Few-body resonances from finite-volume calculations

Sebastian König

in collaboration with P. Klos, J. Lynn, H.-W. Hammer, and A. Schwenk

Nuclear Theory Workshop

TRIUMF, Vancouver, BC

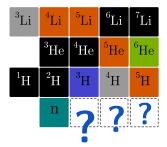
February 28, 2018

work in progress

European Research Council Established by the European Commission

Few-neutron systems

terra incognita at the doorstep...



bound dineutron state not excluded by pionless EFT

Hammer + SK, PLB 736 208 (2014)

• recent indications for a three-neutron resonance state...

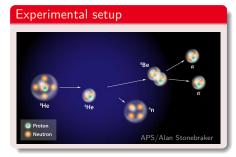
Gandolfi et al., PRL 118 232501 (2017)

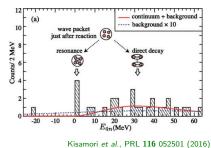
- ... although excluded by previous theoretical work Offermann + Glöckle, NPA 318, 138 (1979); Lazauskas + Carbonell, PRC 71 044004 (2005)
- possible evidence for tetraneutron resonance

Kisamori et al., PRL 116 052501 (2016)

Tetraneutron evidence

PhySICS ABOUT BROWSE PRESS COLLECTIONS Viewpoint: Can Four Neutrons Tango? Nigel Orr, Laboratoire de Physique Corpusculaire de Caen, ENSICAEN, IN2P3/CNRS et Université de Caen Normandie, 14050 Caen cedex, France February 3, 2016 + Physics 9, 14 Evidence that the four-neutron system known as the tetraneutron exists as a resonance has been uncovered in an experiment at the RIKEN Radioactive Ion Beam Factory.





Short (recent) history of tetraneutron states

2002: experimental claim of bound tetraneutron Marques et al., PRC 65 044006

2003: several studies indicate unbound four-neutron system

Bertulani et al., JPG 29 2431; Timofevuk, JPG 29 L9; Pieper, PRL 90 252501

2005: observable tetraneutron resonance excluded Lazauskas PRC 72 034003

Short (recent) history of tetraneutron states

2002: experimental claim of bound tetraneutron

Marques et al., PRC 65 044006

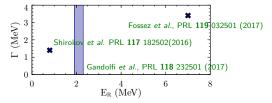
2003: several studies indicate unbound four-neutron system

Bertulani et al.. JPG 29 2431; Timofeyuk, JPG 29 L9; Pieper, PRL 90 252501

- Output 2005: observable tetraneutron resonance excluded Lazauskas PRC 72 034003
- Output: 2016: RIKEN experiment: possible tetraneutron resonance

 $E_R = (0.83 \pm 0.65_{
m stat.} \pm 1.25_{
m syst.}) {
m MeV}$, $\Gamma \lesssim 2.6 {
m MeV}$ Kisamori et al., PRL 116 052501

- 6 following this: several new theoretical investigations
 - complex scaling \rightarrow need unphys. T=3/2 3N force Hiyama et al., PRC 93 044004 (2016)
 - incompatible predictions:



Short (recent) history of tetraneutron states

2002: experimental claim of bound tetraneutron

Margues et al., PRC 65 044006

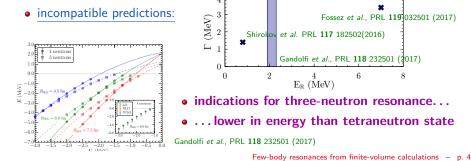
2003: several studies indicate unbound four-neutron system

Bertulani et al., JPG 29 2431; Timofevuk, JPG 29 L9; Pieper, PRL 90 252501

- 2005: observable tetraneutron resonance excluded Lazauskas PRC 72 034003
- 2016: RIKEN experiment: possible tetraneutron resonance

 $E_R = (0.83 \pm 0.65_{\mathsf{stat.}} \pm 1.25_{\mathsf{syst.}}) \; \mathrm{MeV}$, $\Gamma \lesssim 2.6 \; \mathrm{MeV}$ Kisamori et al., PRL 116 052501

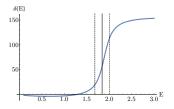
- **6 following this:** several new theoretical investigations
 - complex scaling \rightarrow need unphys. T = 3/2 3N force Hiyama et al., PRC 93 044004 (2016)



How to tackle resonances?

