Symplectic framework for *ab initio* nuclear structure. II. Truncation schemes in a symplectic basis

Anna E. McCoy,^{1,2} Mark A. Caprio,¹ Tomáš Dytrych³ ¹Department of Physics, University of Notre Dame, USA ²TRIUMF, Canada ³Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Czechia

> Progress in *Ab Initio* Techniques in Nuclear Physics, Vancouver, BC February 27, 2018 – March 2, 2018

Outline

Truncation schemes

- $N_{\sigma,\max}$ truncation
- Truncation by $Sp(3,\mathbb{R})$ subspaces
- Truncation by irrep

Symplectic basis

- Select a set of symplectic irreps, e.g., keep only irreps whose LGI have $N_{\text{ex}} \leq N_{\sigma,\text{max}}$ ($N_{\sigma,\text{max}}$ truncation)
- Basis consists of states in chosen irreps with total number of excitation oscillator quanta $N_{\text{ex}} \leq N_{\text{max}}$.

Convergence in the SpNCCI framework

$N_{\sigma,\max}$ truncation

- Calculations converge with respect to $N_{\sigma,\max}$ at about $N_{\sigma,\max} = 10$
- Interaction terms stop strongly mixing $Sp(3,\mathbb{R})$ irreps

$N_{\sigma,\max}$ truncation

- Calculations converge with respect to $N_{\sigma,\max}$ at about $N_{\sigma,\max} = 10$
- Interaction terms stop strongly mixing $Sp(3,\mathbb{R})$ irreps

 $N_{\sigma,\max} = 10$ is too large for heavier nuclei

Truncation by $Sp(3, \mathbb{R}) \times SU(2)$ subspaces

- Decompose wave functions by Sp(3, ℝ) × SU(2) subspaces SpNCCI arXiv:1802.01771 [nucl-th] BIGSTICK arXiv:1801.08432 [physics.comp-ph]
- Truncate basis to include only Sp(3, ℝ) × SU(2) subspaces that contribute to wave function with probabilities that lie above some threshold

What threshold do we use?

Does desired threshold depend on N_{ex} ?

Effect on observables?

Restrict basis to $Sp(3,\mathbb{R}) \times SU(2)$ subspaces which contribute to a chosen reference wave function above a threshold value

Restrict basis to $Sp(3,\mathbb{R}) \times SU(2)$ subspaces which contribute to a chosen reference wave function above a threshold value

- Need to include higher $N_{\sigma,ex}$ irreps
- Need to include higher N_{max} states within irreps
- Limit on basis size

Challenge is to eliminate enough subspaces to include higher $N_{\sigma,\max}$ and N_{\max} irreps while still including enough of each $N_{\sigma,\exp}$ subspace to get accurate predictions.

 $Sp(3,\mathbb{R}) \times SU(2)$ subspace truncations of ⁶Li

 $Sp(3,\mathbb{R}) \times SU(2)$ subspace truncations of ⁶Li

- Accuracy of binding energies depends on small $(10^{-4} 10^{-5})$ contributions from higher $N_{\sigma,\text{max}}$ irreps
- Observables do not depend on these low threshold irreps In $N_{\text{max}} = 6$, $N_{\sigma,\text{max}} = 4$ basis truncated by threshold value 10^{-3}
 - -1^+_{gs} energy almost 1 MeV larger than in the full space

- RMS radius is within 10^{-3} fm

- Truncations based on single wave function provide reasonable truncation for other members of the same irrep family, but not all states
- Need to adjust truncations to accommodate angular momentum selection rules

- Accuracy of binding energies depends on small $(10^{-4} 10^{-5})$ contributions from higher $N_{\sigma,\text{max}}$ irreps
- Observables do not depend on these low threshold irreps In $N_{\text{max}} = 6$, $N_{\sigma,\text{max}} = 4$ basis truncated by threshold value 10^{-3}
 - -1^+_{gs} energy almost 1 MeV larger than in the full space

- RMS radius is within 10^{-3} fm

- Truncations based on single wave function provide reasonable truncation for other members of the same irrep family, but not all states
- Need to adjust truncations to accommodate angular momentum selection rules

Truncation by $Sp(3,\mathbb{R})$ *subspace limited by size of subspace* (~ 10 or ~100 irreps per subspace)

Truncations by irreps

- Within each $Sp(3,\mathbb{R}) \times SU(2)$ subspace only a few irreps may actually dominantly contribute
- Want to identify dominantly contributing irreps in each subspace (linear combinations of original irreps)

Truncations by irrep

At $N_{\text{ex}} = 2$, ³He LGIs are linear combinations of configurations with the same final SU(3)×SU(2) symmetry

Irreps starting from LGIs, which are different linear combinations of these configurations, make up the Sp $(3,\mathbb{R})$ × SU(2) subspace (2,0)1/2

Truncations by irrep

How do we identify linear combinations of configurations which form LGI?

- LGIs are annihilated by Sp(3, \mathbb{R}) lowering operator $B^{(0,2)}$
- Linear combinations span the null space of $B^{(0,2)}$ in SU(3) coupled configuration basis
- The linear combinations obtained using null solver are *arbitrary*
- Is there a particular linear combination that dominantly contributes to the wave function?

"Hamiltonian preferred" linear combination

Summary

In $N_{\sigma,max}$ truncation scheme...

- Calculations converge with respect to $N_{\sigma,\max}$ at about $N_{\sigma,\max} = 10$

 $Sp(3,\mathbb{R}) \times SU(2)$ subspace truncation...

- Details of binding energies depend on contributions from irreps around the 10^{-5} threshold
- Observables appear to depend less on low threshold irreps
- Truncations based on single wave function provide reasonable truncation for other members of the same irrep family

 $Sp(3,\mathbb{R})$ irrep truncation...

- Need to identify "Hamiltonian preferred LGI"

Projecting wave functions onto LGI subspaces

Outlook

Truncation scheme to be explored and developed...

- Extending truncation by Sp(3, \mathbb{R}) × SU(2) subspaces
- Truncation by irrep
- Other truncations ...

Computational scheme to be explored and developed...

- Restructure code for efficient massively parallel calculations
 https://github.com/nd-nuclear-theory/spncci
- Extend framework for 3-body interactions *Petr Navratil*