Medium-mass atomic and lattice nuclei with pionless EFT

with
S. Binder (formerly at UT)
A. Ekström (Chalmers)
G. Hagen (ORNL)
G. R. Jansen (ORNL)
T. Papenbrock (UT/ORNL)
Goals

1. Study ^{16}O and ^{40}Ca nuclei with NLO pionless EFT at physical (140 MeV) and heavier (806 MeV) pion mass.

2. Formulate pionless EFT directly in harmonic oscillator (HO) basis.
 - Make potentials from pion less EFT readily available in HO basis for many-body calculations.

(LO for $4 \leq A \leq 16$ - Stetcu et al. 2007; Kirscher et al. 2015; Barnea et al. 2015; Contessi et al. 2017)
Discrete Variable Representation (DVR) in Harmonic Oscillator basis

1. Eigenstates of p^2 operator in finite spherical oscillator basis
 - localized at discrete momenta, zero at other discrete values -> DVR
 - facilitates computation of matrix elements

3. UV cutoff varied by changing oscillator frequency at fixed N.
 - [Reviews: Littlejohn et al. 2002; Light et al. 2003]
Pionless Effective field theory

[Bedaque, van Kolck, Hammer; Kaplan, Savage, Wise; Griesshammer, Kirscher; Phillips; Platter; König …]

LO

\[V_{ct}^{(0)}(1S_0) = \tilde{C}_{1S_0} \]

\[V_{ct}^{(0)}(3S_1) = \tilde{C}_{3S_1} \]

NLO

\[V_{3\text{NF}} = c_E \sum_{j \neq i} \vec{\tau}_i \cdot \vec{\tau}_j. \]

\[V_{ct}^{(2)}(3S_1) = C_{3S_1}(p^2 + p'^2) \]

\[V_{ct}^{(2)}(1S_0) = C_{1S_0}(p^2 + p'^2) \]

LO NN: 2 LECs

LO NNN: 1 LEC

NLO NN: 2 LECs
Calibration

<table>
<thead>
<tr>
<th>Nature</th>
<th>Lattice</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_π</td>
<td>806. ± 1</td>
</tr>
<tr>
<td>m</td>
<td>1634. ± 18</td>
</tr>
<tr>
<td>B_{nn}</td>
<td>15.9 ± 4</td>
</tr>
<tr>
<td>B_d</td>
<td>19.5 ± 5</td>
</tr>
<tr>
<td>B_t</td>
<td>53.9 ± 10.7</td>
</tr>
<tr>
<td>$n_p a_s^{-1}$</td>
<td>84.7 ± 18</td>
</tr>
<tr>
<td>$n_p r_s^{-1}$</td>
<td>174.6 ± 25</td>
</tr>
<tr>
<td>a_t^{-1}</td>
<td>108. ± 13</td>
</tr>
<tr>
<td>r_t^{-1}</td>
<td>217.8 ± 46</td>
</tr>
</tbody>
</table>

Input to fit LECs

[Lattice data : NPLQCD collaboration(2013)]
Results for $A \leq 4$ nuclei

Method: No-Core Shell Model in Jacobi Basis
[Reviews: Navratil et al 2009; Barrett et al 2013]

