Case studies in Bayesian parameter estimation for chiral effective field theory

#### Sarah Wesolowski

Department of Mathematics and Computer Science Salisbury University



Dick Furnstahl

**Daniel Phillips** 

THE OHIO STATE UNIVERSITY





Supported in part by DOE, NSF, SciDAC NUCLEI project

#### Uncertainty quantification in *ab initio* calculations

## Are we there yet?



Two types of error bars: method and truncation errors

• Need for uncertainty quantification (UQ) for input nuclear interactions

<sup>•</sup> ab initio methods continue to improve

## Uncertainty quantification in ab initio calculations

## Are we there yet?



Lonardoni et. al, [arXiv:1709.09143], cf. Ingo's talk Two types of error bars: method and truncation errors

- *ab initio* methods continue to improve
- Need for uncertainty quantification (UQ) for input nuclear interactions
- Issues remain in  $\chi EFT$ :
  - Regulator artifacts
  - Convergence
  - LEC fitting in NN and 3N
  - What degrees of freedom?

## Uncertainty quantification in ab initio calculations

# Are we there yet?



Two types of error bars: method and truncation errors

- *ab initio* methods continue to improve
- Need for uncertainty quantification (UQ) for input nuclear interactions
- Issues remain in  $\chi \text{EFT}$ :
  - Regulator artifacts
  - Convergence
  - LEC fitting in NN and 3N
  - What degrees of freedom?
- Need full, statistically meaningful UQ! I.e., only as successful as the *p*% interval predicts

Focus on low-energy constant (LEC) estimation. (which is entangled with other uncertainties in the calculation)

EFTs are special because they have a convergence *pattern*:



• Bayes lets us consistently incorporate EFT details: priors:

naturalness of LECs/observable expansion, truncation errors, breakdown scale.

EFTs are special because they have a convergence *pattern*:



- Bayes lets us consistently incorporate EFT details: priors: naturalness of LECs/observable expansion, truncation errors, breakdown scale.
- We can tell if EFTs are working  $\rightarrow$  model checking! Furnstahl et al, PRC (2015) and Melendez et al. PRC (2017)

EFTs are special because they have a convergence *pattern*:



- Bayes lets us consistently incorporate EFT details: priors: naturalness of LECs/observable expansion, truncation errors, breakdown scale.
- We can tell if EFTs are working  $\rightarrow$  model checking! Furnstahl et al, PRC (2015) and Melendez et al. PRC (2017)
- When can we improve on traditional methods?
  - $\chi^2$  optimization procedures vs. Bayesian posteriors.
  - error propagation with covariance matrices
  - adding errors in quadrature

EFTs are special because they have a convergence *pattern*:



- Bayes lets us consistently incorporate EFT details: priors: naturalness of LECs/observable expansion, truncation errors, breakdown scale.
- We can tell if EFTs are working  $\rightarrow$  model checking! Furnstahl et al, PRC (2015) and Melendez et al. PRC (2017)
- When can we improve on traditional methods?
  - $\chi^2$  optimization procedures vs. Bayesian posteriors.
  - error propagation with covariance matrices
  - adding errors in quadrature
- Parameter estimation framework for LEC estimation. Furnstahl et. al, J. Phys. G (2015) and sw et al., J. Phys. G (2016)
- Can combine LEC + truncation error consistently. Coming soon: sw, Furnstahl, and Phillips

## Sources of error in parameter estimation

#### What goes into the parameter estimation procedure?



- Parameter estimation procedure entangles sources of error.
- $\bullet~\mathsf{Data}~+~\mathsf{priors}~\rightarrow~\mathsf{sampling}~\rightarrow~\mathsf{LEC}$  posterior distribution
- Focus on semi-local (coordinate-space) interaction of Epelbaum, Krebs, and Meißner (EKM) for case studies.
   NN contact terms in partial waves.
   Epelbaum, Krebs, and Meißner, Eur. Phys. J. A 51 (2015)
   Epelbaum, Krebs, and Meißner, PRL 115 (2015)

## Sources of error in parameter estimation

# How does truncation error enter into the parameter estimation procedure?

 $\chi^2$ -likelihood depends on observable calculation

$$\chi^{2}(\mathbf{a}) = \sum_{i=1}^{N} \left( \frac{d_{i} - \mathbf{X}^{k}(\mathbf{p}_{i}, \mathbf{a})}{\sigma_{i}^{2}} \right)$$

• Full observable  $X(p) = X^k(p; \mathbf{a}) + X_0(p) \sum_{k+1}^{k_{\max}} c_n Q^n$ 

