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Physics of neutron-rich helium isotopes

Few-body, effective scale separation, continuum couplings, exotic states...

•Two- and four-body halos (6,8He).
•Broad resonances (1/2− in 5,7He).
•Many th. results, high experimental
interest.

•Uncertain case of 9He.
•Very little known on 10He.

T. AL KALANEE et al. PHYSICAL REVIEW C 88, 034301 (2013)

FIG. 5. Summary of all experimental results for 9He, up to 5 MeV excitation energy. Solid lines represent states with well defined resonance.
Dashed lines or hashed areas represent low-lying structures described by virtual s-wave states (see text for details).

the presence of a state in 9He very close (∼200 keV) to
the neutron emission threshold—previously observed in (d, p)
reactions [24,27]—that we have identified as the ground state.
Different theoretical angular distributions for this state as-
suming different transferred angular momenta (L = 0, 1, or 2)
calculated in both the DWBA and the CCBA formalisms
are compared with experiment in Figs. 4(a) and 4(b). The
experimental data present a sharp drop with increasing angle,
characteristic of an L = 0 transition. Consequently, despite the
very limited statistics, the present data support the contention
that the lowest lying state in 9He is 1/2+.

The present work is also compared in Fig. 5 with exper-
iments utilizing knock-out reactions to study 9He. For states
close to the neutron threshold results were obtained in terms
of scattering lengths: as = −10 fm [17], as � −3 fm [5],
and as = −3.17(66) fm [22]. Assuming that the low-lying
structure observed is a resonance, a corresponding energy Er

is calculated and shown in Fig. 5. However, in this section
we prefer to compare scattering lengths and since the g.s. is
close to the neutron threshold we use the relation Er ≈ h̄2

2μa2
s

[17] (where μ is the reduced mass for the neutron + 8He
system) to obtain the corresponding value as ≈ −12 ± 3 fm
for the scattering length from this work. This scattering
length is comparable to the result of Chen et al. [17] but is
not compatible with the weakly interacting s-wave strength
found both by Al Falou et al. [5] and Johansson et al. [22].
This may suggest, as noted by Johansson et al. [22], that
the accumulation of strength close to the neutron threshold
observed in these two experiments is inherent to the reaction
and experimental conditions and not the observation of a well
defined s-wave g.s.

The weak binding energy approximation used to calculate
the theoretical angular distributions involves the use of a low
binding energy (here 0.0001 MeV) to enable the calculation
of the form factor in the usual way for unbound states while
retaining the correct excitation energy for the “kinematical”
part of the calculation. For L = 0 states strong variations in the

calculated absolute cross section are observed as a function of
the choice of the binding energy and it is therefore impossible
to extract meaningful spectroscopic factors from the DWBA
calculation in such cases. However, it is possible to estimate
a value from the single-particle width. Using the prescriptions
of Lane and Thomas [44] we find �sp ≈ 2700 keV for Er =
180 keV. Experimentally � = 180 ± 160 keV, which corre-
sponds to a spectroscopic factor smaller than ∼0.13. Our cal-
culation may however be too crude and more appropriate the-
oretical approaches are necessary to confirm this estimation.

It is more difficult to deduce the nature of the first excited
state observed here at around 1.3 MeV above threshold from
its angular distribution. Within the experimental uncertainties
both the L = 1 and L = 2 calculations reproduce the data
[Fig. 4(c)]. Our angular distribution is compatible with the
Jπ = 1/2− spin-parity assigned in most of the previous studies
(Fig. 5). The small width measured here (� = 130 ± 170 keV)
corroborates several previous results [8,10,21–23]. The values
of the corresponding spectroscopic factors (Table II) vary by a
factor of up to 3 depending on the DWBA input parameters, but
it is worth noting that all of them are substantially smaller than
1 (of the order of 0.05 for L = 1). This indicates that the first
excited state is of a strongly mixed nature in agreement with
the small observed width. From the analysis of this width,
Barker [19] found spectroscopic factors C2S < 0.1. Here, a
calculation using the Lane and Thomas prescription [44] gives
a single-particle width of 2.4 MeV for an L = 1 resonance at
1.25 MeV. From the observed width a spectroscopic factor of
C2S ≈ 0.06 is deduced, in agreement with that extracted from
the experimental angular distribution.

The excited state found here at around 3.5 MeV shows a
smoothly decreasing angular distribution of L = 2 character
[Fig. 4(d)]. Due to the large uncertainties in its energy
(≈800 keV), this state could be compared to the 5/2+
state found at around 4 MeV in Refs. [23,27]. The small
corresponding spectroscopic factors suggest that this state is
also strongly mixed. However, we extracted a width of the
order of 3 MeV. Such a large width for decay to the ground
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What are the options to describe 9He?

Practical vs. fundamental:

Fundamental

Pr
ac

tic
al Explicit 3-body forces

shell model

halo-EFT

ab initio

?

?

•Well bound core of 4He.
→ Core approximation justified (SM, EFT).

•Dilute neutron matter above the core.
→ Residual interaction genuinely residual

•Decent CSM/GSM descriptions of 5−10He
available (small spaces, truncations).
→ Different phenomenological descriptions are

in agreement, it must be a miracle or there
is a good reason behind!

Can we find a practical alternative, without ex-
plicit 3-body forces, and beyond the SM (with
continuum) for He isotopes?