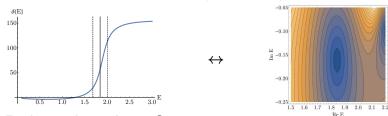
Q Look for jump by π in scattering phase shift:

✓ simple ✗ possibly ambiguous (background), need 2-cluster system



How to tackle resonances?

• Look for jump by π in scattering phase shift: \checkmark simple \checkmark possibly ambiguous (background), need 2-cluster system

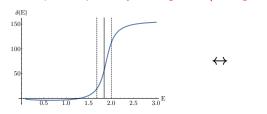


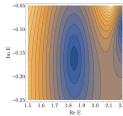
Prind complex poles in S-matrix:

e.g., Glöckle, PRC **18** 564 (1978); Borasoy *et al.*, PRC **74** 055201 (2006); ... **√** direct, clear signature **×** technically challenging, needs analytic pot.

How to tackle resonances?

• Look for jump by π in scattering phase shift: \checkmark simple \checkmark possibly ambiguous (background), need 2-cluster system

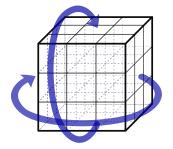




2 Find complex poles in S-matrix:

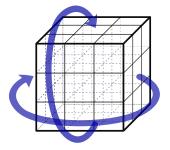
e.g., Glöckle, PRC 18 564 (1978); Borasoy et al., PRC 74 055201 (2006); ...
 ✓ direct, clear signature × technically challenging, needs analytic pot.
 Put system into periodic box!

Finite periodic boxes



- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
- **~~ volume-dependent energies**

Finite periodic boxes



- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions

~~ volume-dependent energies

Lüscher formalism

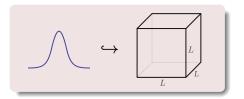
Physical properties encoded in the *L*-dependent energy levels!

- infinite-volume S-matrix governs discrete finite-volume spectrum
- PBC natural for lattice calculations...
- ... but can also be implemented with other methods

Bound states

$$\hat{H} \left| \psi_B \right\rangle = -\frac{\kappa^2}{2\mu} \left| \psi_B \right\rangle$$

binding momentum κ \leftrightarrow intrinsic length scale



Asymptotic wavefunction overlap

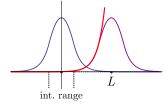
$$\Delta B(L) = \sum_{|\mathbf{n}|=1} \int d^3 r \, \psi_B^*(\mathbf{r}) \, V(\mathbf{r}) \, \psi_B(\mathbf{r} + \mathbf{n}L) + \mathcal{O}(e^{-\sqrt{2}\kappa L})$$
M. Lüscher, Commun. Math. Phys. **104** 177 (1986)

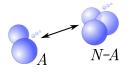
- for S-wave states, one finds $\Delta B(L) = -3\pi |\gamma|^2 \frac{e^{-\kappa L}}{\mu L} + \mathcal{O}(e^{-\sqrt{2}\kappa L})$
- \bullet in general, the prefactor is a polynomial in $1/\kappa L$

SK, Lee, Hammer, PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

General bound-state volume dependence

volume dependence \leftrightarrow overlap of asymptotic wave functions



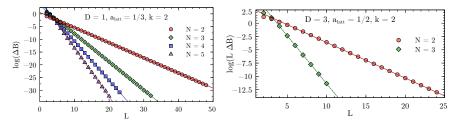


$$\kappa_{A|N-A} = \sqrt{2\mu_{A|N-A}(B_N - B_A - B_{N-A})}$$

Volume dependence of N-body bound state

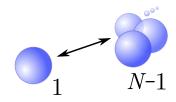
– channel with smallest $\kappa_{A|N-A}$ determines asymptotic behavior –

