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Few-neutron systems

terra incognita
at the doorstep. ..

bound dineutron state not excluded by pionless EFT
Hammer + SK, PLB 736 208 (2014)

@ recent indications for a three-neutron resonance state. . .
Gandolfi et al., PRL 118 232501 (2017)

@ ...although excluded by previous theoretical work
Offermann + Gléckle, NPA 318, 138 (1979); Lazauskas + Carbonell, PRC 71 044004 (2005)

possible evidence for tetraneutron resonance
Kisamori et al., PRL 116 052501 (2016)
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Tetraneutron evidence

@ Proton
# Neutron

e -
PhySlCS ABOUT BROWSE PRESS COLLECTIONS

Viewpoint: Can Four Neutrons Tango?

Nigel Orr, Laboratoire de Physique Corpusculaire de Caen, ENSICAEN, IN2P3/CNRS et Université de Caen
Normandie, 14050 Caen cedex, France

February 3,2016 » P!

Evidence that the four-neutron system known as the tetraneutron exists as aresonance has been uncovered in
an experiment at the RIKEN Radioactive lon Beam Factory.
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Short (recent) history of tetraneutron states

@ 2002: experimental claim of bound tetraneutron Marques et al., PRC 65 044006
@ 2003: several studies indicate unbound four-neutron system

Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90 252501
© 2005: observable tetraneutron resonance excluded Lazauskas PRC 72 034003
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Short (recent) history of tetraneutron states

@ 2002: experimental claim of bound tetraneutron Marques et al., PRC 65 044006

@ 2003: several studies indicate unbound four-neutron system
Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90 252501

© 2005: observable tetraneutron resonance excluded Lazauskas PRC 72 034003
@ 2016: RIKEN experiment: possible tetraneutron resonance
Er = (0.83 £ 0.65stat. = 1.255y6t ) MeV, I’ < 2.6 M€V Kisamori et al., PRL 116 052501

© following this: several new theoretical investigations
e complex scaling — need unphys. 7" = 3/2 3N force Hiyama et al., PRC 93 044004 (2016)
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14 e indications for three-neutron resonance...

{1 e ...lower in energy than tetraneutron state

Gandolfi et al., PRL 118 232501 (2017)

500

Few-body resonances from finite-volume calculations — p. 4



How to tackle resonances?

V(r)

Resonances 20

15
@ metastable states .

@ decay width <« lifetime 05

1 2 3 4 5

@ Look for jump by 7 in scattering phase shift:
\/simple X possibly ambiguous (background), need 2-cluster system
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How to tackle resonances?

V(r)

Resonances 20
1.5

@ metastable states .
@ decay width <« lifetime 05

@ Look for jump by 7 in scattering phase shift:
\/simple X possibly ambiguous (background), need 2-cluster system

S(E) ~0.05]
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@ Find complex poles in S-matrix:
e.g., Gléckle, PRC 18 564 (1978); Borasoy et al., PRC 74 055201 (2006); ...
v direct, clear signature X technically challenging, needs analytic pot.
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@ Find complex poles in S-matrix:
e.g., Gléckle, PRC 18 564 (1978); Borasoy et al., PRC 74 055201 (2006); ...

v direct, clear signature X technically challenging, needs analytic pot.

© Put system into periodic box!
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Finite periodic boxes

@ physical system enclosed
in finite volume (box)

e typically used:
periodic boundary conditions

~» volume-dependent energies
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Finite periodic boxes

@ physical system enclosed
in finite volume (box)

e typically used:
periodic boundary conditions

~» volume-dependent energies

Lischer formalism

Physical properties encoded in the L-dependent energy levels!

@ infinite-volume S-matrix governs discrete finite-volume spectrum
@ PBC natural for lattice calculations. . .

@ ...but can also be implemented with other methods
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Bound states

R 2
H[ypp) = _;_M 1VB)

J\ - :
binding momentum &

<> intrinsic length scale

Asymptotic wavefunction overlap

AB(L)= Y. [ @ ropm) V) vs(e+nL) + O V3

n|=1
| | M. Liischer, Commun. Math. Phys. 104 177 (1986)

—KL
o for S-wave states, one finds AB(L) = —37r|’y|2e 7
1

+ O(e—\/QHL)