<table>
<thead>
<tr>
<th>$h\omega$</th>
<th>Λ</th>
<th>$E(^3H)$</th>
<th>$r(^3H)$</th>
<th>$E(^3He)$</th>
<th>$r(^3He)$</th>
<th>$E(^4He)$</th>
<th>$r(^4He)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>328.59</td>
<td>8.482</td>
<td>1.59</td>
<td>7.755</td>
<td>1.75</td>
<td>27.30</td>
<td>1.43</td>
</tr>
<tr>
<td>22</td>
<td>487.38</td>
<td>8.482</td>
<td>1.63</td>
<td>7.77</td>
<td>1.83</td>
<td>29.30</td>
<td>1.44</td>
</tr>
<tr>
<td>40</td>
<td>657.19</td>
<td>8.482</td>
<td>1.64</td>
<td>7.82</td>
<td>1.80</td>
<td>27.30</td>
<td>1.57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$h\omega$</th>
<th>Λ</th>
<th>$E(^3H)$</th>
<th>$r(^3H)$</th>
<th>$E(^3He)$</th>
<th>$r(^3He)$</th>
<th>$E(^4He)$</th>
<th>$r(^4He)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>433.48</td>
<td>53.9</td>
<td>1.14</td>
<td>52.9</td>
<td>1.16</td>
<td>89.9</td>
<td>1.16</td>
</tr>
<tr>
<td>22</td>
<td>642.96</td>
<td>53.9</td>
<td>1.04</td>
<td>52.7</td>
<td>1.13</td>
<td>89.7</td>
<td>1.34</td>
</tr>
<tr>
<td>40</td>
<td>866.97</td>
<td>53.9</td>
<td>1.17</td>
<td>53.1</td>
<td>1.29</td>
<td>109.7</td>
<td>1.33</td>
</tr>
</tbody>
</table>

• At NLO, $E(^4He)$ binding energy
 (i) close to experimental value for physical nuclei $E(^4He) = 28.3$ MeV.
 (ii) Within the uncertainty of LQCD calculations for lattice 4He, $E(^4He) = 107 \pm 34$ MeV.

[LO results consistent with Barnea et al 2015, Kirscher et al 2015, Contessi et al 2017]
Physical 16O, 40Ca nuclei

- At NLO, 16O and 40Ca bound.

- $E/A(^{16}$O) \sim 9 MeV, $E/A(^{40}$Ca) \sim 10 MeV

- Mild cutoff dependence.

Method: Coupled Cluster with singles and doubles (CCSD) approximation.

[Review: Hagen et al 2014]
Lattice 16O, 40Ca nuclei

All quantities are in MeV.

<table>
<thead>
<tr>
<th>$\hbar \omega$</th>
<th>Λ</th>
<th>$E(^{16}$O$)$</th>
<th>$E(^{40}$Ca$)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>433.46</td>
<td>371</td>
<td>832</td>
</tr>
<tr>
<td>22</td>
<td>642.96</td>
<td>430</td>
<td>1187</td>
</tr>
<tr>
<td>40</td>
<td>866.97</td>
<td>548</td>
<td>1252</td>
</tr>
</tbody>
</table>

- This work,
 $E/A(^{16}$O$) \sim 23 - 35$ MeV
 $E/A(^{40}$Ca$) \sim 21 - 36$ MeV

- $E/A(^{4}$He$) \sim 25$ MeV from LQCD / pionless EFT
- Stronger cutoff dependence.

Method: Coupled Cluster with singles and doubles (CCSD) approximation.
[Review: Hagen et al 2014]
Summary

- Build infrastructure for pionless EFT directly in harmonic oscillator basis-UV convergence by construction; facilitates many-body calculations.

- First NLO pionless EFT calculations for 16O and 40Ca nuclei.
 - At physical pion mass
 - $E/A(^{16}$O) \sim 9 MeV
 - $E/A(^{40}$Ca) \sim 10 MeV
 - Results comparable to NLO Chiral HO EFT calculation.

 - At 806 MeV pion mass
 - $E/A(^{16}$O) \sim 23 - 35 MeV
 - $E/A(^{40}$Ca) \sim 21 - 36 MeV

- Outlook: Higher orders in pionless EFT; apply to future (and more accurate) results from lattice QCD; explore pionless EFT in p-shell nuclei.
For more details ...
Background

• At LO it is known,
 1. Physical/Real Nuclei ($m_\pi \sim 140$ MeV)
 • 6Li unbound w.r.t. 4He [Stetcu et al. 2007]
 • 16O: unbound w.r.t. decay into alpha particles [Contessi et al. 2017].
 2. Lattice Nuclei (at $m_\pi \sim 806$ MeV)
 • 16O: unbound w.r.t. decay into alpha particles. [Barnea et al. 2015; Contessi et al. 2017].

