New Horizons for the No-Core Shell Model

Robert Roth

TECHNISCHE UNIVERSITÄT DARMSTADT

No-Core Shell Model & Friends

No-Core Shell Model

In-Medium Similarity Renormalization Group

Many-Body Perturbation Theory

- solution of matrix eigenvalue problem in truncated many-body model space
- **universality:** all nuclei and all bound-state observables on the same footing
- **but:** limited by model-space convergence
- decoupling ground-state from excitations through unitary transformation via flow equation
- **efficiency:** favorable scaling gives access to medium-mass nuclei
- **but:** limited to ground-state observables
- power-series expansion of energies and states
- **simplicity:** low-order contributions can be evaluated very easily and efficiently
- **but:** order-by-order convergence problematic

No-Core Shell Model & Friends

No-Core Shell Model

In-Medium Similarity Renormalization Group

Many-Body Perturbation Theory

- complementarity of advantages and limitations of the different methods
- combine NCSM with other methods to overcome limitations
- expand reach in terms of observables, particle number or model-space size
- target: spectroscopy of fully open-shell medium-mass nuclei

Hybrid NCSM Methods

Natural-Orbital NCSM

Natural-Orbital NCSM

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

- construct HF basis in large single-particle space
- compute perturbative corrections to one-body density matrix up to second order
- determine natural orbitals from one-body density matrix and transform matrix elements
- NCSM calculation with natural-orbital basis
- use importance truncation for large spaces and heavier nuclei (optional)
- use normal-order two-body approximation to include 3N interactions (optional)

cf. work of Ch. Constantinou, M. A. Caprio, J. P. Vary, P. Maris on construction of natural-orbital basis from NCSM solutions

Natural Orbitals from MBPT

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

- perform constrained spherical Hartree-Fock calculation to obtain unperturbed single-particle basis and ground state
- compute **MBPT corrections to HF ground state** up to second order $|\Psi^{(PT)}\rangle = |HF\rangle + |\Psi^{(1)}\rangle + |\Psi^{(2)}\rangle$
- evaluate one-body density matrix with perturbed state up to second order

$$\rho_{ij}^{(PT)} = \rho_{ij}^{(HF)} + 2\rho_{ij}^{(02)} + \rho_{ij}^{(11)}$$

$$\rho_{ij}^{(HF)} = \langle HF | a_i^{\dagger} a_j | HF \rangle, \quad \rho_{ij}^{(02)} = \langle HF | a_i^{\dagger} a_j | \Psi^{(2)} \rangle, \quad \rho_{ij}^{(11)} = \langle \Psi^{(1)} | a_i^{\dagger} a_j | \Psi^{(1)} \rangle$$

- write density-matrix corrections in terms of single-particle summations, evaluation only takes minutes...
- solve eigenvalue problem of one-body density matrix, eigenvectors define expansion coefficients of natural-orbital single-particle states
- transform all input matrix elements to natural-orbital basis

NCSM Convergence: Energies

MBPT natural-orbital basis eliminates frequency dependence and accelerates convergence of NCSM

NCSM Convergence: Energies

MBPT natural-orbital basis eliminates frequency dependence and accelerates convergence of NCSM

NCSM Convergence: Energies

• MBPT natural-orbital basis eliminates frequency dependence and accelerates convergence of NCSM

NCSM Convergence: Radii

MBPT natural-orbital basis eliminates frequency dependence and accelerates convergence of NCSM

NCSM Convergence: Radii

MBPT natural-orbital basis eliminates frequency dependence and accelerates convergence of NCSM

NCSM Convergence: Spectroscopy

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

Robert Roth - TU Darmstadt - February 2018

NN+3N(500), α =0.08 fm⁴, e_{max} =12

Oxygen Isotopes

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

Oxygen Isotopes

J. Müller, A. Tichai, K. Vobig, R. Roth, in prep.

Perturbatively Improved NCSM

Perturbatively Improved NCSM

Tichai, Gebrerufael, Vobig, Roth; arXiv:1703.05664

- eigenstates from NCSM at small *N*_{max} as unperturbed states
- access to all open-shell nuclei and systematically improvable
- multi-configurational MBPT at second order for individual unperturbed states
- capture couplings in huge model-space through perturbative corrections