Can we find a practical alternative, without ex-
plicit 3-body forces, and beyond the SM (with
continuum) for He isotopes?

FRIB, MSU - Kévin Fossez 3



What are the options to describe 9He?

Practical vs. fundamental:

Fundamental

Pr
ac

tic
al Explicit 3-body forces

shell model

halo-EFT

ab initio

?

•Well bound core of 4He.
→ Core approximation justified (SM, EFT).

•Dilute neutron matter above the core.
→ Residual interaction genuinely residual

•Decent CSM/GSM descriptions of 5−10He
available (small spaces, truncations).
→ Different phenomenological descriptions are

in agreement, it must be a miracle or there
is a good reason behind!

Can we find a practical alternative, without ex-
plicit 3-body forces, and beyond the SM (with
continuum) for He isotopes?

FRIB, MSU - Kévin Fossez 3



Effective interactions inspired from EFT (preliminary)

A simple model:

•Core potential fitted on n-4He phase-shifts.
•Contact 2-body central term (3 Gaussian func-
tions) for (L even,S = 0) channels.
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•Only a prefactor Vc in the interaction to fit!
•(New: just (L = 0,S = 0) works too)
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Effective interactions inspired from EFT (preliminary)

UQ beyond a sensitivity analysis:

•V (opt)
c (mean), σ (standard deviation).

•The uncertainty on the energy is given by:

∆E = 1
2
∣E(V (opt)

c + σ) − E(V (opt)
c − σ)∣.

Questions:
•Why does the core need to be fitted on phase-shifts?
•Is there a proper EFT for all He isotopes behind this
simple scheme?

•Can it be generalized to other isotopic chains?

→ Parity inversion in 9He, structure information on 8−10He.
→ Powerful approach with full continuum couplings, tens of
keV uncertainties.
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Gamow-SRG

Similarity renormalization group:

Hamiltonian: Ĥ

SRG evolution:
dĤ(s)

ds
= [η̂(s), Ĥ(s)]

(flow equation)

Ĥ(s) = Û(s)ĤÛ−1(s)

Flow generator:

η̂(s) = dÛ(s)
ds

Û−1(s)

Hermitian

Non-Hermitian

HO

Berggren
η̂(s) anti-Hermitian

η̂(s)

Û(s) unitary

Û(s) similarity
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Gamow-SRG

The Berggren basis:
•Single particle basis including bound states, decaying resonances and scattering states.

Re(k)

Im(k)

discretized continuum
in momentum space

bo
un

d
st

at
es

decaying
resonances

∑
n∈(b,d)

∣u`(kn)⟩ ⟨ũ`(kn)∣

+∑
i
∣u`(ki)⟩ ⟨ũ`(ki)∣wki ≈ 1̂`,j .

•Discretization:

∣u`(ki)⟩ ≡
√wki ∣u`(ki)⟩,

∑
n∈(b,d,i)

∣u`(kn)⟩ ⟨ũ`(kn)∣ ≈ 1̂`,j .
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Gamow-SRG

Proof of principle:

PRELIMINARY
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•Various generator
tested.

•Consistent with
observations on
Hermitian matrices.

•It works best for a
Berggren basis with
selected scattering
states.

→ Promising for IM-SRG in the Berggren basis.
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Gamow-SRG

Some technical observations:
•Non-Hermitian Hamiltonian:

Ĥ = Ĥh + Ĥah =
1
2
(Ĥ + Ĥ†) + 1

2
(Ĥ − Ĥ†)

•Wegner flow generator for a non-Hermitian Hamiltonian:

η̂W,cx = [Ĥh,d + Ĥah,d, Ĥh,od + Ĥah,od]
−
(unstable)

⇒ η̂G = [Ĥh,d, Ĥod]
−
= [Ĥh,d, Ĥh,od + Ĥah,od]

−

•Wegner flow generator for the real part only:

η̂G,h = [Ĥh,d, Ĥh,od]
−

→ Not yet clear how to extract the anti-Hermitian part
(key for continuum).

η̂G,h = [Ĥh,d, Ĥah,od]
−
(not similarity)
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Thank you for your attention!

Michigan State University:
•J. Rotureau.
•H. Hergert.
•S. Bogner.
•W. Nazarewicz.
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(NC)GSM vs DMRG

(No-Core) Gamow Shell
Model (N. Michel)

Density Matrix Renormalization
Group (J. Rotureau)

(Complex-symmetric Hamiltonian matrices)

s.p. poles

s.p. scatt.

{SD(N)0 }
(pole space)

{SD(N)1 }
(full space)

H0

H1

∣Ψ0⟩
(pivot)

Davidson
(2D) ∣Ψ1⟩

H ≈ s.p.
pole

P (s.p.
poles/scatt.)

{SD(0)0 ,SD(1)0 , ...,SD(N)0 }

{SD(0)1 ,SD(1)1 , ...,SD(N)1 }

H0

H1

Ψ0
(pivot)

Davidson Ψ1
ρ1(j , j ′) = ∑

h
Ψj,hΨj ′,h

{φ(0)1 , φ
(1)
1 , ..., φ

(N)
1 }select

ε > 10−8{Φ(0)1 ,Φ(1)1 , ...,Φ(N)1 }

{SD(0)2 ,SD(1)2 , ...,SD(N)2 } H2 Davidson Ψ2 etc.
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