, Qi+1−j |#X(j )|), (5)

where i ! 2 and Q = max(p/"b, Mπ/"b) with "b =
600, 500, and 400 MeV for the regulator choices of R =
0.8–1.0, 1.1, and 1.2 fm, respectively. The sizes of actual
higher-order calculations provide additional information on

TABLE I. Ground-state energies Eg.s. of 3H and 4He (in MeV) and the point-proton radius rp of 4He (in fm) calculated by using the
improved NN chiral potentials of Refs. [15,16] up to N4LO for the cutoff R = 1.0 fm in comparison with empirical information. The quoted
uncertainties for the theoretical predictions are estimated via Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for i ! 3.

LO NLO N2LO N3LO N4LO Empirical

Eg.s. (3H) −11.3(3.7) −8.36(83) −8.26(20) −7.53(5) −7.63(1) −8.48
Eg.s. (4He) −45.5(21.7) −28.6(4.8) −28.1(1.2) −23.75(28) −24.27(6) −28.30
rp (4He) 1.064(499) 1.389(174) 1.405(41) 1.563(9) 1.547(2) 1.462(6)
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FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a [40,41], b [24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = −0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths a and effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d-state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp −7.8258 −7.8188 −7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann −18.929 −18.900 −18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp −23.728 −23.732 −23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]
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FIG. 2. (Color online) Selected neutron-proton scattering phase-
shifts as a function of the laboratory scattering energy TLab. (Top)
NNLOsat prediction (solid lines) compared to the Nijmegen phase
shift analysis [95] (symbols) at low energies TLab < 35 MeV. Note
the two vertical scales. (Bottom) Neutron-proton scattering phase
shifts from NNLOsat (red diamonds) compared to the Nijmegen
phase shift analysis (black squares) and the NNLO potentials (green)
from Ref. [77].

dominated by about 90% of 1p-1h(p1/2 → d5/2) excitations,
at 6.34 MeV. The energy of the 3−

1 state is strongly correlated
with the charge radius of 16O, with smaller charge radii
leading to higher excitation energies. For 1p-1h excited states,
the excitation energy depends on the particle-hole gap and
therefore on one-nucleon separation energies of the A = 16
and A = 17 systems. The charge radius depends also on the
proton separation energy Sp. For 16O we find Sp = 10.69 MeV
and the neutron separation energy Sn(17O) = 4.0 MeV, in an
acceptable agreement with the experimental values of 12.12
and 4.14 MeV, respectively. For 17F we find Sp = 0.5 MeV, to
be compared with the experimental threshold at 0.6 MeV.

The inset of Fig. 4 shows that the 2−
1 state in 16O also comes

out well, suggesting a 1p-1h nature. However, the 1−
1 state is

about 1.5 MeV too high compared with experiment. This state
is dominated by 1p-1h excitations from the occupied p1/2 to
the unoccupied s1/2 orbitals. In 17O the 1/2+ state is computed
at an excitation energy of 2.2 MeV, which is about 1.4 MeV

FIG. 3. (Color online) Energies (in MeV) of selected excited
states for various nuclei using NNLOsat. For 6Li we also include
spectra from the NCSM (dotted lines), and isospin quantum numbers
are also given. The NCSM results were obtained with Nmax = 10 and
!! = 16 MeV. Parenthesis denote tentative spins assignments for
experimental levels. Data are from Refs. [100–103].

too high. This probably explains the discrepancy observed for
the 1− state in 16O.

Figure 4 shows that the experimental charge-density of 16O
is well reproduced with NNLOsat, and our charge form factor
is, for momenta up to the second diffraction maximum, similar
in quality to what Mihaila and Heisenberg [11] achieved with
the Av18 + UIX potential. For the heavier isotopes 22,24O and
22,24F Fig. 3 shows good agreement between theory and experi-
ment for excited states. For 22F our computed spin assignments
agree with results from shell-model Hamiltonians [106] and
with recent ab initio results [89]. The binding energies for
14N, 22,24F are 103.7, 163, and 175.1 MeV, respectively, in
good agreement with data (104.7, 167.7, and 179.1 MeV). We
also computed the intrinsic charge (matter) radii of 22,24O and
obtained 2.72 fm (2.80 fm) and 2.76 fm (2.95 fm), respectively.
The matter radius of 22O agrees with the experimental result
from Ref. [91]. We note that the computed spectra in 18O is too