Numerical results



 \hookrightarrow straight lines \leftrightarrow excellent agreement with prediction

N	B_N	$L_{min} \dots L_{max}$	κ_{fit}	$\kappa_{1 N-1}$
$d = 1, V_0 = -1.0, R = 1.0$				
2	0.356	2048	0.59536(3)	0.59625
3	1.275	1532	1.1062(14)	1.1070
4	2.859	1224	1.539(3)	1.541
5	5.163	$12 \dots 20$	1.916(21)	1.920
$d = 3, V_0 = -5.0, R = 1.0$				
2	0.449	1524	0.6694(2)	0.6700
3	2.916	414	1.798(3)	1.814

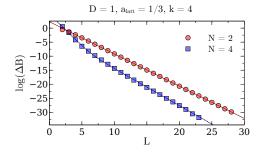


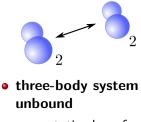
Bound-state summary

- **1** leading volume dependence known for **arbitrary bound states**
- reproduces known results, checked numerically
- O calculate ANCs, single-volume extrapolations possible!
- applications to lattice QCD, EFT, cold-atomic systems

Bound-state summary

- Ieading volume dependence known for arbitrary bound states
- Produces known results, checked numerically
- ealculate ANCs, single-volume extrapolations possible!
- applications to lattice QCD, EFT, cold-atomic systems
- typically, one exponential dominates, but not necessarily:





• asymptotic slope from 2|2 separation

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta)$$
, $\eta = \left(\frac{Lp}{2\pi}\right)^2$, $p = p(E(L))$

Lüscher, Nucl. Phys. B 354 531 (1991); ...

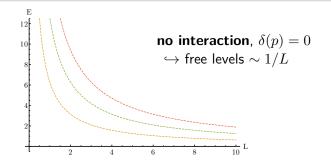
resonance contribution ~ avoided level crossing

Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta)$$
, $\eta = \left(\frac{Lp}{2\pi}\right)^2$, $p = p(E(L))$

Lüscher, Nucl. Phys. B 354 531 (1991); ...

resonance contribution ~ avoided level crossing

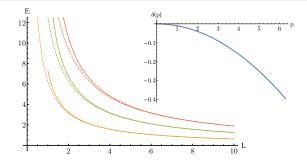


Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta)$$
, $\eta = \left(\frac{Lp}{2\pi}\right)^2$, $p = p(E(L))$

Lüscher, Nucl. Phys. B 354 531 (1991); ...

resonance contribution ~ avoided level crossing

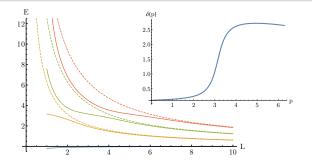


Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta)$$
, $\eta = \left(\frac{Lp}{2\pi}\right)^2$, $p = p(E(L))$

Lüscher, Nucl. Phys. B 354 531 (1991); ...

resonance contribution ~ avoided level crossing



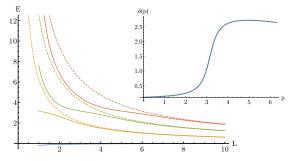
Lüscher formalism: phase shift \leftrightarrow box energy levels

$$p \cot \delta_0(p) = \frac{1}{\pi L} S(\eta)$$
, $\eta = \left(\frac{Lp}{2\pi}\right)^2$, $p = p(E(L))$

Lüscher, Nucl. Phys. B 354 531 (1991); ...

resonance contribution ~ avoided level crossing

Wiese, Nucl. Phys. B (Proc. Suppl.) 9, 609 (1989); ...



Effect can be very subtle in practice...

Bernard et al., JHEP 0808 024 (2008); Döring et al., EPJA 47 139 (2011); ...

