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Purpose of this work

• Design novel many-body method for ab initio computations.

• For open-shell nuclei.

• Use symmetry breaking and restoration.

• Variational.

• Numerically effective.

• Access to ground-state and excited-states properties.

• Alternative to Gorkov SCGF, (symmetry-restored) BMBPT and BCC.
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Nuclear Many-Body Problem

Vertical development of configurations

• Symmetry restricted methods, dominant ab initio approaches.
• Use SD reference state and particle/hole excitations.
• Efficiently grasp dynamical correlations.
• Ex: MBPT, CC, NCSM...

Horizontal development of configurations

• Symmetry unrestricted methods, dominant EDF approaches
• Use Bogoliubov vacua with different constrained parameters.
• Use symmetry breaking to grasp non-dynamical correlations:

• U(1) (particle number): nuclear superfluidity
• SU(2) (angular momentum): nuclear deformation
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Combining Symmetry Breaking and Res. with CI

1 Consider a (constrained) Hartree-Fock-Bogoliubov state.

2 Make normal ordering of the Hamiltonian with respect to this state.

3 Build quasiparticle excitations on top of HFB state.

4 Restore symmetries by projecting those states.

5 Truncate the basis efficently (nQP and/or energy of configurations).

6 Apply the variational principle: leads to a Generalized EV Problem.

7 Optimize the reference state in presence of the configuration mixing.
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Application to the Pairing Hamiltonian

The Richardson Model

• Ω doubly degenerated and equidistant shells.

• Half-filling.

• Attractive pairing interaction:
H(g) ≡

∑N
k=1 ek(a†

kak + a†
k̄ak̄)− g

∑N
k 6=l a†

ka†
k̄al̄al .

• U(1) spontaneous symmetry breaking beyond gc .

• Strongly interacting fermions.
Ω = N = 8
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Application to the Pairing Hamiltonian

• BCS solution of H(gaux ) along with 2QP and 4QP configurations.

• Reference state further optimized according to gaux .

-0.5

0.0

0.5

1.0

1.5

 0  0.2  0.4  0.6  0.8  1

(∆
E

/E
) c

 (
%

)

g/∆e

gc /∆e

N = Ω = 16
(0+2+4)qpN,gopt
PoST

α
PoSTx Error in correlation energy:

(∆E/E )c = |E exact
c − E approx

c |/E exact
c

J. Ripoche et al, PRC 95, 014326 (2017)

• Lowest error in Ec (0.1%) for polynomialy scaling methods.

• Good reproduction of low-lying spectroscopy.

• Optimization correct appearance of "first order phase transition".

• Good motivation for ab initio application !
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