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Truncation schemes
– Nσ,max truncation

– Truncation by Sp(3,R) subspaces

– Truncation by irrep



Kinetic energy

Symplectic basism-scheme basis



Symplectic basis

– Select a set of symplectic irreps, e.g., keep only irreps
whose LGI have Nex ≤ Nσ,max (Nσ,max truncation)

– Basis consists of states in chosen irreps with total
number of excitation oscillator quanta Nex ≤ Nmax.
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Convergence in the SpNCCI framework
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Convergence in the SpNCCI framework
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Convergence of observables



Nσ,max truncation

– Calculations converge with respect to Nσ,max at about
Nσ,max = 10

– Interaction terms stop strongly mixing Sp(3,R) irreps

V+T



Nσ,max truncation

– Calculations converge with respect to Nσ,max at about
Nσ,max = 10

– Interaction terms stop strongly mixing Sp(3,R) irreps

Nσ,max = 10 is too large
for heavier nuclei

V+T



Sp(3,R) decomposition of 6Li
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Truncation by Sp(3,R)×SU(2) subspaces

– Decompose wave functions by Sp(3,R)×SU(2) subspaces
SpNCCI arXiv:1802.01771 [nucl-th]
BIGSTICK arXiv:1801.08432 [physics.comp-ph]

– Truncate basis to include only Sp(3,R)×SU(2) subspaces
that contribute to wave function with probabilities that lie
above some threshold
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What threshold do we use?

Does desired threshold
depend on Nex?

Effect on observables?



Sp(3,R)×SU(2) subspace truncations of 6Li

Restrict basis to Sp(3,R)×SU(2) subspaces which contribute to
a chosen reference wave function above a threshold value



Sp(3,R)×SU(2) subspace truncations of 6Li
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Convergence in the SpNCCI framework
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Sp(3,R)×SU(2) subspace truncations of 6Li

– Need to include higher Nσ,ex irreps
– Need to include higher Nmax states within irreps
– Limit on basis size

“Best” results for each truncation in basis ≤ 3×103

Challenge is to eliminate
enough subspaces to include
higher Nσ,max and Nmax irreps
while still including enough
of each Nσ,ex subspace to get
accurate predictions.



Sp(3,R)×SU(2) subspace truncations of 6Li
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Sp(3,R)×SU(2) subspace truncations of 6Li
– Accuracy of binding energies depends on small (10−4−10−5)

contributions from higher Nσ,max irreps

– Observables do not depend on these low threshold irreps
In Nmax = 6, Nσ,max = 4 basis truncated by threshold value 10−3

– 1+
gs energy almost 1MeV larger than in the full space

– RMS radius is within 10−3 fm

– Truncations based on single wave function provide
reasonable truncation for other members of the same irrep
family, but not all states

– Need to adjust truncations to accommodate angular
momentum selection rules



Sp(3,R)×SU(2) subspace truncations of 6Li
– Accuracy of binding energies depends on small (10−4−10−5)

contributions from higher Nσ,max irreps

– Observables do not depend on these low threshold irreps
In Nmax = 6, Nσ,max = 4 basis truncated by threshold value 10−3

– 1+
gs energy almost 1MeV larger than in the full space

– RMS radius is within 10−3 fm

– Truncations based on single wave function provide
reasonable truncation for other members of the same irrep
family, but not all states

– Need to adjust truncations to accommodate angular
momentum selection rules

Truncation by Sp(3,R) subspace limited by size of subspace
(∼ 10 or ∼100 irreps per subspace)



Truncations by irreps

– Within each Sp(3,R)×SU(2) subspace only a few irreps may
actually dominantly contribute

– Want to identify dominantly contributing irreps in each
subspace (linear combinations of original irreps)

16

18

20

N

λ

μ
16(2,1)



Truncations by irrep

At Nex = 2, 3He LGIs are linear combinations of configurations
with the same final SU(3)×SU(2) symmetry

Irreps starting from LGIs, which are different linear combinations
of these configurations, make up the Sp(3,R)×SU(2) subspace
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Truncations by irrep

How do we identify linear combinations of configurations which
form LGI?

– LGIs are annihilated by Sp(3,R) lowering operator B(0,2)

– Linear combinations span the null space of B(0,2) in SU(3)
coupled configuration basis

– The linear combinations obtained using null solver are
arbitrary

– Is there a particular linear combination that dominantly
contributes to the wave function?

“Hamiltonian preferred” linear combination



Summary

In Nσ,max truncation scheme. . .

– Calculations converge with respect to Nσ,max at about Nσ,max = 10

Sp(3,R)×SU(2) subspace truncation. . .

– Details of binding energies depend on contributions from irreps
around the 10−5 threshold

– Observables appear to depend less on low threshold irreps
– Truncations based on single wave function provide reasonable

truncation for other members of the same irrep family

Sp(3,R) irrep truncation. . .
– Need to identify “Hamiltonian preferred LGI”

Projecting wave functions onto LGI subspaces



Outlook

Truncation scheme to be explored and developed. . .
– Extending truncation by Sp(3,R)×SU(2) subspaces
– Truncation by irrep
– Other truncations . . .

Computational scheme to be explored and developed. . .

– Restructure code for efficient massively parallel calculations
https://github.com/nd-nuclear-theory/spncci

– Extend framework for 3-body interactions
Petr Navratil


