

BAYESIAN POSTERIORS IN THE NUCLEON-NUCLEON SECTOR

TRIUMF ab initio workshop, Feb. 27 - Mar. 2, 2018

CHRISTIAN FORSSÉN

Department of Physics, Chalmers University of Technology, Sweden

Outline

Part 1:

Many-body systems in finite oscillator spaces

- IR extrapolations at fixed UV cutoff
- Low-momentum scales of finite nuclei

Part 2:

Bayesian data analysis in the nucleon-nucleon sector

- Proof-of-principle demonstration with posterior sampling, error propagation.
- Outlook

Progress report

The NCSM curse of dimensionality – explicit matrix storage

6-Li ground-state observables

From N_{max} =20 to 22 the variational minimum changes by < 90 keV

Convergence in finite oscillator spaces

- What is the equivalent of Lüscher's formula for the harmonic oscillator basis? [Lüscher, Comm. Math. Phys. 104, 177 (1986)]
- Convergence in momentum space (UV) and in position space (IR) needed
 [Stetcu et al. (2007); Coon et al. (2012); Furnstahl et al. (2012, 2015); König et al. (2014)]
- Choose regime ($N, \hbar \omega$) with negligible UV corrections.
- > The infrared error term is universal for short range Hamiltonians.
- It can be systematically corrected and resembles error from putting system into an infinite well.

$$E(L) = E_{\infty} + Ae^{-2k_{\infty}L} + \mathcal{O}(e^{-4k_{\infty}L})$$
$$\langle r^{2} \rangle_{L} \approx \langle r^{2} \rangle_{\infty} [1 - (c_{0}\beta^{3} + c_{1}\beta + c_{2})e^{-\beta}]$$

What (precisely) is the IR scale L?

Key idea: compute eigenvalues of kinetic energy and compare with *corresponding* (hyper)spherical cavity to find L.

What is the corresponding cavity?

Single particle	A particles (product space)	A particles in No-core shell model
Diagonalize T _{kin} =p ²	Diagonalize A-body T _{kin}	Diagonalize A-body T _{kin}
3D spherical cavity	A fermions in 3D cavity	3(A-1) hyper-radial cavity
	$\left(\sum_{2} \right)^{1/2}$	2

$$L_{2} = \sqrt{2(N+3/2+2)}b \quad L_{\text{eff}} = \left(\frac{\sum_{nl}\nu_{nl}a_{l,n}}{\sum_{nl}\nu_{nl}\kappa_{l,n}^{2}}\right) \quad L_{\text{eff}} = b\frac{X_{1,\mathcal{L}}}{\sqrt{T_{1,\mathcal{L}}(N_{\text{max}}^{\text{tot}})}}$$

More, Ekström, Furnstahl, Hagen, Papenbrock, PRC 87, 044326 (2013) Furnstahl, Hagen, Papenbrock, Wendt, J. Phys. G 42, 034032 (2015) Wendt, Forssén, Papenbrock, Sääf, PRC 91, 061301(R) (2015)

A practical approach to IR extrapolations

- In practice it is often challenging to fulfill:
 - 1.... being UV converged
 - 2. ... reaching asymptotically large values of $k_\infty L$
- Moreover, we lack a physical interpretation of k_{∞} for many-body systems.
- Perform instead the extrapolation at a fixed (not necessarily UV converged) value of Λ
- The LO IR extrapolation becomes

$$E(L,\Lambda) = E_{\infty}(\Lambda) + a(\Lambda) \exp\left[-2k_{\infty}(\Lambda)L\right]$$

Hyperradial well, explains low-momentum scale

NCSM: hyper-radial well
$$\vec{\rho}^2 = \sum_{j=1}^{A-1} \vec{\rho}_j^2$$
. $e^{-k_1 |\vec{\rho_1}|}$

Separation energy for lowest threshold

$$S = \frac{\hbar^2 k_\infty^2}{2m}$$

 \mathcal{V}

See also König and Lee, arXiv:1701.00279 for volume dependence of N-Body Bound States in lattice calculations.

Results: A=3 — ground-state energy

Results: 6Li — ground-state energy

BAYESIAN POSTERIORS IN THE NUCLEON-NUCLEON SECTOR

Overview of our research efforts

- Does nuclear-physics phenomena emerge in a "from few to many" ab initio approach?
- Is available few-body data sufficient to constrain this model? Does the model become fine-tuned?

We aim to develop the technology and ability to:

Diversify and extend the **statistical analysis** of chiral-EFT based nuclear interactions in a **data-driven** approach.

- Can/should emergent phenomena be used to constrain the model?
- How to quantify systematic uncertainties in such an approach?

Explore alternative strategies of informing the model about lowenergy many-body observables.

Inference

"the act of passing from one proposition, statement, or judgment considered as true to another whose truth is believed to follow from that of the former" (Webster)

Do premises $A, B, \ldots \rightarrow$ hypothesis, H?

- Inductive inference: Premises bear on truth/falsity of H, but don't allow its definite determination
- Statistical Inference: Quantify the strength of inductive inferences from data and other premises to hypotheses about the phenomena producing the data.
- Quantify via probabilities, or averages calculated using probabilities. Frequentists and Bayesians use probabilities very different for this.

