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General EFT series for observable to order k: 
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PROBABILITY FOR EFT COEFFICIENTS

General EFT series for observable to order k: 

Δk=X0 ck+1 xk+1 (first omitted term approximation)

Want conditional probability: pr(ck+1|c0,…,ck,I)

I=information about !EFT, e.g. naturalness

Prior distribution: pr(ck+1|I) is updated using data: co, c1, …, ck 

Bayesian model:

Furnstahl, Klco, DP, Wesolowski, PRC, 2015 after Cacciari and Houdeau, JHEP, 2011
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One parameter cbar sets 
size of all dimensionless 

coefficients 



WHAT DOES NATURAL MEAN TO YOU?

“Set A”: coefficients are uniformly distributed up to maximum, 
maximum distributed uniformly in its logarithm. ϵ→0+ at end

“Set C”: coefficients are normally distributed, with mean 0 and 
standard deviation cbar. cbar is distributed uniformly in its logarithm 
between some minimum and maximum values.
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Choose a prior to get started:

Need to fix X0 and breakdown scale to get cn’s from EFT calculation

Just need prior to get started: will show prior dependence goes away

Notes:
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RESULTS FOR SET A PRIORS I
Bayes theorem

Marginalization: 

This is generic, but the integrals are simple for “Set A” (uniform) prior

pr(c̄|c0, c1, . . . , ck) =
pr(c0, c1, . . . , ck|c̄)pr(c̄)
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0
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RESULTS FOR SET A PRIORS II
pr(Δk) α X0 xk+1 pr(ck+1)

68%, 95% DOB intervals from integration of probability distribution

Main feature is reduction by factor of x for each order; but tails also 
become steeper as more information on coefficients acquired

Not Gaussian!

[-cmax X0 xk+1,cmax X0 xk+1] is a                      DoB interval

x=0.33; cmax=1

k + 1

k + 2
⇤ 100%



NORMAL NATURALNESS
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Marginalization: 

For “Set C” (Gaussian) priors:

Student’s t-distribution results:

DoB intervals computed using known results for this distribution. 
Size of error bar set by <c2>, xk+1 (i.e. Qk+1), and X0.

NORMAL NATURALNESS
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NN SCATTERING WITH SEMI-LOCAL POTENTIALS
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Epelbaum, Krebs, Meissner, PRC, 2015
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χEFT: "(N,π)→V(k)→δ



NN SCATTERING WITH SEMI-LOCAL POTENTIALS

NN cross section at Tlab=50, 
96, 143, 200 MeV

Potential regulated by local 
function, parameterized by R

EKM identify Λb=600 MeV 
for smaller R values 

Here: R=0.9 fm data

Results at LO, NLO, N2LO, 
N3LO, N4LO (k=0, 2, 3, 4, 5)
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CAVEATS

Naturalness of ci’s in x-expansion for NN cross section assumed.  
Justified for perturbative process; not so clear why this should be 
so for NN

mπ not included in x: fine at these energies

We took EKM’s LECs as given. LECs themselves have statistical 
errors, but we did not incorporate those in this analysis 

LECs also have truncation errors, which should be included in their 
quoted errors Sarah’s talk

Sarah’s talk
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Consider predictions at each 
order, with their error bars,  as 
data and test them to see if the 
procedure is consistent 

Fix a given DOB interval: 
compute success ratio, compare
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THE WELL-CALIBRATED EFTER

Consider predictions at each 
order, with their error bars,  as 
data and test them to see if the 
procedure is consistent 

Fix a given DOB interval: 
compute success ratio, compare

Look at this for EKM 
predictions at three different 
orders and 17 different energies

Interpret in terms of rescaling 
of Λb by a factor λ

No evidence for significant rescaling of Λb

after: Bagnaschi, Cacciari, Guffanti, Jenniches, 2015
after Furnstahl, Klco, DP, Wesolowski, PRC, 2015

Melendez, Furnstahl, Wesolowski, PRC, 2017



PHYSICS FROM CONSISTENCY PLOTS

Allows assessment of order-by-order convergence

Can look at differential cross section and spin observables too

R=0.9 fm R=1.2 fm



BREAKDOWN-SCALE INFERENCE
Λb determines the size of the cn’s. Choose it too big, and they’ll be too big. 
Choose it too small, they’ll be too small.  And progressively so as one 
moves to higher and higher order. 

