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16O-e- cross sections within the SCGF approach
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Outline

- The Self-Consistent Green’s Funtion method (SCGF)

- Mid-mass nuclei with chiral interactions

- Neutrino Nucleus scattering (@ GeV energies)

- Optical potnetials from ab initio

- (Hyper)nuclear ofrces from LQCD (time permitting)



Current Status of low-energy nuclear physics

neutrons

pr
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Composite system of interacting fermions
Binding and limits of stability
Coexistence of individual and collective behaviors
Self-organization and emerging phenomena
EOS of neutron star matter

Experimental 
programs

RIKEN, FAIR, FRIB…

Stable nuclei

Unstable nuclei

r-process path…

• ~3,200 known isotopes
• ~7,000 predicted to exist
• Correlation characterised

in full for ~283 stable
Nature 473, 25  (2011); 486, 509 (2012)



Current Status of low-energy nuclear physics

neutrons
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I) Understanding the nuclear force
QCD-derived; 3-nucleon forces (3NFs)
First principle (ab-initio) predictions

Composite system of interacting fermions
Binding and limits of stability
Coexistence of individual and collective behaviors
Self-organization and emerging phenomena
EOS of neutron star matter

Experimental programs
RIKEN, FAIR, FRIB, ISAC…

Stable nuclei

Unstable nuclei

r-process path…
II) Nuclear correlations
Fully known for stable isotopes
[C. Barbieri and W. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]

Neutron-rich nuclei; Shell evolution (far from stability)

• ~3,200 known isotopes
• ~7,000 predicted to exist
• Correlation characterised

in full for ~283 stable
Nature 473, 25  (2011); 486, 509 (2012)

III) Interdisciplinary character
Astrophysics
Tests of the standard model
Other fermionic systems:

ultracold gasses; molecules;



Use a probe (ANY probe) to eject the particle we are interested to:

Basic idea:
• we know, e, e’ and p 
• “get” energy and momentum of pi: pi = ke’ + kp – ke

Ei = Ee’ + Ep - Ee

Target,  N-body
system N-1 particles

e

e’

pq,w

pi

Better to choose
large transferred 

momentum and weak 
probes!!!

Spectroscopy via knock out reactions-basic idea



Use a probe (ANY probe) to eject the particle we are interested to:

Target,  N-body
system N-1 particles

e

e’

pq,w

pi

In plane wave impulse 
approximation (PWIA):

Spectroscopy via knock out reactions-basic idea

d�(e,e0p)

dEe0 d⌦e0 d⌦p
= �e p ⇥ Sh(pm, Em)



Concept of correlations

Em [MeV] 

sred » S(h)

p m
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10-50
0p1/2
0p3/2

0s1/2

correlations

Spectral function: distribution of
momentum (pm) and energies (Em)independent

particle picture

Saclay data for 16O(e,e’p)
[Mougey et al., Nucl. Phys. A335, 35 (1980)]

Particle-vibration
coupling (PV)

Configuration
interaction
(shell model)

Understood for a few stable closed shells:
[CB and  W. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]
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Saclay data for 16O(e,e’p)
[Mougey et al., Nucl. Phys. A335, 35 (1980)]

Particle-vibration
coupling (PV)

Configuration
interaction
(shell model)

Understood for a few stable closed shells:
[CB and  W. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]

Want to understand structure and nuclear forces

directly from first principles (ab initio). 

So far, fully characterised only for closed-shell and 

stable isotopes… (!)

[W. Dickhoff, CB,  Prog. Part. Nucl. Phys. 52, 377 (2004)]



•A complete expansion requires all 
types of particle-vibration coupling

•The Self-energy S«(w) yields both
single-particle states and scattering

The FRPA Method in Two Words

n p

º particle º hole

…these modes are all resummed
exactly and to all orders in a 

ab initio many-body expansion.

“Extended”
Hartree Fock

R(2p1h)S«(w) = R(2h1p)

CB et al., 
Phys. Rev. C63, 034313 (2001)
Phys. Rev. A76, 052503 (2007)
Phys. Rev. C79, 064313 (2009)

Particle vibration coupling is the main mechanism driving the redistribution and fragmentation 
of particle strength—expecially in the quasielastic regions around the Fermi surface…



gII(w)

Π(ph)(w)

Dyson
Eq.

