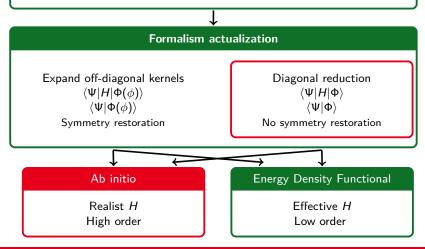
Automated generation of Bogoliubov MBPT expressions

Pierre Arthuis IRFU, CEA, Université Paris - Saclay

with T. Duguet (CEA Saclay), A. Tichai (ESNT, CEA Saclay), R.-D. Lasseri (IPN Orsay) & J.-P. Ebran (CEA DAM)


> TRIUMF Workshop Vancouver, Canada - February 28th 2018

The BMBPT project

Exact diagrammatic expansion with symmetry breaking *and* restoration [Duguet and Signoracci, J. Phys. G 44, 2017]

P. Arthuis - IRFU, CEA, UPSaclay

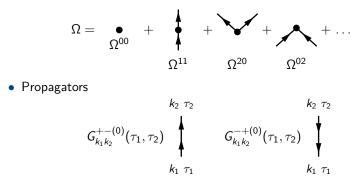
Bogoliubov Many-Body Perturbation Theory

- Bogoliubov vacuum $|\Phi\rangle$, $\beta_k |\Phi\rangle = 0 \forall k$
- Grand potential operator $\Omega \equiv H \lambda A$ in quasiparticle basis

$$\Omega = \Omega^{00} + \frac{1}{1!} \sum_{k_1 k_2} \Omega^{11}_{k_1 k_2} \beta^{\dagger}_{k_1} \beta_{k_2} + \frac{1}{2!} \sum_{k_1 k_2} \left\{ \Omega^{20}_{k_1 k_2} \beta^{\dagger}_{k_1} \beta^{\dagger}_{k_2} + \Omega^{02}_{k_1 k_2} \beta_{k_2} \beta_{k_1} \right\} + \dots$$

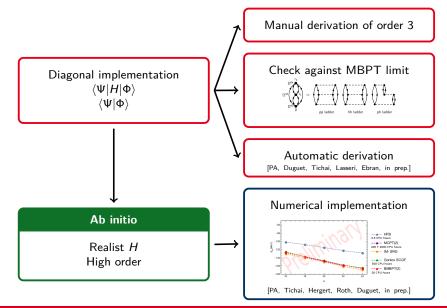
• Perturbative expansion of ground-state energy ($\Omega=\Omega_0+\Omega_1)$

$$\begin{split} \mathbf{E}_{0} &= \langle \Phi | \Big\{ \boldsymbol{\Omega}(\mathbf{0}) - \int_{0}^{\infty} d\tau_{1} \mathsf{T} \left[\boldsymbol{\Omega}_{1} \left(\tau_{1} \right) \boldsymbol{\Omega}(\mathbf{0}) \right] \\ &+ \frac{1}{2!} \int_{0}^{\infty} d\tau_{1} d\tau_{2} \mathsf{T} \left[\boldsymbol{\Omega}_{1} \left(\tau_{1} \right) \boldsymbol{\Omega}_{1} \left(\tau_{2} \right) \boldsymbol{\Omega}(\mathbf{0}) \right] + ... \Big\} | \Phi \rangle_{c} \end{split}$$


Propagators

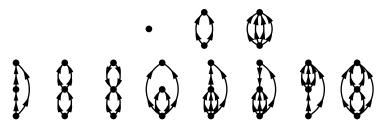
$$G_{k_1k_2}^{+-(0)}(\tau_1,\tau_2) \equiv \frac{\langle \Phi | \mathsf{T}[\beta_{k_1}^{\dagger}(\tau_1)\beta_{k_2}(\tau_2)] | \Phi \rangle}{\langle \Phi | \Phi \rangle} = -G_{k_2k_1}^{-+(0)}(\tau_2,\tau_1)$$

Building blocks of the diagrammatic



- Normal-ordered form of Ω with respect to Φ

- Main diagrammatic rules from Wick theorem
 - ◊ No external legs
 - No oriented loop between vertices
 - ◊ No self-contraction
 - $\diamond~$ Propagators go out of the Ω vertex at time 0



Status of manual derivation and implementation

• All diagrams derived and numerically implemented up to order 3

- Ab initio approach \rightarrow Go to highest possible order
 - $\diamond~$ At least up to order 4 to check convergence patterns
 - $\diamond~$ Derivation time-consuming and error-prone

Develop automatic tool

- $\diamond\,$ To generate all possible connected diagrams at order n
- To extract associated time-integrated expressions

Our goal

An automatic and systematic way of producing diagrams

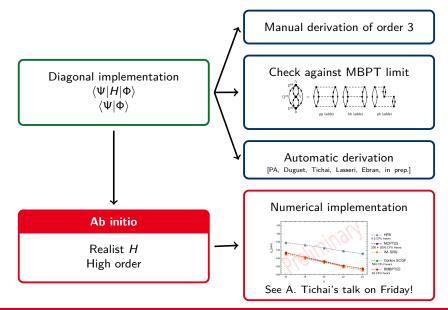
Our tool

Adjacency matrices in graph theory

Our challenge

From BMBPT diagrammatic rules to constraints on matrices

- Number of diagrams with 2N interactions (using an HFB vacuum)
 - \diamond 8 (1) diagrams at order 3
 - \diamond 59 (10) diagrams at order 4
 - ◇ 568 (82) diagrams at order 5
 - ◇ 6 805 (938) diagrams at order 6
- Number of diagrams with 2N and 3N interactions (using an HFB vacuum)
 - ◇ 23 (8) diagrams at order 3
 - ◊ 396 (177) diagrams at order 4
 - ◊ 10 716 (5 055) diagrams at order 5
 - $\diamond~$ 100 000+ diagrams at order 6?
- See poster for details on the implementation



All BMBPT diagrams produced automatically at a given order

- Need to derive automatically the diagrams' expressions
- BMBPT uses Feynman diagrams recasting different time-orderings
 - $\pmb{\mathsf{X}}$ But time-integrated (Goldstone) expressions are to be coded
- Challenge: Extract Goldstone expressions from Feynman diagrams
 - ♦ Undone task to our knowledge (even for standard diagrammatic)

Other BMBPT-related projects

M. Drissi J. Ripoche V. Somà

R. Roth

Automated diagram generator

P. Arthuis

T. Duguet J.-P. Ebran A. Tichai

H. Hergert