• In this work,
 • NLO calculation of physical and lattice 16O, 40Ca nuclei.
 • NLO terms added non-perturbatively. [Lensky et al. 2016].
Fast E_3 convergence at specific oscillator frequency

<table>
<thead>
<tr>
<th>$h\omega$</th>
<th>Λ</th>
<th>^{16}O</th>
<th>^{40}Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$N = E_3 = 12$</td>
<td>$N = E_3 = 14$</td>
</tr>
<tr>
<td>10</td>
<td>328.59</td>
<td>136.8</td>
<td>136.2</td>
</tr>
<tr>
<td>22</td>
<td>487.38</td>
<td>143.1</td>
<td>143.1</td>
</tr>
<tr>
<td>40</td>
<td>657.19</td>
<td>144.7</td>
<td>146.2</td>
</tr>
</tbody>
</table>

Physical Nuclei :

<table>
<thead>
<tr>
<th>$h\omega$</th>
<th>Λ</th>
<th>^{16}O</th>
<th>^{40}Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$N = E_3 = 12$</td>
<td>$N = E_3 = 14$</td>
</tr>
<tr>
<td>22</td>
<td>642.96</td>
<td>429.5</td>
<td>429.5</td>
</tr>
<tr>
<td>40</td>
<td>866.97</td>
<td>547.8</td>
<td>546.0</td>
</tr>
</tbody>
</table>

Lattice Nuclei :

- At $h\omega = 22$ MeV, fastest E_3 convergence (highlighted in yellow).

- Open question / Speculation : Frequency close to that of Gaussian centre of mass wave function?
IR Extrapolations

\[\frac{\hbar^2 k_{\text{sep}}^2}{2m} = B_t - B_d \]

\[E(N_{\text{max}}) = E_{\infty} + a e^{-2k_{\infty}L} \]

[Phys. Rev. C 86, 054002]

\[S = \frac{\hbar^2 k_{\infty}^2}{2m} \]

\(k_{\infty} \) is the separation energy of the lowest breakup channel.

[With C. Forssén]

<table>
<thead>
<tr>
<th>(k_{\text{sep}})</th>
<th>(k_{\infty})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.56 fm(^{-1})</td>
<td>0.55 fm(^{-1})</td>
</tr>
</tbody>
</table>
Regulated Interaction

Note: x- and y-axis represent momentum in fm\(^{-1}\). Regulated by HO space, \(N_{\text{max}} = 8\), \(hw = 22\), \(l = 0\).

\[
V_{ct}^{(0)}(1S_0) = \tilde{C}_{1S_0}, \quad V_{ct}^{(0)}(3S_1) = \tilde{C}_{3S_1}, \quad V_{3NF}^{ct} = c_E \sum_{j \neq i} \vec{\tau}_i \cdot \vec{\tau}_j. \quad V_{ct}^{(2)}(3S_1) = C_{3S_1}(p^2 + p'^2), \quad V_{ct}^{(2)}(1S_0) = C_{1S_0}(p^2 + p'^2).
\]

Large Cutoffs

- Physical range of the potential R is inversely proportional to UV cutoff, at higher cutoffs the effective range cannot be reproduced.

- When adding higher order terms non-perturbatively, higher-order effects can become uncontrolled if interaction is too short-ranged. [Lesnky et al.(arXiv:1605.03898 [nucl-th])].
Small Cutoffs

- From free Fermi-gas model, $E/A = (3/5)E_F$. This leads to a Fermi momentum $k_F \sim \Lambda_{UV}$ at small cutoffs for heavier nuclei.

- Similar behavior is seen in the case of lattice nuclei.

Reasoning:
Interaction not equipped to scatter nucleons on/close to fermi-sphere to momentum states outside of the fermi-sphere. This causes over-binding.
Same UV cut-off, different basis size

- Everything so far, cutoff variation at same N and different oscillator frequency.

