TRIUMF Theory Workshop (Feb. 27 – Mar. 2, 2018) Progress in Ab Initio Techniques in Nuclear Physics

Recent advances in the no-core Monte Carlo shell model

Takashi Abe (U of Tokyo)

Supported by MEXT and JICFuS

Priority Issue 9 to be Tackled by Using Post K Computer "Elucidation of the Fundamental Laws and Evolution of the Universe"

> TRIUMF March 1, 2018

1

Outline

- No-core Monte Carlo shell model (MCSM)
 - Introduction
 - Current status
- Cluster structure from no-core MCSM
 - Be isotopes
 - C isotopes
- Summary & future perspectives

Monte Carlo shell model (MCSM)

How to obtain ab-initio results from no-core MCSM

• Two steps of the extrapolation

Same as in the MCSM w/ an inert core 1. Extrapolation of our MCSM (approx.) results to exact results in the fixed size of model space

Energy-variance extrapolation

N. Shimizu, Y. Utsuno, T. Mizusaki, T. Otsuka, T. Abe, & M. Honma, Phys. Rev. C82, 061305(R) (2010)

2. Extrapolation into the infinite model space

 - Empirical extrapolation w.r.t. N_{shell}
 - IR- & UV-cutoff extrapolations
 - IR- & UV-cutoff extrapolations
 - MCSM
 - N = N_{shell}
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞
 - N = ∞</l

Extrapolations

Comparison of MCSM results w/ experiments

MCSM results are obtained using K computer by traditional extrapolation w/ optimum harmonic oscillator energies.

Coulomb interaction is included perturbatively.

MCSM results show good agreements w/ experimental data up to 12 C, slightly overbound for 16 O, and clearly overbound for 20 Ne.

Daejeon16, χEFT , ...

Comparison of MCSM results w/ experiments

MCSM results are obtained using K computer around optimum harmonic oscillator energies for radii.

MCSM results show good agreements w/ experimental data up to ⁸Be, clearly smaller for heavier nuclei beyond ¹²C as A increases.

Energy levels & E2 transition strengths of Be isotopes

Expt.: ⁸Be,¹⁰Be (Tilley et al., 2004), ¹²Be (Shimoura et al., 2003) MCSM: JISP16 NN int., $N_{shell} = 6$, hw = 15 MeV Expt.: ⁸Be Datar *et al*. 2013 + estimateby GFMC ¹⁰Be McCutchan *et al*. 2009 ¹²Be Imai *et al*. 2009

Overall good agreement w/ experimental data

E2 & E0 transition strength of ¹²Be

Preliminary

Expt.:

S. Shimoura, et al., Phys. Lett. B 654 87 (2007) N. Imai, et al., Phys. Lett. B 673 179 (2009)

Density distribution in MCSM

$$|\Phi\rangle = \sum_{i=1}^{N_{basis}} c_i |\Phi_i\rangle = c_1 \bigotimes + c_2 \bigotimes + c_3 \bigotimes + c_4 \bigotimes + c_4 \bigotimes + \cdots$$
Angular-momentum projection
$$|\Psi\rangle = \sum_{i=1}^{N_{basis}} c_i P^J P^{\pi} |\Phi_i\rangle$$
A way to construct
an "intrinsic" density
$$|\Psi\rangle = \sum_{i=1}^{N_{basis}} c_i P^J P^{\pi} |\Phi_i\rangle$$
B Be 0⁺ ground state
$$|\Psi\rangle = \sum_{i=1}^{N_{basis}} e^{-i\theta_i} e^{-i\theta_i}$$
Chapter of the state of

N. Shimizu, T. Abe, Y. Tsunoda, Y. Utsuno, T. Yoshida, T. Mizusaki, M. Honma, T. Otsuka₁ Progress in Theoretical and Experimental Physics, 01A205 (2012)

How to construct an "intrinsic" density from MCSM w.f.

• MCSM w.f. w/o spin & parity projections

$$|\Phi\rangle = \sum_{i=1}^{N_{basis}} c_i |\Phi_i\rangle = c_1 \left\{ \begin{array}{c} \bullet \\ \bullet \end{array} + c_2 \left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\} + c_3 \left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\} + c_4 \left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\} + \dots \right\}$$

- Possible ways to construct an "intrinsic" density
 - Rotation of each basis in terms of <u>Q-moment</u>
 - Rotation in terms of overlap btw bases
 - Rotation in terms of <u>minimization of "intrinsic" energy</u>

— ...

For a demonstration, we employ the way to construct an "intrinsic" density in terms of <u>Q-moment</u>.

How to construct an "intrinsic" density from MCSM w.f.

• MCSM wave function

$$|\Psi\rangle = \sum_{i=1}^{N_{basis}} c_i P^{J} P^{\pi} \Phi_i \rangle$$

• Wave function w/o the projections $\sum_{i=1}^{N_{basis}} c_i |\Phi_i\rangle = c_1 + c_2 + \dots + c_{Nbasis}$ Rotation by diagonalizing Q-moment Z $(Q_{zz} > Q_{yy} > Q_{xx})$

• Wave function w/o the projection w/ the alignment of Q-moment

Density distribution of Be isotopes

Energy level & transition strength of ¹²C

E_{gs} = -76.64 MeV (MCSM, JISP16, N_{shell} = 6, hw = 15 MeV)

Closer look at density-distributions in ¹²C

- Dendrogram in "Cluster analysis" of statistics
- Basis vectors are divided into 16 groups (in this case)

Overlap probability in ¹²C

- Dendrogram in "Cluster analysis" of statistics
- Basis vectors are divided into 16 groups (in this case)
- <u>0⁺</u>₁ : Concentrated in 14th (3 clusters) & 15th (compact shape) groups

0.20	0.0	0.11	. 000	0.00	0.00	0.00	0.03	0.07	0.34	0.29	0.04	0.11	0.87	0.98	0.32
• (<u>O⁺</u>: Scattered among all groups —> Gas-like state? 														
*	80	9	8	5	0	5		*	9.0	•	(*) (*)	*	<u>گ</u>		0
0.11	0.02	0.18	0.20	0.02	0.14	0.07	0.08	0.14	0.37	0.16	0.14	0.48	0.22	0.66	0.03

• <u>0</u>⁺₃ : Concentrated in 6th & 7th (linear shape) groups

Overlap probability in ¹⁴C

<u>0+</u>: shell-model like

Equilateral-triangular shape stabilized by excess neutrons?

Molecular orbit model: N. Itagaki *et al.,* PRL92, 142501 (2004)

Summary

- MCSM results for light nuclei (A<= 20) w/ a NN potential can be extrapolated to the infinite basis space to obtain ab initio solution.
 - JISP16 NN interaction gives good agreement w/ experimental data up to around ⁸Be.
 - Daejoen16 NN & SRG-evolved χEFT interactions are tested for ⁴He
- Cluster structure of Be & C isotopes can be visualized using MCSM wave functions.

Future perspective

- Introduction of explicit 3NF effects in the no-core MCSM
- Heavier nuclei beyond ²⁰Ne
- Quantitative analysis on cluster structure of Be & C isotopes

Collaborators

- Takaharu Otsuka (RIKEN, Tokyo, Leuven, MSU)
- Yutaka Utsuno (JAEA)
- Noritaka Shimizu (Tokyo)
- Tooru Yoshida (RIST)
- Takayuki Miyagi (Tokyo)
- James P Vary (Iowa State U)
- Pieter Maris (Iowa State U)
- Petr Navratil (TRIUMF)