Few-body resonances from finite-volume calculations - p. 11

Discrete variable representation

Needed: calculation of several few-body energy levels

difficult to achieve with QMC methods

Klos et al., PRC 94 054005 (2016)

direct discretization possible, but not very efficient

→ use a Discrete Variable Representation (DVR)

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 87, 051301 (2013)

Main features • basis functions localized at grid points • potential energy matrix diagonal • kinetic energy matrix sparse (in d > 1)... • ... or implemented via Fast Fourier Transform periodic boundary condistions \leftrightarrow plane waves as starting point

DVR states and features

• $\psi_k(x)$ localized at x_k , $\psi_k(x_j) = \delta_{kj}/\sqrt{w_k}$

• **note:** momentum mode $\phi_i \leftrightarrow$ spatial mode ψ_k

DVR states and features

•
$$\psi_k(x)$$
 localized at x_k , $\psi_k(x_j) = \delta_{kj}/\sqrt{w_k}$

• **note:** momentum mode $\phi_i \leftrightarrow$ spatial mode ψ_k

potential energy is diagonal!

$$\begin{aligned} \langle \psi_k | V | \psi_l \rangle &= \int \mathrm{d}x \, \psi_k(x) \, V(x) \, \psi_l(x) \\ &\approx \sum_{n=-N/2}^{N/2-1} w_n \, \psi_k(x_n) \, V(x_n) \, \psi_l(x_n) = V(x_k) \delta_{kl} \end{aligned}$$

- no need to evaluate integrals
- number N of DVR states controls quadrature approximation

DVR states and features

•
$$\psi_k(x)$$
 localized at x_k , $\psi_k(x_j) = \delta_{kj}/\sqrt{w_k}$

• **note:** momentum mode $\phi_i \leftrightarrow$ spatial mode ψ_k

potential energy is diagonal!

$$\begin{aligned} \langle \psi_k | V | \psi_l \rangle &= \int \mathrm{d}x \, \psi_k(x) \, V(x) \, \psi_l(x) \\ &\approx \sum_{n=-N/2}^{N/2-1} w_n \, \psi_k(x_n) \, V(x_n) \, \psi_l(x_n) = V(x_k) \delta_{kl} \end{aligned}$$

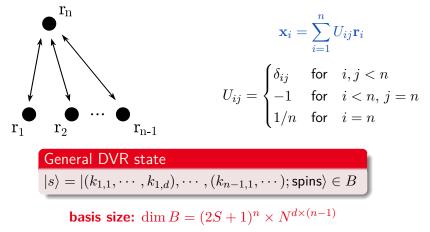
- no need to evaluate integrals
- $\bullet\,$ number N of DVR states controls quadrature approximation

② kinetic energy is simple (via FFT) or sparse (in d > 1)!

- plane waves ϕ_i are momentum eigenstates $\rightsquigarrow \hat{T} \ket{\psi_k} \sim \mathcal{F}^{-1} \otimes \hat{p}^2 \otimes \mathcal{F} \ket{\psi_k}$
- $\langle \psi_k | \hat{T} | \psi_l \rangle =$ known in closed form

General DVR basis states

- construct DVR basis in simple relative coordinates...
- ... because Jacobi coord. would complicate the boundary conditions
- ullet separate center-of-mass energy (choose $\mathbf{P}=\mathbf{0})$
- mixed derivatives in kinetic energy operator



Few-body resonances from finite-volume calculations - p. 14

(Anti-)symmetrization and parity

Permutation symmetry

• for each
$$|s\rangle \in B$$
, construct $|s\rangle_{\mathcal{A}} = \mathcal{N} \sum_{p \in S_n} \operatorname{sgn}(p) D_n(p) |s\rangle$

• then $|s
angle_{\mathcal{A}}$ is antisymmetric: $\mathcal{A}\,|s
angle_{\mathcal{A}}=|s
angle_{\mathcal{A}}$