- Results for A≤4 nuclei at same cutoff in different model space size.

- Binding energy does not show any N dependence.

<table>
<thead>
<tr>
<th>$E_{3_{\text{max}}} = N$ (triangular)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

$\Lambda_{\text{UV}} \sim 490$ MeV
Regulator: Finite Harmonic Oscillator Basis

Basis parameters:-

\((N, \omega) \rightarrow (\Lambda_{UV}, L)\)

Key Idea:

By construction, interaction is regulated to live within the phase space covered by finite HO basis. No further regulator employed.

\[L \approx \sqrt{2N \frac{\hbar}{m\omega}} \]

\[\Lambda_{UV} \approx \sqrt{2N \frac{m\omega}{\hbar}} \]

Phase space covered by Oscillator basis with \((N_{\text{max}}, \omega)\) or \((\Lambda_{UV}, L)\)

How small can the basis be?

Basis parameters:-(\(N_{\text{max}}, \omega\) → (\(\Lambda_{\text{UV}}, L\))

- nucleus needs to fit into phase space:
 - \(L > R_{\text{nucl}}\)

- interaction needs to be captured:
 - \(\Lambda_{\text{UV}} > \Lambda_{\text{int}}\)

\[L \approx \sqrt{2N_{\text{max}} \frac{\hbar}{m\omega}} \]

\[\Lambda_{\text{UV}} \approx \sqrt{2N_{\text{max}} \frac{m\omega}{\hbar}} \]

phase space covered by Oscillator basis with (\(N_{\text{max}}, \omega\)) or (\(\Lambda_{\text{UV}}, L\))

S. Binder, T. Papenbrock
Key Idea:

- Same example as before: \(V(k', k) = g(k)g(k') = C_0 \)
- Blue curve gives the IR improved interaction potential

We demand correct low energy behavior of the potential by giving away the agreement of matrix elements at highest discrete momentum eigenvalue.
4He: NCSM vs CCSD

- Shows that singles - doubles CC calculation is a good approximation, even with three nucleon force included.

- Binding energy results for 4He at NLO from both the methods is similar.

<table>
<thead>
<tr>
<th>$\hbar \omega$</th>
<th>Λ</th>
<th>$E_{\text{NCSM}}(^4\text{He})$</th>
<th>$E_{\text{CCSD}}(^4\text{He})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>232.35</td>
<td>27.5</td>
<td>27.5</td>
</tr>
<tr>
<td>10</td>
<td>328.59</td>
<td>27.3</td>
<td>27.2</td>
</tr>
<tr>
<td>22</td>
<td>487.39</td>
<td>29.3</td>
<td>29.0</td>
</tr>
</tbody>
</table>
Key Idea:

\[|k, l> = \sum_{n=0}^{\infty} <n, l|k, l> |n, l> = \sum_{n=0}^{\infty} \tilde{\psi}_{n, l}(k)|n, l> \quad \Rightarrow \quad |\phi_{\mu, l}> = c_{\mu, l} \sum_{n=0}^{N_{\text{max}}} \tilde{\psi}_{n, l}(k_{\mu, l})|n, l> \]

- Quantifying truncation errors in effective field theory: Furnstahl et al. (2015)
References

- Inverse scattering J-matrix approach to nucleus-nucleus scattering and the shell model: Shirokov et al. (2009)
- Ultraviolet extrapolations in finite oscillator bases: S. Konig et al. (2014)
- Systematic expansion for infrared oscillator basis extrapolations: R.J. Furnstahl (2014)
- Corrections to nuclear energies and radii in finite oscillator spaces: R.J. Furnstahl et al. (2012)
- Universal Properties of infrared oscillator basis extrapolations: S.N. More et al. (2013)
- The potential of effective field theory in NN scattering (1997): SR Beane et al.
- Local three nucleon interaction form chiral effective field theory: P. Navratil (2007)
- Three-nucleon forces from Chiral Effective field theory: Epelbaum et al. (2002)