Ionization energies/
affinities, in atoms

[CB, D. Van Neck,
AIP Conf.Proc.1120,104 (‘09) & in prep]

Isovector response
for 32Ar, 34Ar
Proton 
Pygmy

[C. B., K. Langanke, et al., Phys Rev. C77, 024304 (2008)]

IVGDR

0           100          200         300       

101

101

102

1

pB(MeV/c)

ds

(q,w)
p1

p2

16O(e,e’pn)14N @ MAINZ

[C. B., C. Giusti, et al.
Phys Rev. C70, 014606 (2004)
D. Middelton, et al.
arXiv:0907.1758; EPJA in print]
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This Work
Lister and Sayres, Phys Rev 143, 745

Preliminary

— SCGF      

arXiv:1612.01478 [nucl-th]

Optical potential

Binding energies
[PRL. 111, 062501 (2013),
PRC 92, 014306 (2015), PRC89, 061301R (2014)]
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Self-Consistent Green’s Function Approach



neutron 
removal

neutron 
addition

scattering

56Ni

Solve the Dyson eq. to obtain all the structure information probed by nucleon transfer (spectral function):

Spectral function in matter and nuclei

CB and A. Carbone, Lecture Notes in Physics 936 (2017)— chapter 11 

11 Self-Consistent Green’s Function Approaches 615

PNM
HF hole spectrum
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Hole spectral function
Particle spectral function
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Fig. 11.10 Spectral function of PNM (top) and SNM (bottom) at nominal saturation density
(! D 0:16 fm!3 ) from ADC(3). The correlated strength distribution is folded with Lorentzians
along the energy axis. The isolated vertical lines mark the unperturbed HF spectrum and are
normalized to the same height assumed for the Lorentzians, so that a visual comparison with the
correlated distribution is meaningful. The thick line at constant ! marks the Fermi energy, EF , for
the correlated ADC(3) results, which separates the quasihole from the quasiparticle spectrum

where "HF.p/ D p2

2m C vHF.p/ are the HF single particle energies. Equation (11.60)
is plotted as separate spikes in Fig. 11.10, with their height taken to be the same
as for the (normalized) Lorentzians near the Fermi surface. Thus, the unperturbed

Nucleonic matter Finite nuclei

Eqp(p) ⇡
p2

2m
+ U(p) and             :

uncorrelated Fermi gas

g↵�(!) = g(0)↵� (!) +
X

� �

g(0)↵� (!)⌃
?
��(!)g��(!)



Reach of ab initio methods across the nuclear chart
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○ Since 2000’s
○ SCGF, CC, IMSRG
○ Polynomial scaling

○ Since 2010’s
○ GGF, BCC, MR-IMSRG
○ Polynomial scaling

⦿ Ab initio shell model

○ Since 2014
○ Effective interaction via CC/IMSRG
○ Mixed scaling

2018

○ Since 1980’s

○ Factorial scaling
○ Monte Carlo, CI, …

⦿ “Exact” approaches

⦿ Approximate approaches for open-shells

Evolution of ab initio nuclear chart

⦿ Approximate approaches for closed-shell nuclei

Slide, courtesy of V. Somà

∼2016-

Key developments in SCGF:

Dyson ADC(2), ADC(3)

Schirmer 1982

Dyson ADC(4), ADC(5)

Schirmer 1983 (formalism)

Particle-vibration coupling, FRPA(3)

CB 2000, 2007

Gorkov ADC(2): open shells!

Somà 2011, 2013

3-nucleon forces basic formalism

Carbone, Cipollone 2013

3NFs in Dyson ADC(3)

Raimondi 2018

Gorkov ADC(3) and higher orders (automatic)

Raimoindi, Arthuis 2019

Deformation

???

Symmetry restoration

???



[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011) ]

Espressions for 1st & 2nd order diagrams



Inclusion of NNN forces 
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

(o) (p) (q)

FIG. 5. 1PI, skeleton and interaction irreducible self-energy diagrams appearing at 3rd-order in perturbative expansion (7),
making use of the e↵ective hamiltonian of Eq. (9).

this boils down to the equation of motion of the operators
in interaction picture [6]:

i~ @

@t
aI↵(t) = [aI↵(t), Ĥ0] = "↵a

I
↵(t) . (18)

By taking the derivative of G(0) and using Eq. (18), we
arrive at

⇢
i~ @

@t
� "↵

�
G(0)

↵↵0(t � t0) = �(t � t0)�↵↵0 , (19)

where the delta functions come from the derivative of the
step-function decomposition of the time-ordered product
in. Eq. (19) gives the inverse operator of G(0).

The same procedure applied to the exact propagator,
G(t� t0), requires the time-derivative of the annihilation
operators in the Heisenberg picture. For the hamiltonian

Formalism already laid out: 
F. Raimondi, CB, Phys. Rev. C97, 054308 (2018).

è3p2h/3h2p terms relevant to next-generation high-precision methods.