Multi-Configurational Perturbation Theory

Tichai, Gebrerufael, Vobig, Roth; arXiv:1703.05664

prior NCSM calculation: reference or unperturbed state is superposition of Slater determinants from reference space

$$|\Psi_{\rm ref}\rangle = \sum_{\nu \in \mathcal{M}_{\rm ref}} C_{\nu} |\Phi_{\nu}\rangle$$

define partitioning and unperturbed Hamiltonian

$$H_{0} = \epsilon_{\text{ref}} |\Psi_{\text{ref}}\rangle \langle \Psi_{\text{ref}}| + \sum_{\nu \notin \mathcal{M}_{\text{ref}}} \epsilon_{\nu} |\Phi_{\nu}\rangle \langle \Phi_{\nu}|$$

evaluate second-order correction to the energy at many-body level

$$E^{(2)} = -\sum_{\nu \notin \mathcal{M}_{ref}} \frac{|\langle \Phi_{\nu} | H | \Psi_{ref} \rangle|^2}{\epsilon_{\nu} - \epsilon_{ref}}$$

reformulation in terms of single-particle summations gives access to very large model spaces

Oxygen Isotopes

Tichai, Gebrerufael, Vobig, Roth; arXiv:1703.05664

Oxygen Isotopes: Excited 2+ States

Tichai, et al.; in prep.

- all methods can treat excited states natively
- example: first 2⁺ states in even oxygen isotopes
- excellent agreement among methods except for closed (sub-)shells ²²O, ²⁴O...

Exploring sd-Shell Phenomena

Tichai, Gebrerufael, Vobig, Roth; arXiv:1703.05664

In-Medium NCSM

In-Medium NCSM

Oxygen Isotopes

Gebrerufael, Vobig, Hergert, Roth; PRL 118, 152503 (2017)

Oxygen Isotopes

Vobig, Gebrerufael, Roth; in prep.

Stumpf, Wolfgruber, Roth; arXiv:1709.06840

- regular NCSM calculation for ground state for a range of N_{max} truncations
- access to all open-shell nuclei
- prepare pivot vector by applying transition operator to ground-state vector
- use simplistic Lanczos iterations to generate strength distribution

- perform NCSM calculation for ground state |E₀>
- prepare pivot vector with transition operator

$$|\nu_1\rangle = \mathcal{N} O_{\lambda} |E_0\rangle \qquad ; \qquad \mathcal{N} = \langle E_0 | O_{\lambda}^{\dagger} O_{\lambda} | E_0 \rangle^{-1/2}$$

• perform Lanczos algorithm with Hamiltonian: obtain eigenvectors $|E_n\rangle$ as superposition of Lanczos vectors

$$|E_n\rangle = \sum_{i=1}^{l} C_i^{(n)} |v_i\rangle$$

first coefficient provides transition matrix element

$$C_1^{(n)} = \langle v_1 | E_n \rangle = \mathcal{N} \langle E_0 | O_\lambda | E_n \rangle$$

construct discrete strength distribution

$$R(E\lambda, E^*) = \sum_n |\langle E_0 || O_\lambda || E_n \rangle|^2 \, \delta(E^* - (E_n - E_0))$$

Stumpf, Wolfgruber, Roth; arXiv:1709.06840

ab initio approach to strength distributions with many advantages

- works with simplest Lanczos algorithm (no reorthogonalization, Lanczos vectors discarded)
- same computational reach as regular NCSM
- no ad-hoc truncations, convergence in N_{max} and Lanczos iterations can be demonstrated explicitly
- full convergence of individual transitions in the relevant energy regime after ~800 iterations
- full access to fine structure of giant resonances
- full access to below-threshold features

Discrete Strength Distribution

30

Strength Distribution

Stumpf, Wolfgruber, Roth; arXiv:1709.06840

31

Comparison with RPA and SRPA

Stumpf, Wolfgruber, Roth; arXiv:1709.06840

- collective excitations traditionally described in RPA or SRPA
- RPA (1p1h) cannot describe fragmentation, therefore, go to SRPA (2p2h)
- NCSM shows much more fine structure than SRPA and resolves notorious problem with pathological SRPA energy-shifts

Conclusions

- hybrids built on the NCSM enable comprehensive access to ground and excited states of arbitrary open-shell nuclei
- mass reach:

A≈30 if large N_{max} is needed: NAT-NCSM, SF-NCSM A≈70 if small N_{max} is sufficient: IM-NCSM, NCSM-PT

more hybrids: NCSM with Continuum, HORSE,...

Epilogue

thanks to my group and my collaborators

- S. Alexa, D. Derr, M. Dupper, A. Geißel, S. Graf, T. Hüther, J. Kaltwasser, M. Knöll, L. Mertes, J. Müller, S. Schulz, C. Stumpf, T. Tilger, K. Vobig, R. Wirth Technische Universität Darmstadt
- A. Tichai CEA Saclay
- P. Navrátil TRIUMF, Vancouver
- H. Hergert NSCL / Michigan State University
- J. Vary, P. Maris Iowa State University
- E. Epelbaum, H. Krebs & the LENPIC Collaboration Universität Bochum, ...

Deutsche Forschungsgemeinschaft

DFG

Exzellente Forschung für Hessens Zukunft

Bundesministerium für Bildung und Forschung