We have a theory for pr(cn|c0, c1, …, ck): now use Bayes’ theorem to see 
how (im)probable are the cn’s that dimensionful EFT coefficients (bn’s) 
produce for a given Λb.
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BREAKDOWN-SCALE INFERENCE
Λb determines the size of the cn’s. Choose it too big, and they’ll be too big. 
Choose it too small, they’ll be too small.  And progressively so as one 
moves to higher and higher order. 

We have a theory for pr(cn|c0, c1, …, ck): now use Bayes’ theorem to see 
how (im)probable are the cn’s that dimensionful EFT coefficients (bn’s) 
produce for a given Λb.

At one energy:

(NLO: k=2, NNLO: k=3, N3LO: k=4, etc.)

Using 17 energies (and 7 angles): 
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FUNCTIONAL DATA

But we don’t have 119 
independent data points

We have a function for each 
observable at each order

Can we understand the 
properties of these functions, 
so we can do Λb inference 
and compute success ratios 
rigorously?

�(E) = �0(E)
⇥
1 + c2(E)x2 + c3(E)x3 + c4(E)x4 + c5(E)x5

⇤



OBSERVATIONS AND QUESTIONS
cn’s do not grow or shrink 
with n: good Λb choice

Bounded functions, mostly 
between -2 and 2

Each “takes a turn” at being 
largest

Not oscillating quickly in this 
energy range

Λb=600 MeV
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OBSERVATIONS AND QUESTIONS
cn’s do not grow or shrink 
with n: good Λb choice

Bounded functions, mostly 
between -2 and 2

Each “takes a turn” at being 
largest

Not oscillating quickly in this 
energy range

Physics questions: 

Do curves all fluctuate around zero with some common variance? 

What is the correlation length? Is it different at each order?

Λb=600 MeV



GAUSSIAN PROCESSES
Non-parametric, probabilistic model for a function

Suppose we already know f at x1, x2, x3, …, xn. 

Specify how f(y) is correlated with f(x1), f(x2), …..; don’t specify underlying 
functional form.

But value of f(y) is not deterministic: it’s given by a probability distribution. 

Correlation decreases as points get further away from each other 

Specify correlation matrix of f at x and x’, e.g.:

k(x,x’) determines the probability of getting a particular value of f(x), if the 
value of f(x’) is known



INFERRING THE NEXT COEFFICIENT

��(E) = �0(E)
⇥
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INFERRING THE NEXT COEFFICIENT

Gaussian process “model” for χEFT coefficients, trained on c2 -c5, can be 
used to predict distribution of N6LO corrections 

��(E) = �0(E)
⇥
c6(E)x6 + c7(E)x7 + c8(E)x8 + c9(E)x9

⇤



PARAMETERS AND PHYSICS

For E>70 MeV, so “transition” in Q does not affect length scale

Length scale peak around 70 MeV

(The common) cbar peaks just above 1, average peaks slightly above 0

PRELIMINARY



SUMMARY

BUQEYE Github (under development): http://buqeye.github.io  

Bayesian analysis of truncation error makes explicit what the 
assumptions about the EFT convergence pattern are

The pdfs obtained thereby are easy to write down and use

Truncation errors are stable under choices of “naturalness priors”

Physics can be extracted: success ratios and breakdown-scale inference. 
Can combine pdfs with those from parameter estimation  

But need to understand which “data” from EFT calculation are and are 
not correlated: Gaussian process models of EFT-truncation errors 

Sarah’s talk

Why I think truncation errors 
are interesting:

https://github.com/jordan-melendez/buqeyemodel


BONUS MATERIAL: RKE POTENTIALS
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FIG. 7. The di↵ cross section and spin observables for E = 143MeV for the kvnn 111 potential.
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