27
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FIG. 13. As in Fig. 8 but for the third-order term eU (3).

amplitudes, expressed here with Einstein’s summing convention,

eV (2)
↵�,�� = W↵�✏,��⌘

 
X

n1k2

(Xn1
µ )⇤Xn1

✏ Y
k2
⌘ (Y k2

⌫ )⇤

�("+n1 � "
�
k2
) + i⌘

�
X

k1n2

Y
k1
µ (Y k1

✏ )⇤(Xn2
⌘ )⇤Xn2

⌫

�("�k1
� "

+
n2)� i⌘

!
eU (1)
⌫µ , (C10)

which vanishes in the case in which the spectrum of the unperturbed 1B Hamiltonian provides the single-particle
model space.

The expansion of eU in Eq. (C2) contains also the term eU (3)
↵� composed by the 11 contributions shown in Fig. 13.

By using the same Feynman rules applied for the terms at second and third order (see Appendix A of Ref. [20]), one
can derive the expressions for those eleven diagrams. Here we give the working equations suitable to be implemented
numerically, after integrals over the frequencies have been performed. Using the compact notation of Eqs. (45-47)
and Einstein’s summing convention, they are listed below according to the order of appearance in Fig. 13:

eU (3)
↵� (13a) =

eV (1)
↵�,��(X

n1
� )⇤Xn2

� t
n1
k3
(tn2

k3
)⇤ � eV (1)

↵�,��(Y
k2
� )⇤Y k1

� t
n3
k2
(tn3

k1
)⇤ (C11)

+eV (1)
↵�,��

eU (1)
✏⌘
eU (1)
µ⌫

 
(Xn1

⌫ X
n2
⌘ Y

k3
✏ )⇤Xn1

� X
n2
µ Y

k3
�

(�("+n1 � "
�
k3
) + i⌘)(�("+n2 � "

�
k3
) + i⌘)

�
(Y k1

� Y
k2
µ X

n3
� )⇤Y k1

⌫ Y
k2
⌘ X

n3
✏

(�("�k2
� "

+
n3)� i⌘)(�("�k1

� "
+
n3)� i⌘)

+
(Xn1

� X
n2
⌘ Y

k3
� )⇤Xn1

✏ X
n2
µ Y

k3
⌫

(�("+n2 � "
�
k3
) + i⌘)(�("+n1 � "

�
k3
) + i⌘)

�
(Y k1

µ Y
k2
✏ X

n3
⌫ )⇤Y k1

⌘ Y
k2
� X

n3
�

(�("�k1
� "

+
n3)� i⌘)(�("�k2

� "
+
n3)� i⌘)

!
;

eU (3)
↵� (13b) =

eV (1)
↵�,��

⇣
(Xn1

� Y
k2
� )⇤tn1

k2
� (tn2

k1
)⇤Xn2

� Y
k1
�

⌘
; (C12)
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ADC(3) formalism is

M(ADC(3))
j↵ = M(ADC(2))

j↵ +M(IIa)
r↵ +M(IIb)

r↵ +M(IIc)
r↵ +M(IId)

q↵ +M(IId0)
r↵ +M(IIh)

q↵ +M(IIh0)
r↵ +M(IIl)

q↵ +M(IIo)
q↵ +M(IIe)

q↵

+M(IIe0)
r↵ +M(IIi)

q↵ +M(IIi0)
r↵ +M(IIm)

q↵ +M(IIn)
q↵ +M(IIp)

q↵ +M(IIq)
q↵ +M(IIr)

r↵ +M(IIs)
r↵ +M(IIt)

q↵ +M(IIu)
q↵ , (A1)

N(ADC(3))
↵k = N(ADC(2))

↵k +N(IIa)
↵s +N(IIb)

↵s +N(IIc)
↵s +N(IId)

↵u +N(IId0)
↵s +N(IIh)

↵u +N(IIh0)
↵s +N(IIl)

↵u +N(IIo)
↵u +N(IIe)

↵u

+ N(IIe0)
↵s +N(IIi)

↵u +N(IIi0)
↵s +N(IIm)

↵u +N(IIn)
↵u +N(IIp)

↵u +N(IIq)
↵u +N(IIr)

↵s +N(IIs)
↵s +N(IIt)

↵u +N(IIu)
↵u , (A2)

Cjj0 = Cpp
rr0 +Cph

rr0 +C3N
rr0 +Cpp

rq0 +Cph
rq0 +Cpp

qq0 +Cph
qq0 +Chh

qq0 +C3N(I)
rq0 +C3N(II)

rq0 +C3N(III)
qq0

+ C3N(IV )
qq0 +C3N(V )

qq0 +C
eUp
rr0 +C

eUh
rr0 +C

eUp
qq0 +C

eUh
qq0 , (A3)

Dkk0 = Dhh
ss0 +Dhp

ss0 +D3N
ss0 +Dpp

su0 +Dhp
su0 +Dhh

uu0 +Dhp
uu0 +Dpp

uu0 +D3N(I)
su0 +D3N(II)

su0 +D3N(III)
uu0

+ D3N(IV )
uu0 +D3N(V )

uu0 +D
eUh
ss0 +D

eUp
ss0 +D

eUp
uu0 +D

eUh
uu0 . (A4)