FIG. 4. (Color online) Charge density in 16O computed as in
Ref. [110] compared to the experimental charge density [111].
The inset compares computed low-lying negative-parity states with
experiment.
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FIG. 5. (Color online) Equation of state for symmetric nuclear
matter from chiral interactions. Solid red line is the prediction of
NNLOsat. Blue dashed-dotted and black dashed lines: Ref. [56].
Symbols (red diamond, blue circle, black square) mark the corre-
sponding saturation points. Triangles are saturation points from other
models (upward triangles [33], rightward triangles [112], downward
triangles [36]). The corresponding incompressibilities (in MeV) are
indicated by numbers. Green box shows empirical saturation point.

compressed compared to experiment (theory yields 0.7 MeV
compared to 1.9 MeV for the first excited 2+ state), possibly
due to the too-high 1/2+ excited state in 17O. In general,
the quality of our spectra for sd-shell nuclei is comparable
to those of recent state-of-the-art calculations with chiral
Hamiltonians [44,107–109], while radii are much improved.

For 40Ca the computed binding energy E = 326 MeV,
charge radius rch = 3.48 fm, and E(3−

1 ) = 3.81 MeV all agree
well with the experimental values of 342 MeV, 3.4776(19)
fm [65], and 3.736 MeV respectively. We checked that our
energies for the 3−

1 states in 16O and 40Ca are practically
free from spurious center-of-mass effects. The results for 40Ca
illustrate the predictive power of NNLOsat when extrapolating
to medium-mass nuclei.

Finally, we present predictions for infinite nuclear mat-
ter. The accurate reproduction of the saturation point and
incompressibility of symmetric nuclear matter has been a
challenge for ab initio approaches, with representative results
from chiral interactions shown in Fig. 5. The solid line shows
the equation of state for NNLOsat. Its saturation point is close
to the empirical point, and its incompressibility K = 253
lies within the accepted empirical range [21]. At saturation
density, coupled-cluster with doubles yields about 6 MeV per
particle in correlation energy, while triples corrections (and
residual NNN forces beyond the normal-ordered two-body
approximation) yield another 1.5 MeV.

Let us briefly discuss the saturation mechanism. Similar
to Vlow k potentials [5], the NN interaction of NNLOsat
is soft and yields nuclei with too-large binding energies
and too-small radii. The NNN interactions of NNLOsat are
essential to arrive at physical nuclei, similarly to the role
of NNN forces in the saturation of nuclear matter with
low-momentum potentials [33]. This situation is reminiscent
of the role the three-body terms play in nuclear density
functional theory [113].

Summary. We have developed a consistently optimized
interaction from chiral EFT at NNLO that can be applied
to nuclei and infinite nuclear matter. Our guideline was the
simultaneous optimization of NN and NNN forces to experi-
mental data, including two-body and few-body data, as well as
properties of selected light nuclei such as carbon and oxygen
isotopes. The optimization is based on low-energy observables
including binding energies and radii. The predictions made
with the new interaction NNLOsat include accurate charge radii
and binding energies. Spectra for 40Ca and selected isotopes
of lithium, nitrogen, oxygen and fluorine isotopes are well
reproduced, as well as the energies of 3−

1 excitations in 16O
and 40Ca. To our knowledge, NNLOsat is currently the only
microscopically founded interaction that allows for a good
description of nuclei (including their masses and radii) in a
wide mass range from few-body systems to medium mass.
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Why is textbook nuclear physics so hard?
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Momentum units (� = c = 1): typical relative momentum
in large nucleus � 1 fm�1 � 200 MeV but . . .

Repulsive core =⇥ large high-k (� 2 fm�1) components
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Equation of state of symmetric nuclear matter:
nuclear saturation
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FIG. 5: (Color online) Ground-state energies from CR-CC(2,3) for (a) the NN+3N-induced Hamiltonian starting from the N3LO and N2LO-
optimized NN interaction and (c) the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c and Λ3N = 350 MeV/c. The boxes represent the
spread of the results from α = 0.04 fm4 to α = 0.08 fm4, and the tip points into the direction of smaller values of α. Also shown are the
contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN+3N-full results. All results employ !Ω = 24 MeV
and 3N interactions with E3max = 18 in NO2B approximation and full inclusion of the 3N interaction in CCSD up to E3max = 12. Experimental
binding energies [32] are shown as black bars.

ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al., Phys. Lett B 736, 119 (2014)  

coupled cluster (CC) framework
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• significant discrepancies to experimental data for heavy nuclei for 
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ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.
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Three-body forces and the limit of oxygen isotopes

Takaharu Otsuka,1, 2, 3 Toshio Suzuki,4 Jason D. Holt,5 Achim Schwenk,5 and Yoshinori Akaishi6

1Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan
2Center for Nuclear Study, University of Tokyo, Hongo, Tokyo 113-0033, Japan

3National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, 48824, USA
4Department of Physics, College of Humanities and Sciences,

Nihon University, Sakurajosui 3, Tokyo 156-8550, Japan
5TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada

6RIKEN Nishina Center, Hirosawa, Wako-shi, Saitama 351-0198, Japan

The limit of neutron-rich nuclei, the neutron drip-line, evolves regularly from light to medium-
mass nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced
in shell-model calculations derived from microscopic two-nucleon forces. Here, we present the first
microscopic explanation of the oxygen anomaly based on three-nucleon forces that have been estab-
lished in few-body systems. This leads to repulsive contributions to the interactions among excess
neutrons that change the location of the neutron drip-line from 28O to the experimentally observed
24O. Since the mechanism is robust and general, our findings impact the prediction of the most
neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.

