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Outline

Part 1:
Many-body systems in finite oscillator spaces

IR extrapolations at fixed UV cutoff

Low-momentum scales of finite nuclei

arXiv1712:09951

Part 2:
Bayesian data analysis in the nucleon-nucleon
sector

Proof-of-principle demonstration with posterior
sampling, error propagation.

Outlook

Progress report




The NCSM curse of dimensionality - explicit matrix storage
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6-Li ground-state observables

NN interaction: NNLOopt (Ekstrom et al, 2013)
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From Nmax=20 to 22 the variational minimum changes by < 90 keV




Convergence In finite oscillator spaces

What is the equivalent of Liischer’s formula for the harmonic

oscillator basis?
[Lischer, Comm. Math. Phys. 104, 177 (1986)]

Convergence in momentum space (UV) and in position space (IR)

needed
[Stetcu et al. (2007); Coon et al. (2012); Furnstahl et al. (2012, 2015); Konig et al. (2014)]

Choose regime (N, hw) with negligible UV corrections.

The infrared error term is universal for short range Hamiltonians.

It can be systematically corrected and resembles error from putting
system into an infinite well.

E(L) = E, + Ae 2kl  O(e= %1
<7°2>L ~ <r2>oo[1 — (0053 + 18+ 02)6_5]



What (precisely) is the IR scale L?

Key idea: compute eigenvalues of kinetic energy and compare with
corresponding (hyper)spherical cavity to find L.

What is the corresponding cavity?

Single particle A particles A particles in
(product space) No-core shell model
Diagonalize T, =p>? Diagonalize A-body T,;,  Diagonalize A-body T,
3D spherical cavity A fermions in 3D cavity 3(A-1) hyper-radial cavity
1/2
2

> Vatd Xy .
Ly=VXNF32+b Lg= =" Lyg=b

2 it ik VT c(Ni9k)
More, Ekstrom, Furnstahl, Furnstahl, Hagen, Wendyt, Forssén, Papenbrock,
Hagen, Papenbrock, PRC 87, Papenbrock, Wendt, Saaf, PRC 91, 061301(R)

044326 (2013) J. Phys. G 42, 034032 (2015)
(2015)



A practical approach to IR extrapolations

In practice it is often challenging to fulfill:
... being UV converged

... reaching asymptotically large values of keol

Moreover, we lack a physical interpretation of keo for many-body

systems.

Perform instead the extrapolation at a fixed (not necessarily UV
converged) value of A

The LO IR extrapolation becomes

E(L,A) = Eso(A) 4 a(A) exp [—2koe (A) L]



Hyperradial well, explains low-momentum scale

d=p+n

A-1
NCSM: hyper-radial well g = Z i e—Fkilp1l
j=1

Separation energy for lowest threshold §

See also Konig and Lee, arXiv:1701.00279 for volume
dependence of N-Body Bound States in lattice calculations.



Results: A=3 — ground-state energy
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Results: 8Li — ground-state energy
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Nucleus Channel Koo Ksep
3H d+n 0.54(1) 0.54(1)

3He d+p  0.51(2) 0.51(1)

4He  3H+p 0.84(5) 0.97(3)

SLi “He+d 0.44(5) 0.19(8)
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BAYESIAN POSTERIORS IN THE
NUCLEON-NUCLEON SECTOR



Overview of our research efforts

We aim to develop the technology
and ability to:

ﬂ)oes nuclear-physics phenomena
emerge in a “from few to many” ab

initio approach?

» Is available few-body data sufficient
to constrain this model? Does the
model become fine-tuned?

@

Diversify and extend the statistical
analysis of chiral-EFT based nuclear
interactions in a data-driven approach.
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» Can/should emergent phenomena
be used to constrain the model?

» How to quantify systematic
uncertainties in such an approach?

@

Explore alternative strategies of
informing the model about low-
energy many-body observables.
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Inference

“the act of passing from one proposition, statement, or

judgment considered as true to another whose truth is
believed to follow from that of the former” (Webster)

Do premises A, B, ... = hypothesis, H?