- \bullet for bosons, leave out $\mathrm{sgn}(p) \leadsto$ symmetric state
- $D_n(p) |s\rangle = \text{ some other } |s'\rangle \in B \text{modulo PBC}$

(Anti-)symmetrization and parity

Permutation symmetry

- for each $|s\rangle \in B$, construct $|s\rangle_{\mathcal{A}} = \mathcal{N} \sum_{p \in S_n} \operatorname{sgn}(p) D_n(p) |s\rangle$
- \bullet then $|s\rangle_{\mathcal{A}}$ is antisymmetric: $\mathcal{A}\,|s\rangle_{\!\mathcal{A}}=|s\rangle_{\!\mathcal{A}}$
- $\bullet\,$ for bosons, leave out $\mathrm{sgn}(p) \rightsquigarrow$ symmetric state
- $D_n(p) \left| s \right\rangle = \text{ some other } \left| s' \right\rangle \in B \text{modulo PBC}$

This operation partitions the orginal basis, *i.e.*, each state appears in at most one (anti-)symmetric combination.

• efficient reduction to (anti-)symmetrized orthonormal basis

 \hookrightarrow no need for numerically expensive diagonalization!

• $B \rightarrow B_{\text{reduced}}$, significantly smaller: $N \rightarrow N_{\text{reduced}} \approx N/n!$

Note: parity (with projector $\mathcal{P}_{\pm} = 1 \pm \mathcal{P}$) can be handled analogously.

DVR basis size
$$N = N_{spin} (\times N_{isospin}) \times N_{DVR}^{n_{dim} \times (n_{body} - 1)}$$

- $N_{\rm spin} = (2S+1)^{n_{\rm body}}, \; N_{\rm isospin} = 1$ for neutrons only
- $3n: 8 \times N_{\text{DVR}}^6$, $4n: 16 \times N_{\text{DVR}}^9 \rightsquigarrow$ large-scale calculation

DVR basis size
$$N = N_{spin} (\times N_{isospin}) \times N_{DVR}^{n_{dim} \times (n_{body} - 1)}$$

- $N_{\rm spin} = (2S+1)^{n_{\rm body}}$, $N_{\rm isospin} = 1$ for neutrons only
- $3n: 8 \times N_{\text{DVR}}^6$, $4n: 16 \times N_{\text{DVR}}^9 \rightsquigarrow$ large-scale calculation

Forschungszentrum Jülich

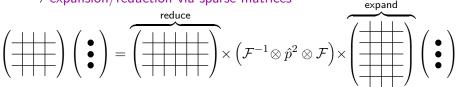
hhlr.tu-darmstadt.de

Distributed implementation

- written from scratch in C++ (and Haskell), together with P. Klos
- can handle arbitrary n_{dim} , n_{body} , and spin
- hybrid parallelism: TBB + MPI, threaded libraries (FFTW, librsb; MKL)

DVR basis size
$$N = N_{\text{spin}} (\times N_{\text{isospin}}) \times N_{\text{DVR}}^{n_{\text{dim}} \times (n_{\text{body}} - 1)}$$

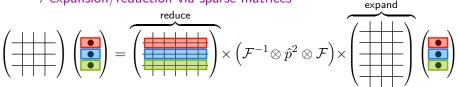
- $N_{\rm spin} = (2S+1)^{n_{\rm body}}, \; N_{\rm isospin} = 1$ for neutrons only
- $3n: 8 \times N_{\text{DVR}}^6$, $4n: 16 \times N_{\text{DVR}}^9 \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK)
 ~> large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)
 - $\hookrightarrow \mathsf{expansion}/\mathsf{reduction} \text{ via sparse matrices}$



(note: kinetic matrix diagonal in spin-configurations space)

DVR basis size
$$N = N_{\sf spin} \left(\times N_{\sf isospin} \right) \times N_{\sf DVR}^{n_{\sf dim} \times (n_{\sf body} - 1)}$$

