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Uncertainty quantification in ab initio calculations

Are we there yet?

Recent QMC result for binding energy per nucleon

Lonardoni et. al, [arXiv:1709.09143], cf. Ingo’s talk

Two types of error bars: method and truncation errors

ab initio methods continue to improve

Need for uncertainty quantification (UQ)
for input nuclear interactions

Issues remain in χEFT:

Regulator artifacts
Convergence
LEC fitting in NN and 3N
What degrees of freedom?

Need full, statistically meaningful UQ!
I.e., only as successful as the p% interval predicts

Focus on low-energy constant (LEC) estimation.
(which is entangled with other uncertainties in the calculation)
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The Bayes Way

EFTs are special because they have a convergence pattern:

X (p) = X0

k∑
n=0

cn Q
n, ∆k =

kmax∑
n=k+1

cnQ
n

Q = max(p,mπ)/Λb

Bayes lets us consistently incorporate EFT details: priors:
naturalness of LECs/observable expansion, truncation errors, breakdown scale.

We can tell if EFTs are working → model checking!
Furnstahl et al, PRC (2015) and Melendez et al. PRC (2017)

When can we improve on traditional methods?

χ2 optimization procedures vs. Bayesian posteriors.
error propagation with covariance matrices
adding errors in quadrature

Parameter estimation framework for LEC estimation.
Furnstahl et. al, J. Phys. G (2015) and sw et al., J. Phys. G (2016)

Can combine LEC + truncation error consistently.
Coming soon: sw, Furnstahl, and Phillips
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Sources of error in parameter estimation

What goes into the parameter estimation procedure?

Input data with errors Observable prediction

Method uncertainty

Systematic errors
Interaction: truncation, artifacts, etc.

Observable calculation

Compare to data. 
update parameters

Parameter estimation procedure entangles sources of error.

Data + priors → sampling → LEC posterior distribution

Focus on semi-local (coordinate-space) interaction of
Epelbaum, Krebs, and Meißner (EKM) for case studies.
NN contact terms in partial waves.
Epelbaum, Krebs, and Meißner, Eur. Phys. J. A 51 (2015)

Epelbaum, Krebs, and Meißner, PRL 115 (2015)



Sources of error in parameter estimation

How does truncation error enter into the
parameter estimation procedure?

χ2-likelihood depends on observable calculation

χ2(a) =
N∑
i=1

(
di − X k(pi , a)

σ2
i

)

Full observable X (p) = X k(p; a) + X0(p)
kmax∑
k+1

cnQ
n

Marginalize to introduce higher-order cn’s into likelihood

Stump et al Phys. Rev. D 65 (2001)
pr(D|a, I ) =

∫
dck+1 · · · dckmax

pr(D|ck+1, · · · , ckmax , a, I ) × pr(ck+1, · · · , ckmax |I )

The final posterior pr(a|D, I ) ∝ likelihood × prior
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Learning physics from Bayesian posteriors

NN problem:
Numerous, high-precision data: what more do we learn?

posterior for 1S0 terms at N3LO
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Parameter posteriors: s-wave redundancy.
(cf. Christian and Hermann’s talks)

What range of data to use? Emax plots.

Formalism: combine truncation and
parameter errors to make predictions.

Briefly demonstrate these without getting
into too much formalism.
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Case study 1: parameter posterior for NN contact LECs

Prior input information: naturalness and truncation errors.

Framework outputs (LEC) parameter posteriors with
uncertainties consistently included:

3P0 at N3LO
Two contact LECs

C np
3S1 = 0.76+0.00

0.00

0.7
8

0.8
0

C
3S

1

C3S1 = 0.79+0.01
0.01

0.7
68

0.7
60

0.7
52

C np
3S1

0.7
0

0.7
2

C
3S

1
3D

1

0.7
8

0.8
0

C3S1

0.7
0

0.7
2

C3S1 3D1

C3S1 3D1 = 0.72+0.01
0.01

3S1 − 3D1 at NLO

Three contact LECs



Case study 1: redundancy in the s-waves

The operators in the s-wave sat N3LO (Q4) may be rewritten as:

D1
(1S0)p

2p′2 + D2
(1S0)(p

4 + p′4)