@ in general, the prefactor is a polynomial in 1/kL
SK, Lee, Hammer, PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)
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General bound-state volume dependence

volume dependence <> overlap of asymptotic wave functions

3

L
KAN-A = \/Q.UA\N—A(BN*BA*BN—A)

int. range

Volume dependence of N-body bound state

ABN(L) o< (5 4n-aL) ™2 Kgja_1(kapn—aL)
~ exp <—HA|N—AL) /L(d_l)/2 as L — oo

(L = box size, d no. of spatial dimensions, K,, = Bessel function)
SK and D. Lee, PLB 779, 9 (2018)

— channel with smallest 4 _ 4 determines asymptotic behavior —

o’
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Numerical results
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< straight lines <> excellent agreement with prediction

N BN Lmin - - - Lmax Kfit K1N-1

d=1,Vo=-10,R=10
0356  20...48  0.59536(3) 0.59625
1275  15...32  1.1062(14) 1.1070 /
2850  12...24  1.539(3) 1541

5.163 12...20 1.916(21)  1.920

d=3,Vy=-50,R=10 N_

2 0449  15...24  0.6694(2) 0.6700
32016 4...14  1798(3) 1814

a s wN
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Bound-state summary

@ leading volume dependence known for arbitrary bound states
@ reproduces known results, checked numerically

© calculate ANCs, single-volume extrapolations possible!

@ applications to lattice QCD, EFT, cold-atomic systems
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Bound-state summary

leading volume dependence known for arbitrary bound states
reproduces known results, checked numerically

calculate ANCs, single-volume extrapolations possible!
applications to lattice QCD, EFT, cold-atomic systems

©0 00O

typically, one exponential dominates, but not necessarily:

D=1, am=1/3 k=4

Oj.‘x T T T T ] %/%2
2

—5F e N=2 ]
—wof e " N=47
a 15 “my ]
® o0l “ea ] o three-body system
S 201 =, ]
—25] L ] unbound
_30F ! ] .
e S ot Y @ asymptotic slope from
o 5 w2025 30 2|2 separation
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Finite-volume resonance signatures

Lischer formalism: phase shift <> box energy levels

o) = s m= (22) (B(D)
CO = — =] _— —
p o\P L n . n o » P=D
Liischer, Nucl. Phys. B 354 531 (1991); ...

resonance contribution ~~ avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); ...
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Finite-volume resonance signatures

Lischer formalism: phase shift <> box energy levels

L

2
peotdo(p) = =25 . n=(52) . p=p(EL)

Liischer, Nucl. Phys. B 354 531 (1991); ...

resonance contribution ~~ avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); ...

12 \
Jd no interaction, 6(p) = 0
\ — free levels ~ 1/L
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Finite-volume resonance signatures

Lischer formalism: phase shift <> box energy levels

o) = s m= (22) (B(D)
CO = — =] _— —
p o\P L n . n o » P=D
Liischer, Nucl. Phys. B 354 531 (1991); ...

resonance contribution ~~ avoided level crossing
Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); ...

E ) ()

Effect can be very subtle in practice. ..
Bernard et al., JHEP 0808 024 (2008); Déring et al., EPJA 47 139 (2011); ...
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Discrete variable representation

Needed: calculation of several few-body energy levels
o difficult to achieve with QMC methods Klos et al., PRC 94 054005 (2016)
o direct discretization possible, but not very efficient

< use a Discrete Variable Representation (DVR)

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 87, 051301 (2013)

Main features

@ basis functions localized at grid points
. q 0 1.0
@ potential energy matrix diagonal
o E 5 q 0.8
@ kinetic energy matrix sparse (in d > 1)...
0.6
@ ...or implemented via Fast Fourier Transform
0.4
0.2
periodic boundary condistions JaN
. . -6 —4 > 2 ~%
<+ plane waves as starting point _0'2\/ \/‘
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DVR states and features

@ note: momentum mode ¢; <> spatial mode

o y(x) localized at z, Y (x;) = op;//wk J
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DVR states and features

o Yi(x) localized at xg, V(xj) = O/ Wk J

@ note: momentum mode ¢; <> spatial mode

© potential energy is diagonal!

(@nlV i) = [ do (@) V(a) di(a)
N/2—1

~ Y wa k() Vi) Yilan) = V(wk)n

n=—N/2

@ no need to evaluate integrals

e number N of DVR states controls quadrature approximation
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DVR states and features

o Yp(x) localized at xy, Yr(x;) = Ok;/\/wk
@ note: momentum mode ¢; <> spatial mode

© potential energy is diagonal!