» Inductive inference: Premises bear on truth/falsity of H, but don't
allow its definite determination

» Statistical Inference: Quantify the strength of inductive inferences
from data and other premises to hypotheses about the phenomena
producing the data.

» Quantify via probabilities, or averages calculated using probabilities.
Frequentists and Bayesians use probabilities very different for this.



Parametric models

Assume that hypothesis H; is a model M; with parameters
;.

In frequentist statistics we devise a procedure to choose
among H; using data D. Apply this procedure to Dps.

Report long-run performance (e.g., how often it is correct,
how “far” the choice is from the truth on average).



FREQUENTIST CHI-SQUARED MINIMZATION

Low-energy constants (LECs) need to be fitted to experimental data.
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» Efficient minimization algorithms (Levenberg-Marquardt, Newton), and
statistical error analysis require derivatives. We use Automatic
Differentiation (AD) for this purpose.

» There is a possibility to find several minima in the various channels;
They will then multiply into many local minima that don’t necessarily
disappear when doing simultaneous optimisation of all parameters to
all data.



Parametric models

» Assume that hypothesis H; is a model M, with parameters «;.

» In frequentist statistics we devise a procedure to choose among
H; using data D. Apply this procedure to Dgps.

» Report long-run performance (e.g., how often it is correct, how
“far” the choice is from the truth on average).

» In Bayesian statistics we assess the hypotheses by calculating
their probabilities p(H|| . . .) conditional on known and/or
presumed information using the rules of probability theory.

» Parameter estimation: Assume that the model M; is true;
Compute: p(ai| Dobs, M;, 1)

» Model comparison: Compute ratio: p(M;| Dobs, 1)/ p(M;| Dobs, 1)



Bayesian parameter estimation

Bayes’ theorem (follows from probability product rule):

posterior likelihood prior

p(Da, l)p(a|l

el 1) — PPl DpalD
p(D|I)

normalization

Marginalization: p(a;|D,I) :/dag...dakp(a\l),])

For many lessons and suggestions on the use of Bayesian
methods in Effective Field Theories, see work by the BUQEYE
collaboration (and talks by Daniel and Sarah).

Here we report on progress in implementing Bayesian methods
for parameter estimation in Chiral EFT (up to N3LO) using NN
scattering data (phase shifts).



The deuteron channel

Projected
prior probability
distribution
/ /
§

N2LO: deuteron
channel
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The deuteron channel

MCMC
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The deuteron channel

Zoom in on the
main mode




The deuteron channel

Compare to chi-
squared
minimization




Expectation integrals, error propagation

Expectation integrals for observables can be performed
using the posterior pdf

(O(a)) = / dep(ee| D, )O(cx)

LS 0fay)

J=1

2\*—‘

\

The MCMC algorithm generates N samples
{a;} according to the posterior pdf



Deuteron ohservahles
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STATISTICAL ERROR ANALYSIS

» In a minimum there will be an uncertainty in the optimal
parameter values pg given by the y? surface.l

2 A
Xnorm (P)
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» Expand observables similarly, to second order

O(po + Ap) — O(po) = (Ap*) Jo + % (Ap") Ho (Ap)

» The covariance between two observables is then

Cov(04,08) =I5, Cov(po)Jo, + second order
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Redundant parameters

N3LO: 1S0 with
redundant LECs

(see also
° e Sarah’s talk)
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Conclusion



CONCLUSION

Quantum many-body systems in finite oscillator spaces
» Demonstration how to profitably perform IR extrapolations in practice.

» Large-scale exact diagonalization reveals the relevant low-momentum scale of
finite nuclei — related to the threshold energy for the first open decay channel.

Bayesian methods for uncertainty quantification

» Demonstrated successful sampling of Bayesian posterior pdfs in
the nucleon-nucleon sector and the subsequent error propagation.

» Bayesian analysis will allow:

» the incorporation of truncation errors using marginalisation

» model validation :
see Daniels’s and

» model checking. Sarah’s talks
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