=
1

4
(D1

(1S0) + 2D2
(1S0))(p2 + p′2)2

− 1

4
(D1

(1S0) − 2D2
(1S0))(p2 − p′2)2

= (D1
(1S0) + 2D2

(1S0))p
2p′2 + D2

(1S0)(p
2 − p′2)2



Case study 1: redundancy in the s-waves

The operators in the s-wave sat N3LO (Q4) may be rewritten as:

D1
(1S0)p

2p′2 + D2
(1S0)(p

4 + p′4)

=
1

4
(D1

(1S0) + 2D2
(1S0))(p2 + p′2)2

− 1

4
(D1

(1S0) − 2D2
(1S0))(p2 − p′2)2

= (D1
(1S0) + 2D2

(1S0))p
2p′2 + D2

(1S0)(p
2 − p′2)2

The LEC posterior is non-Gaussian behavior with large correlations:
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But becomes more Gaussian with restriction of parameters D2
1S0 = 0:

and equivalent description of data!



Case study 2: what range of data to use?

EFT convergence

X (p) = X0

k∑
n=0

cn Q
n, ∆k =

kmax∑
n=k+1

cnQ
n

Q = max(p,mπ)/Λb

As we go to higher Emax, more terms contribute in the expansion.
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Case study 2: what range of data to use?

EFT convergence

X (p) = X0

k∑
n=0

cn Q
n, ∆k =

kmax∑
n=k+1

cnQ
n

Q = max(p,mπ)/Λb

As we go to higher Emax, more terms contribute in the expansion.

Including truncation error in fit procedure avoids overfitting.

Emax plots: how high to make kmax to absorb UV physics?

Bayesian model selection makes quantitative statements
about how many terms are constrained by data.

Emax plots serve as simpler proxy to model selection.



Case study 2: what range of data to use?

EFT convergence

X (p) = X0

k∑
n=0

cn Q
n, ∆k =

kmax∑
n=k+1

cnQ
n

Q = max(p,mπ)/Λb

As we go to higher Emax, more terms contribute in the expansion.

10 25 50 75 100 125 150 175 200 225
Emax [MeV]

0.4

0.0

0.4

0.8

1.2

C
1P

1 k = 1, kmax = 1



Case study 2: what range of data to use?

EFT convergence

X (p) = X0

k∑
n=0

cn Q
n, ∆k =

kmax∑
n=k+1

cnQ
n

Q = max(p,mπ)/Λb

With enough terms, LEC saturates as function of Emax.

10 25 50 75 100 125 150 175 200 225
Emax [MeV]

0.4

0.0

0.4

0.8

1.2

C
1P

1

k = 1, kmax = 2



Case study 2: what range of data to use?

EFT convergence

X (p) = X0

k∑
n=0

cn Q
n, ∆k =

kmax∑
n=k+1

cnQ
n

Q = max(p,mπ)/Λb

With enough terms, LEC saturates as function of Emax.

10 25 50 75 100 125 150 175 200 225
Emax [MeV]

0.4

0.0

0.4

0.8

1.2

C
1P

1

k = 1, kmax = 3



Case study 2: what range of data to use?

EFT convergence
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Case study 3: combining LEC and truncation uncertainty

How to make predictions with combined uncertainties?

Using Bayesian methods, can derive a posterior for observables:
pr(X (p)|D, k , kmax, I )

LEC posterior (“the fit”) at each order: 
pr(a(k)|k,kmax, D,I)

Prediction with LEC error at each order

Convergence pattern information

Priors for natural convergence pattern
Observable posterior pdf
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How to make predictions with combined uncertainties?

Preliminary
LEC error component



Case study 3: combining LEC and truncation uncertainty

How to make predictions with combined uncertainties?

Preliminary
Crude truncation error estimate alone



Combining LEC and truncation uncertainty: results

Plot relative uncertainty

σres = (σpred. − σNPWA)/σNPWA

Note: this is singlet s component only!
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 [m
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Leading-order (Q0) estimate
reflects only prior input (not
shown here)

Next-to-leading order (Q2) starts
to know about convergence

N2LO (Q3) includes even more
convergence information

Finally, N3LO (Q4) has
converged even further.
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Summary and outlook

Summary

Bayes → consistent analysis of error in ab initio calculations

Here: EFT truncation error + LEC error/correlations.

Model checking and validation possible!

Can extract physics insight based on data
(cf. s-wave redundancy)

Outlook

Extend to 3N and problems with few data.

Bayesian model selection for deciding between formulations.

Working on model selection for nd scattering in pionless EFT.

Make code accessible for interaction practitioners.