(@nlV i) = [ do (@) V(a) di(a)
N/2—1

~ Y wa k(@) Vi) Yil@n) = V(21)0u

n=—N/2

@ no need to evaluate integrals

e number N of DVR states controls quadrature approximation
@ kinetic energy is simple (via FFT) or sparse (in d > 1)!
o plane waves ¢; are momentum eigenstates ~» 1'[(;) ~ F '@ p? @ F [1;,)

o (1hx]T'|4;) = known in closed form
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General DVR basis states

@ construct DVR basis in simple relative coordinates. ..

@ ...because Jacobi coord. would complicate the boundary conditions
@ separate center-of-mass energy (choose P = 0)

@ mixed derivatives in kinetic energy operator

n
X; = Z Uijri
i=1

I'n
®
\\ 6ij for i,j7<mn
Uij: -1 for i<mn,j=n
e o -0

1/n for i=n
Iy Iy Tn-1

General DVR state

|s) = (k1,1 sk1d), -+, (kn—1,1,- -~ );spins) € B

basis size: dim B = (25 + 1)" x N4x(n=-1)
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(Anti-)symmetrization and parity

Permutation symmetry

o for each |s) € B, construct |s) 4 =N Z sgn(p p)|s)
PESH

o then |s) 4 is antisymmetric: A|s), = [s)4

o for bosons, leave out sgn(p) ~» symmetric state

e D, (p)|s) = some other |s') € B — modulo PBC
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(Anti-)symmetrization and parity

Permutation symmetry

o for each |s) € B, construct |s) 4 =N Z sgn(p p)|s)
PESH

o then |s) 4 is antisymmetric: A|s), = [s)4

o for bosons, leave out sgn(p) ~» symmetric state

e D, (p)|s) = some other |s') € B — modulo PBC

v

This operation partitions the orginal basis, i.e., each state
appears in at most one (anti-)symmetric combination.

e efficient reduction to (anti-)symmetrized orthonormal basis
— no need for numerically expensive diagonalization!
@ B — Bieduced: significantly smaller: N — Nyeduced = N/n!
Note: parity (with projector Py = 1 & P) can be handled analogously.
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DVR computational aspects

DVR basis size N' = Napin ( X Nisospin) X Nisiim bty =1) |

® Ngpin = (25 + 1)y, Nigospin = 1 for neutrons only

: 6 : 9 i
@ 3n: 8 x Npyr, 4n: 16 x Njyg ~ large-scale calculation
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DVR computational aspects

DVR basis size N' = Napin ( X Nisospin) X Nisiim bty =1) |

® Ngpin = (25 + 1)y, Nigospin = 1 for neutrons only

@ 3n: 8 x NSyg, 4n: 16 x N3 r ~ large-scale calculation

hhlr.tu-darmstadt.de
Forschungszentrum Jiilich

Distributed implementation

@ written from scratch in C++ (and Haskell), together with P. Klos
@ can handle arbitrary ngim, 7body, and spin
@ hybrid parallelism: TBB + MPI, threaded libraries (FFTW, 1ibrsb; MKL)
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DVR computational aspects

DVR basis size N' = Napin ( X Nisospin) X Nisiim bty =1) |

Nspin = (25 + 1)™edv, Nigoepin = 1 for neutrons only

: 6 n 16 9 :
3n: 8 x Npygr, 4n: 16 x Npyr ~ large-scale calculation

diagonalization via distributed Lanczos algorithm (PARPACK)

~> large matrix-vector products

kinetic part (via FFT) in original basis (before reduction)

— expansion/reduction via sparse matrices

expand
reduce —N—
[ ] [ ]
o | = ><(.7:_1®ﬁ2®]:>>< °
[ ] [ ]

(note: kinetic matrix diagonal in spin-configurations space)
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DVR computational aspects

DVR basis size N' = Napin ( X Nisospin) X Nisiim bty =1) |

Nspin = (25 + 1)™edv, Nigoepin = 1 for neutrons only
3n: 8 x NSyg, 4n: 16 x N3 r ~ large-scale calculation

diagonalization via distributed Lanczos algorithm (PARPACK)

~> large matrix-vector products

e kinetic part (via FFT) in original basis (before reduction)
— expansion/reduction via sparse matrices expand
reduce —_——
[e] R [e]
fel| = x (Flep e F)x Ce]
Le] Le]

(note: kinetic matrix diagonal in spin-configurations space)
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DVR computational aspects

DVR basis size N' = Napin ( X Nisospin) X Nisiim bty =1) |

Nspin = (25 + 1)™edv, Nigoepin = 1 for neutrons only

: 6 : 9 i
3n: 8 x Npygr, 4n: 16 x Npyr ~ large-scale calculation

diagonalization via distributed Lanczos algorithm (PARPACK)