PACS numbers: 21.10.-k, 21.30.-x, 21.60.Cs, 27.20.+n

One of the central challenges of nuclear physics is to
develop a unified description of all nuclei created in the
laboratory and the cosmos based on the underlying forces
between neutrons and protons (nucleons). This involves
understanding the sequences of isotopes in the nuclear
chart, Fig. 1, from the limits of proton-rich nuclei to
the neutron drip-line. These limits have been established
experimentally up to oxygen with proton number Z=8.
Mapping out the neutron drip-line for larger Z [1] and ex-
ploring unexpected structures in neutron-rich nuclei are a
current frontier in the physics of rare isotopes. The years
of discovery in Fig. 1 highlight the tremendous advances
made over the last decade.

Figure 1 shows that the neutron drip-line evolves reg-
ularly with increasing proton number, with an odd-even
bound-unbound pattern due to neutron halos and pairing
effects. The only known anomalous behavior is present
in the oxygen isotopes, where the drip-line is strikingly
close to the stability line [2]. Already in the fluorine iso-
topes, with one more proton, the drip-line is back to the
regular trend [3]. In this Letter, we discuss this puzzle
and show that three-body forces are necessary to explain
why 24O [4, 5] is the heaviest oxygen isotope.

Three-nucleon (3N) forces were introduced in the pio-
neering work of Fujita and Miyazawa (FM) [7] and arise
because nucleons are composite particles. The FM 3N
mechanism is due to one nucleon virtually exciting a sec-
ond nucleon to the ∆(1232MeV) resonance, which is de-
excited by scattering off a third nucleon, see Fig. 3(e).

Three-nucleon interactions arise naturally in chiral ef-
fective field theory (EFT) [8], which provides a system-
atic basis for nuclear forces, where nucleons interact via
pion exchanges and shorter-range contact interactions.
The resulting nuclear forces are organized in a system-
atic expansion from leading to successively higher orders,
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FIG. 1: Stable and unstable nuclei with Z ! 14 and neutron
number N [6]. The oxygen anomaly in the location of the
neutron drip-line is highlighted. Element names and years of
discovery of the most neutron-rich nuclei are given. The axis
numbers indicate the conventional magic numbers.

and include the ∆ excitation as the dominant part of the
leading 3N forces [8]. The quantitative role of 3N interac-
tions has been highlighted in recent ab-initio calculations
of light nuclei with A = N + Z ! 12 [9, 10].
We first discuss why the oxygen anomaly is not re-

produced in shell-model calculations derived from micro-
scopic NN forces. This can be understood starting from
the stable 16O and adding neutrons into single-particle
orbitals (with standard quantum numbers nlj) above the
16O core. We will show that correlations do not change
this intuitive picture. Starting from 16O, neutrons first
fill the 0d5/2 orbitals, with a closed subshell configuration
at 22O (N = 14), then the 1s1/2 orbitals at

24O (N = 16),
and finally the 0d3/2 orbitals at 28O (N = 20). For sim-
plicity, we will drop the n label in the following.
In Fig. 2, we show the single-particle energies (SPE) of

the neutron d5/2, s1/2 and d3/2 orbitals at subshell clo-

• remarkable agreement between different many-body frameworks
• excellent agreement between theory and experiment for masses of 
oxygen and calcium isotopes based on specific chiral interactions
• need to quantify theoretical uncertainties

Gallant et al. 
PRL 109, 032506 (2012)  
 
Wienholtz et al. 
Nature 498, 346 (2013)  

Studies of neutron-rich nuclei

during spectra 5 to 11, which resulted in the disappearance of the ion
counts in question. This unambiguously identified these ions as 54Ca.
Figure 2b corresponds to about 90 min of data-taking. MR-TOF MS
spectra of 53Ca and 54Ca were taken in total for 12.6 h and 18.2 h,
respectively.