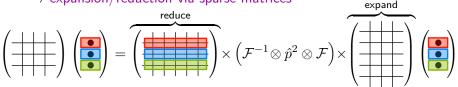
- $N_{\rm spin} = (2S+1)^{n_{\rm body}}, \; N_{\rm isospin} = 1$ for neutrons only
- $3n: 8 \times N_{\text{DVR}}^6$, $4n: 16 \times N_{\text{DVR}}^9 \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK)
 ~> large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)
 - \hookrightarrow expansion/reduction via sparse matrices



(note: kinetic matrix diagonal in spin-configurations space)

DVR basis size
$$N = N_{\sf spin} \left(\times N_{\sf isospin} \right) \times N_{\sf DVR}^{n_{\sf dim} \times (n_{\sf body} - 1)}$$

- $N_{\rm spin} = (2S+1)^{n_{\rm body}}, \; N_{\rm isospin} = 1$ for neutrons only
- $3n: 8 \times N_{\text{DVR}}^6$, $4n: 16 \times N_{\text{DVR}}^9 \rightsquigarrow$ large-scale calculation
- diagonalization via distributed Lanczos algorithm (PARPACK)
 ~> large matrix-vector products
- kinetic part (via FFT) in original basis (before reduction)
 - \hookrightarrow expansion/reduction via sparse matrices



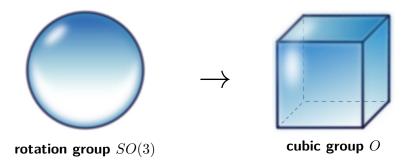
(note: kinetic matrix diagonal in spin-configurations space)

• potential part still diagonal in symmetry-reduced basis

Few-body resonances from finite-volume calculations - p. 16

Broken symmetry

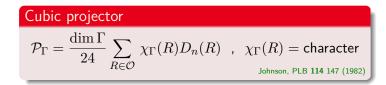
The finite volume breaks the symmetry of the system:



Irreducible representations of SO(3) are reducible with respect to O!

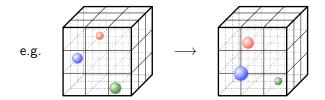
- finite subgroup of SO(3)
- number of elements = 24
- five irreducible representations

Cubic projection

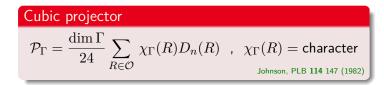


• $D_n(R)$ realizes a cubic rotation R on the n-body DVR basis

- ~> permutation/inversion of relative coordinate components
- \bullet indices are wrappen back into range $-N/2,\ldots,N/2-1$

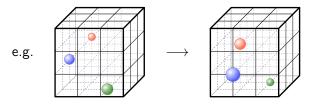


Cubic projection



• $D_n(R)$ realizes a cubic rotation R on the n-body DVR basis

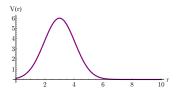
- ~> permutation/inversion of relative coordinate components
- \bullet indices are wrappen back into range $-N/2,\ldots,N/2-1$

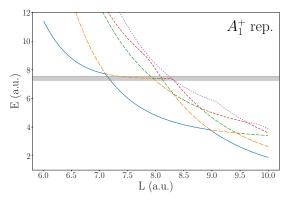


numerical implementation: $\hat{H} o \hat{H} + \lambda (\mathbf{1} - \mathcal{P}_{\Gamma})$, $\lambda \gg E$

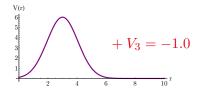
three-boson system

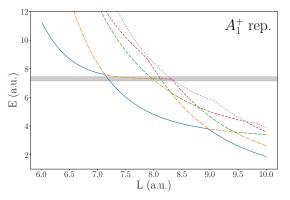
• shifted Gaussian 2-body potential



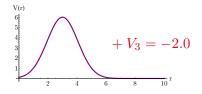


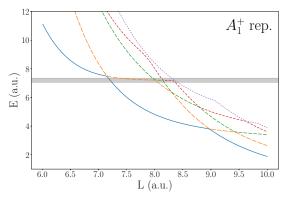
- shifted Gaussian 2-body potential
- plus short-range 3-body force