#### Sources of error in parameter estimation

# How does truncation error enter into the parameter estimation procedure?

 $\chi^2$ -likelihood depends on observable calculation

$$\chi^2(\mathbf{a}) = \sum_{i=1}^N \left( \frac{d_i - X^k(p_i, \mathbf{a})}{\sigma_i^2} \right)$$

• Full observable 
$$X(p) = X^k(p; \mathbf{a}) + X_0(p) \sum_{k+1}^{\kappa_{\max}} \mathbf{c_n} Q^n$$

Marginalize to introduce higher-order  $c_n$ 's into likelihood  $pr(D|\mathbf{a}, I) = \int dc_{k+1} \cdots dc_{k_{\max}}$ Stump *et al* Phys. Rev. D **65** (2001)  $pr(D|c_{k+1}, \cdots, c_{k_{\max}}, \mathbf{a}, I) \times pr(c_{k+1}, \cdots, c_{k_{\max}}|I)$ 

The final posterior  $pr(\mathbf{a}|D, I) \propto likelihood \times prior$ 

## Learning physics from Bayesian posteriors

#### NN problem:

#### Numerous, high-precision data: what more do we learn?

posterior for  ${}^{1}S_{0}$  terms at N<sup>3</sup>LO



• Parameter posteriors: *s*-wave redundancy. (cf. Christian and Hermann's talks)

#### Learning physics from Bayesian posteriors

#### NN problem: Numerous, high-precision data: what more do we learn?



- Parameter posteriors: *s*-wave redundancy. (cf. Christian and Hermann's talks)
- What range of data to use?  $E_{\rm max}$  plots.

#### Learning physics from Bayesian posteriors

#### NN problem: Numerous, high-precision data: what more do we learn?



- Parameter posteriors: *s*-wave redundancy. (cf. Christian and Hermann's talks)
- What range of data to use?  $E_{\rm max}$  plots.
- Formalism: combine truncation and parameter errors to make predictions.
- Briefly demonstrate these without getting into too much formalism.

## Case study 1: parameter posterior for NN contact LECs

- Prior input information: naturalness and truncation errors.
- Framework outputs (LEC) parameter posteriors with uncertainties consistently included:



#### Case study 1: redundancy in the *s*-waves

The operators in the s-wave sat N<sup>3</sup>LO ( $Q^4$ ) may be rewritten as:

$$D_{(150)}^{1}p^{2}p^{\prime 2} + D_{(150)}^{2}(p^{4} + p^{\prime 4})$$

$$= \frac{1}{4}(D_{(150)}^{1} + 2D_{(150)}^{2})(p^{2} + p^{\prime 2})^{2}$$

$$- \frac{1}{4}(D_{(150)}^{1} - 2D_{(150)}^{2})(p^{2} - p^{\prime 2})^{2}$$

$$= (D_{(150)}^{1} + 2D_{(150)}^{2})p^{2}p^{\prime 2} + D_{(150)}^{2}(p^{2} - p^{\prime 2})^{2}$$

## Case study 1: redundancy in the s-waves

The operators in the *s*-wave sat N<sup>3</sup>LO ( $Q^4$ ) may be rewritten as:

$$D_{(150)}^{1} p^{2} p^{\prime 2} + D_{(150)}^{2} (p^{4} + p^{\prime 4})$$

$$= \frac{1}{4} (D_{(150)}^{1} + 2D_{(150)}^{2}) (p^{2} + p^{\prime 2})^{2}$$

$$- \frac{1}{4} (D_{(150)}^{1} - 2D_{(150)}^{2}) (p^{2} - p^{\prime 2})^{2}$$

$$= (D_{(150)}^{1} + 2D_{(150)}^{2}) p^{2} p^{\prime 2} + D_{(150)}^{2} (p^{2} - p^{\prime 2})^{2}$$

The LEC posterior is non-Gaussian behavior with large correlations:



#### Case study 1: redundancy in the s-waves

The operators in the s-wave sat N<sup>3</sup>LO ( $Q^4$ ) may be rewritten as:

$$D_{(150)}^{1}p^{2}p'^{2} + D_{(150)}^{2}(p^{4} + p'^{4})$$

$$= \frac{1}{4}(D_{(150)}^{1} + 2D_{(150)}^{2})(p^{2} + p'^{2})^{2}$$

$$- \frac{1}{4}(D_{(150)}^{1} - 2D_{(150)}^{2})(p^{2} - p'^{2})^{2}$$

$$= (D_{(150)}^{1} + 2D_{(150)}^{2})p^{2}p'^{2} + D_{(150)}^{2}(p^{2} - p'^{2})^{2}$$

But becomes more Gaussian with restriction of parameters  $D_{150}^2 = 0$ : and equivalent description of data!