Our results (rICR and CTOF) for the exotic calcium isotopes investi-
gated (51,52Ca and 53,54Ca, respectively) are summarized in Table 1,
including the resulting mass excesses. The ISOLTRAP values of 51Ca

and 52Ca determined with the Penning trap agree well with the recent
measurements by TITAN4. The uncertainties were reduced by factors
of 40 and 80, respectively, owing to longer excitation times (600 ms in
the case of ISOLTRAP as compared to 80 ms in the case of TITAN),
higher cyclotron frequencies and higher calcium ion yields. The masses
of 53,54Ca determined by the MR-TOF MS have been experimentally
addressed for the first time. As a consistency check, the 52Ca mass was
also measured by the new MR-TOF method, and the mass excess is in
full agreement with both Penning-trap results (Table 1). Furthermore,
a second cross-check measurement in the vicinity of the newly mea-
sured masses was performed. The mass excess of the stable isotope 58Fe
was determined with the stable reference isotopes 58Ni and 85Rb. The
measurement resulted in a mass excess of 262,168.0(47.0) keV/c2,
where the statistical uncertainty is given in parentheses. With a devi-
ation of 13.5 keV/c2 from the literature value28, it agrees well within its
statistical uncertainty. The uncertainties in the MR-TOF method
quoted in Table 1 for 53Ca and 54Ca denote the statistical standard
deviation. For the cross-checks, the MR-TOF method has thus been
employed to measure the mass of a slightly lighter isotope and a slightly
heavier isotope, 52Ca and 58Fe, respectively. The deviations from the
Penning-trap measurement and the literature value, respectively, are
taken as estimates of the relative systematic uncertainty, which lies in
the low 1027 range. Additional cross-check measurements to determine
the systematic uncertainty have been performed over a wide mass range
and will be detailed elsewhere. The precision and fast measurement
cycle of the MR-TOF method makes this a promising approach for the
mass spectrometry of isotopes with lower yield and shorter half-life
than currently accessible.

The binding energies encode information about the ordering of shell
occupation, and thus are essential in the quest for shell closures in exotic
regions of the nuclear chart. Our high-precision data can be used to
provide a critical benchmark for the behaviour far from stability, namely,
the two-neutron separation energy S2n 5 B(Z,N) 2 B(Z,N 2 2), where
B(Z,N) is the binding energy (defined as positive) of a nucleus with Z
protons and N neutrons. The S2n values are a preferred probe of the
evolution of nuclear structure with neutron number, and can be used to
challenge model predictions, as shown in Fig. 3. The pronounced
decrease in S2n revealed by the new 53Ca and 54Ca ISOLTRAP masses
is similar to the decrease beyond the doubly magic 48Ca. In general,
correlations induced by deformation could also cause such a reduction
in S2n, but in the calcium isotopes studied here deformation is expected
to have no role29. Therefore, our new data unambiguously establish a
prominent shell closure at N 5 32. The strength of this shell closure can
be evaluated from the two-neutron shell gap, that is, the two-neutron
separation energy difference S2n(Z,N) 2 S2n(Z,N 1 2). Figure 3c shows a
two-neutron shell gap for 52Ca of almost 4 MeV, where the rise towards
52Ca at N 5 32 is as steep as that towards 48Ca at N 5 28. The peaks at
N 5 Z in Fig. 3c are due to the additional correlation energy for sym-
metric N 5 Z nuclei, known as Wigner energy.

Calcium marks the heaviest chain of isotopes studied with three-
nucleon forces based on chiral effective field theory3–6. Figure 3a shows
the predictions of our microscopic calculations with three-nucleon
forces (that is, ‘NN 1 3N’) using many-body perturbation theory
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Figure 3 | Comparison of experimental results with theoretical predictions.
a, b, Two-neutron separation energy S2n (ref. 28) of the neutron-rich calcium
isotopes as a function of neutron number N, where the new ISOLTRAP values
are shown in red. In a, the ISOLTRAP masses are compared to predictions from
microscopic valence-shell calculations with three-nucleon forces (NN13N)
based on chiral effective field theory (solid line, MBPT) and large-space coupled-
cluster calculations including three-nucleon forces as density-dependent two-
body interactions (dashed line, CC)5. For comparison, we also show the results
of the phenomenological shell-model interactions KB3G21 and GXPF1A22. In
b, the ISOLTRAP masses are compared to state-of-the-art nuclear density-
functional-theory predictions15,29. Insets in a and b show the difference between
the theoretical predictions and experiment. c, Empirical two-neutron shell gap
as a function of proton number Z for N 5 28 and N 5 32. Error bars, 61 s.d.
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Microscopic calculations of the equation of state
• microscopic framework to 
calculate equation of state for 
general proton fractions

• uncertainty bands determined 
by set of 7 Hamiltonians

Drischler, KH, Schwenk,
PRC 054314 (2016)

x =
np

np + nn

• many-body framework allows 
treatment of general 
3N interaction