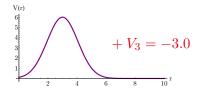


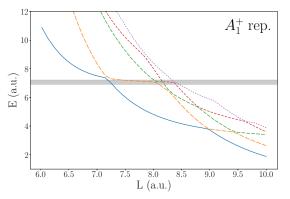
- shifted Gaussian 2-body potential
- plus short-range 3-body force



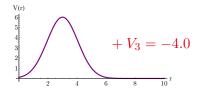


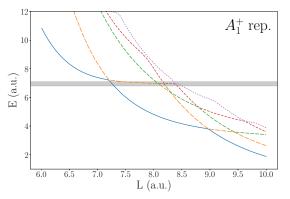
- shifted Gaussian 2-body potential
- plus short-range 3-body force





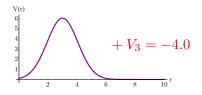
- shifted Gaussian 2-body potential
- plus short-range 3-body force

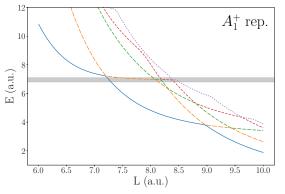




three-boson system

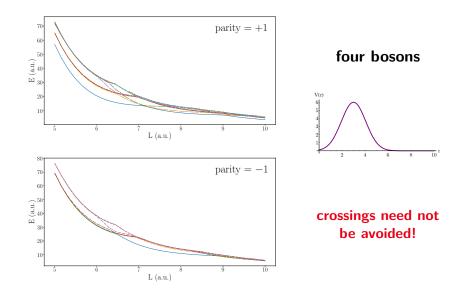
- shifted Gaussian 2-body potential
- plus short-range 3-body force





\hookrightarrow possible to move three-body resonance

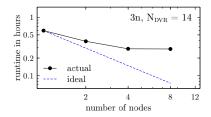
Four-body spectra (very preliminary)



Current status

✓ handle large N_{DVR} for three-body systems (current record: 28) ✓ chiral interactions (non-diagonal due to spin dependence!) ✓ projection onto cubic irreps. $(H \rightarrow H + \lambda(1 - P_{\Gamma}), \lambda \text{ large})$

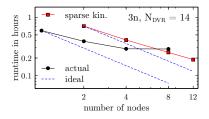
hhlr.tu-darmstadt.de



Current status

✓ handle large N_{DVR} for three-body systems (current record: 28) ✓ chiral interactions (non-diagonal due to spin dependence!) ✓ projection onto cubic irreps. $(H \rightarrow H + \lambda(1 - P_{\Gamma}), \lambda \text{ large})$

hhlr.tu-darmstadt.de



Work in progress

• further optimization (sparse-matrix kin. energy instead of FFT)

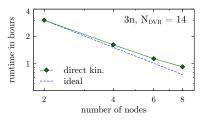
 \hookrightarrow need to reach decent N_{DVR} for four-neutron calculation!

- isospin degrees of freedom ~ treat general nuclear systems
- different boundary conditions (e.g., antiperiodic)

Current status

✓ handle large N_{DVR} for three-body systems (current record: 28) ✓ chiral interactions (non-diagonal due to spin dependence!) ✓ projection onto cubic irreps. $(H \rightarrow H + \lambda(1 - P_{\Gamma}), \lambda \text{ large})$

hhlr.tu-darmstadt.de



Work in progress

• further optimization (sparse-matrix kin. energy instead of FFT)

 \hookrightarrow need to reach decent N_{DVR} for four-neutron calculation!

- isospin degrees of freedom ~> treat general nuclear systems
- different boundary conditions (e.g., antiperiodic)

The end

Thank you!

... and thanks to my collaborators:

- Philipp Klos, Joel Lynn
- Hans-Werner Hammer, Achim Schwenk
- Dean Lee

European Research Council Established by the European Commission