~> large matrix-vector products

e kinetic part (via FFT) in original basis (before reduction)
— expansion/reduction via sparse matrices expand
reduce —_——
[e] R [e]
fel| = x (Flep e F)x Ce]
Le] Le]

(note: kinetic matrix diagonal in spin-configurations space)

@ potential part still diagonal in symmetry-reduced basis
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Broken symmetry

The finite volume breaks the symmetry of the system:

a

rotation group SO(3) cubic group O

Irreducible representations of SO(3) are reducible with respect to O! J

@ finite subgroup of SO(3) T A | Ay | E | T, | T
@ number of elements = 24 dim 1 1 2 | 3 | 3
@ five irreducible representations
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Cubic projection

Cubic projector

Johnson, PLB 114 147 (1982)

e D, (R) realizes a cubic rotation R on the n-body DVR basis
@ ~~ permutation/inversion of relative coordinate components

@ indices are wrappen back into range —N/2,...,N/2 —1

4

Y
9 |/ T 21/
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Cubic projection

Cubic projector

Johnson, PLB 114 147 (1982)

e D, (R) realizes a cubic rotation R on the n-body DVR basis
@ ~~ permutation/inversion of relative coordinate components

@ indices are wrappen back into range —N/2,...,N/2 —1

e.g. 3 —

9 |/ T 21/

numerical implementation: 4 — H + AM1—=Pr) , A>FE
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Three-body resonance example

three-boson system

@ shifted Gaussian 2-body potential

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
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Three-body resonance example

three-boson system

@ shifted Gaussian 2-body potential

@ plus short-range 3-body force

6.0 6.5 7.0 7.5 8.0
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three-boson system

@ shifted Gaussian 2-body potential
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Three-body resonance example

three-boson system

@ shifted Gaussian 2-body potential

@ plus short-range 3-body force

6.0 6.5 7.0 7.5 8.0

8.5 9.0 9.5 10.0
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Three-body resonance example

three-boson system

@ shifted Gaussian 2-body potential

@ plus short-range 3-body force
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Three-body resonance example

three-boson system

@ shifted Gaussian 2-body potential

@ plus short-range 3-body force

E (au.)

60 65 70 75 80 85 90 95 100
L (au.)

< possible to move three-body resonance
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Four-body spectra (very preliminary)

parity = +1

four bosons

<

(r)

6f
¥
5 3 7 s 9 10 3
L (a.) 2
1]
« 2 4 6 8 10 *
- \ parity = —1
60
—~50
EX crossings need not

v be avoided!

20

10
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Current status

v/ handle large Npyr for three-body systems (current record: 28)
v/ chiral interactions (non-diagonal due to spin dependence!)
v/ projection onto cubic irreps. (H — H + A(1 — Pr), X large)

3n, Npyg = 14 1

a1

<

=05 1

P

£0.2 ~ 1

i —e— actual T

ROIE - ideal ]
‘ s ‘ s
2 4 8 12

number of nodes
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Current status

v/ handle large Npyr for three-body systems (current record: 28)
v/ chiral interactions (non-diagonal due to spin dependence!)
v/ projection onto cubic irreps. (H — H + A(1 — Pr), X large)

}

L sparse kin. 3n, Npyg = 14 4

e
o

o
o

—e— actual
ideal

o
s
T
I

runtime in hours

. | .
2 4 8 12
number of nodes

hhlr.tu-darmstadt.de

Work in progress

o further optimization (sparse-matrix kin. energy instead of FFT)
< need to reach decent Npygr for four-neutron calculation!

@ isospin degrees of freedom ~~ treat general nuclear systems

o different boundary conditions (e.g., antiperiodic)
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Current status

v/ handle large Npyr for three-body systems (current record: 28)
v/ chiral interactions (non-diagonal due to spin dependence!)
v/ projection onto cubic irreps. (H — H + A(1 — Pr), X large)

——  direct kin.

ideal

2 4 6 8
number of nodes

runtime in hours

hhlr.tu-darmstadt.de

Work in progress

o further optimization (sparse-matrix kin. energy instead of FFT)
< need to reach decent Npygr for four-neutron calculation!
@ isospin degrees of freedom ~~ treat general nuclear systems

o different boundary conditions (e.g., antiperiodic)
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The end

Thank youl!

...and thanks to my collaborators:

@ Philipp Klos, Joel Lynn
@ Hans-Werner Hammer, Achim Schwenk

@ Dean Lee
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