#### EFT convergence

$$X(p) = X_0 \sum_{n=0}^{k} c_n Q^n, \qquad \Delta_k = \sum_{\substack{n=k+1 \ p \in m_\pi}}^{k_{\max}} c_n Q^n$$
 $Q = \max(p, m_\pi) / \Lambda_b$ 

As we go to higher  $E_{\rm max}$ , more terms contribute in the expansion.



#### EFT convergence

$$X(p) = X_0 \sum_{n=0}^{k} c_n Q^n, \qquad \Delta_k = \sum_{n=k+1}^{k_{\max}} c_n Q^n$$
 $Q = \max(p, m_\pi) / \Lambda_b$ 

As we go to higher  $E_{\max}$ , more terms contribute in the expansion.

- Including truncation error in fit procedure avoids overfitting.
- $E_{\text{max}}$  plots: how high to make  $k_{\text{max}}$  to absorb UV physics?
- Bayesian model selection makes quantitative statements about how many terms are constrained by data.
- $E_{\rm max}$  plots serve as simpler proxy to model selection.

#### EFT convergence

$$X(p) = X_0 \sum_{n=0}^{k} c_n Q^n, \qquad \Delta_k = \sum_{\substack{n=k+1 \ p \in m\pi}}^{k_{\max}} c_n Q^n$$
 $Q = \max(p, m_\pi) / \Lambda_b$ 

As we go to higher  $E_{\rm max}$ , more terms contribute in the expansion.



#### EFT convergence

$$X(p) = X_0 \sum_{n=0}^{k} c_n Q^n, \qquad \Delta_k = \sum_{n=k+1}^{k_{\max}} c_n Q^n Q^n Q = \max(p, m_\pi) / \Lambda_b$$

With enough terms, LEC saturates as function of  $E_{\rm max}$ .



#### EFT convergence

$$X(p) = X_0 \sum_{n=0}^{k} c_n Q^n, \qquad \Delta_k = \sum_{n=k+1}^{k_{\max}} c_n Q^n Q^n Q = \max(p, m_\pi) / \Lambda_b$$

With enough terms, LEC saturates as function of  $E_{\rm max}$ .



#### EFT convergence

$$X(p) = X_0 \sum_{n=0}^{k} c_n Q^n, \qquad \Delta_k = \sum_{n=k+1}^{k_{\max}} c_n Q^n 
onumber \ Q = \max(p, m_\pi) / \Lambda_b$$

With enough terms, LEC saturates as function of  $E_{\text{max}}$ .



#### How to make predictions with combined uncertainties?

#### Using Bayesian methods, can derive a posterior for observables: $pr(X(p)|D, k, k_{max}, I)$













## Combining LEC and truncation uncertainty: results

#### Plot relative uncertainty

 $\sigma_{\rm res} = (\sigma_{\rm pred.} - \sigma_{\rm NPWA}) / \sigma_{\rm NPWA}$ 

Note: this is singlet s component only!



- Leading-order (Q<sup>0</sup>) estimate reflects only prior input (not shown here)
- Next-to-leading order (Q<sup>2</sup>) starts to know about convergence

## Combining LEC and truncation uncertainty: results

#### Plot relative uncertainty

 $\sigma_{\rm res} = (\sigma_{\rm pred.} - \sigma_{\rm NPWA}) / \sigma_{\rm NPWA}$ 

Note: this is singlet s component only!



- Leading-order (Q<sup>0</sup>) estimate reflects only prior input (not shown here)
- Next-to-leading order (Q<sup>2</sup>) starts to know about convergence
- N<sup>2</sup>LO (Q<sup>3</sup>) includes even more convergence information

## Combining LEC and truncation uncertainty: results

#### Plot relative uncertainty

 $\sigma_{\rm res} = (\sigma_{\rm pred.} - \sigma_{\rm NPWA}) / \sigma_{\rm NPWA}$ 

#### Note: this is singlet s component only!



- Leading-order (Q<sup>0</sup>) estimate reflects only prior input (not shown here)
- Next-to-leading order (Q<sup>2</sup>) starts to know about convergence
- N<sup>2</sup>LO (Q<sup>3</sup>) includes even more convergence information
- Finally, N<sup>3</sup>LO (Q<sup>4</sup>) has converged even further.

# Summary and outlook

#### Summary

- $\bullet~$  Bayes  $\rightarrow~$  consistent analysis of error in  $\it{ab~initio}$  calculations
- Here: EFT truncation error + LEC error/correlations.
- Model checking and validation possible!
- Can extract physics insight based on data (cf. *s*-wave redundancy)

#### Outlook

- Extend to 3N and problems with few data.
- Bayesian model selection for deciding between formulations.
- Working on model selection for nd scattering in pionless EFT.
- Make code accessible for interaction practitioners.