- Assume that hypothesis H_i is a model M_i with parameters
 α_i.
- In frequentist statistics we devise a procedure to choose among H_i using data D. Apply this procedure to D_{obs}.
- Report long-run performance (e.g., how often it is correct, how "far" the choice is from the truth on average).

FREQUENTIST CHI-SQUARED MINIMZATION

Low-energy constants (LECs) need to be fitted to experimental data.

$$\chi^{2}(\vec{p}) \equiv \sum_{i} r_{i}^{2}(\vec{p}) = \sum_{j \in NN} r_{j}^{2}(\vec{p}) + \sum_{k \in \pi N} r_{k}^{2}(\vec{p}) + \sum_{l \in 3N} r_{l}^{2}(\vec{p})$$

- Efficient minimization algorithms (Levenberg-Marquardt, Newton), and statistical error analysis require **derivatives.** We use Automatic Differentiation (AD) for this purpose.
- There is a possibility to find several minima in the various channels; They will then multiply into many local minima that don't necessarily disappear when doing simultaneous optimisation of all parameters to all data.

Parametric models

- Assume that hypothesis H_i is a model M_i with parameters α_i .
- In frequentist statistics we devise a procedure to choose among H_i using data D. Apply this procedure to D_{obs}.
- Report long-run performance (e.g., how often it is correct, how "far" the choice is from the truth on average).
- In **Bayesian statistics** we assess the hypotheses by calculating their probabilities $p(H_i|...)$ conditional on known and/or presumed information using the rules of probability theory.
- Parameter estimation: Assume that the model M_i is true; Compute: p(α_i | D_{obs}, M_i, I)
- Model comparison: Compute ratio: $p(M_i | D_{obs}, I) / p(M_j | D_{obs}, I)$

Bayes' theorem (follows from probability product rule):

$$\begin{array}{ll} \textbf{posterior} & \textbf{likelihood} & \textbf{prior} \\ p(\pmb{\alpha}|D,I) = \frac{p(D|\pmb{\alpha},I)p(\pmb{\alpha}|I)}{p(D|I)} \\ \textbf{normalization} \end{array}$$

Marginalization: $p(\alpha_1|D, I) = \int d\alpha_2 \dots d\alpha_k p(\boldsymbol{\alpha}|D, I)$

- For many lessons and suggestions on the use of Bayesian methods in Effective Field Theories, see work by the BUQEYE collaboration (and talks by Daniel and Sarah).
- Here we report on progress in implementing Bayesian methods for parameter estimation in Chiral EFT (up to N3LO) using NN scattering data (phase shifts).

N2LO: deuteron channel

Expectation integrals, error propagation

Expectation integrals for observables can be performed using the posterior pdf

$$\langle O(\boldsymbol{\alpha}) \rangle = \int d\boldsymbol{\alpha} p(\boldsymbol{\alpha} | D, I) O(\boldsymbol{\alpha})$$
$$\approx \frac{1}{N} \sum_{j=1}^{N} O(\boldsymbol{\alpha}_j)$$
The MCMC elements

The MCMC algorithm generates N samples $\{\alpha_j\}$ according to the posterior pdf

Deuteron observables

Deuteron observables

STATISTICAL ERROR ANALYSIS

In a minimum there will be an uncertainty in the optimal parameter values p₀ given by the χ² surface.¹

- Approximate the objective function with a quadratic form in the vicinity of the optimum. Compute the hessian matrix.
- Expand observables similarly, to second order

$$\mathcal{O}(\mathbf{p_0} + \Delta \mathbf{p}) - \mathcal{O}(\mathbf{p_0}) \approx (\Delta \mathbf{p}^T) \mathbf{J}_{\mathcal{O}} + \frac{1}{2} (\Delta \mathbf{p}^T) \mathbf{H}_{\mathcal{O}} (\Delta \mathbf{p})$$

> The covariance between two observables is then

 $\operatorname{Cov}(\mathcal{O}_A, \mathcal{O}_B) \approx \mathbf{J}_{\mathcal{O}_A}^T \operatorname{Cov}(\mathbf{p_0}) \mathbf{J}_{\mathcal{O}_B} + \operatorname{second} \operatorname{order}$

Deuteron observables

Redundant parameters

(see also Sarah's talk)

Conclusion

CONCLUSION

Quantum many-body systems in finite oscillator spaces

- Demonstration how to profitably perform IR extrapolations in practice.
- Large-scale exact diagonalization reveals the relevant low-momentum scale of finite nuclei related to the threshold energy for the first open decay channel.

Bayesian methods for uncertainty quantification

- Demonstrated successful sampling of Bayesian posterior pdfs in the nucleon-nucleon sector and the subsequent error propagation.
- Bayesian analysis will allow:
 - the incorporation of truncation errors using marginalisation
 - model validation
 - model checking.

see Daniels's and Sarah's talks

Many thanks to my collaborators

- Boris Carlsson, Andreas Ekström, \bigstar Andreas Johansson, Håkan Johansson, Daniel Sääf (Chalmers)
- Aaina Bansal, Gaute Hagen, Thomas Papenbrock (ORNL/UT)

STINT

The Swedish Foundation for International Cooperation in Research and Higher Education