For the coupling matrices Mj↵ and N↵k, the list of terms truncated at the ADC(3) level is composed by sets of
ADC(2) terms, defined in Eqs. (33, 36) and in Eqs. (34, 37) for the forward-in-time and backward-in-time self-energy
respectively; sets of terms from (IIa) to (IIc) appearing at third order of the ADC, presented in Eqs. (52, 53, 56)
and in Eqs. (54, 55, 57), which contain only 2p1h and 2h1p configurations; and those terms from (IId) to (IIo) with
3p2h and 3h2p ISCs, introduced in Eqs. (66-69, 74-75) and in Eqs. (70-73, 76-77). Other terms with 3p2h and 3h2p
ISCs, denoted with superscripts from (IIe) to (IIq), are defined in Eqs. (A5-A20) below. Moreover, in Eqs. (A1-A2)
we find additional terms, that must be added to the ADC(3) when the single-particle propagator used to construct
self-energy diagrams is uncorrelated, i.e. when one works with a non-skeleton expansion. For coupling matrices, these
additional terms are denoted with superscripts ranging from (IIr) to (IIu). Their explicit expressions will be given in
Appendix C 2.

Interaction matrices appear at third order in the ADC, as listed in Eqs. (A3-A4). The first three terms thereof
connecting to 2p1h and 2h1p configurations, are given in Eqs. (58-59, 62) for forward-in-time diagrams and in Eqs. (60-

61, 63) for backward-in-time ones. Other matrices required to link 3p2h (3h2p) ISCs are denoted by Cpp
rq0 , ...,C

3N(V )
qq0

(Dpp
su0 , · · · ,D3N(V )

uu0 ). They will be given below in Eqs. (A21-A25, A31-A35) (Eqs. (A26-A30, A36-A40)). Finally, ad-
ditional four interaction matrices introduced in Appendix C 2 for the non-skeleton expansion are specified in Eqs. (A3-
A4) through the superscript eU .

1. Coupling matrices with two e↵ective 2NFs

In Fig. 5e we find the following coupling matrices,

M(IIe)
q↵ ⌘ �

p
3

6
P123

⇣
t
n3n6
k4k5

Xn1
µ Xn2

⌫ (Xn6
� )⇤ eV⌫µ,↵�

⌘
,

(A5)
and

N(IIe)
↵u ⌘ �

p
3

6
eV↵�,µ⌫ P123

⇣
(Yk6

� )⇤Yk1
µ Yk2

⌫ t
n4n5
k3k6

⌘
, (A6)

for the forward-in-time and backward-in-time Goldstone
diagrams, respectively.

2. Coupling matrices with one e↵ective 2NF and
one interaction-irreducible 3NF

Diagrams in Fig. 5e contains also an interaction-
irreducible 3NF, therefore another coupling matrix can
be obtained from the corresponding Goldstone diagrams.
For the forward-in-time and backward-in-time parts we

have,

M(IIe0)
r↵ ⌘

p
2

4
t
n4n5
k3k6

Xn1
µ Xn2

⌫

⇣
Yk6
� Xn4

⇢ Xn5
⌘

⌘⇤
Wµ⌫�,↵⇢⌘ ,

(A7)
and

N(IIe0)
↵s ⌘

p
2

4
W↵⇢⌘,µ⌫� (Yk4

⇢ Yk5
⌘ )⇤Yk1

µ Yk2
⌫ (Xn6

� )⇤tn3n6
k4k5

,

(A8)
respectively.
Also diagrams in the second and third row of Fig. 5

feature coupling matrices with 2NFs and interaction-
irreducible 3NFs. We list them below considering both
forward- and backward-in-time contributions. In the
Goldstone diagrams of the term in Fig. 5i we have,

M(IIi)
q↵ ⌘

p
3

12
A45

⇣
t
n1n2n3
k5k6k7

�
Yk6
µ Yk7

⌫

�⇤ Yk4
�

eVµ⌫,↵�

⌘
,

(A9)
and

N(IIi)
↵u ⌘

p
3

12
A45

⇣
eV↵�,µ⌫ Xn4

� (Xn6
µ Xn7

⌫ )⇤ tn5n6n7
k1k2k3

⌘
.

(A10)
In the Goldstone diagrams of the term in Fig. 5m we

22

Finally, the coupling matrix N(IIc)
↵s of Eq. (57) is found in the backward-in-time diagram of Fig. 2c and contains a

3NF. It has the following form in the angular momentum coupling representation,

N(IIc)
as̃ ⌘ �(jk1 , jk2 , J12)�(J12, jn3 , j↵)

X

J45J 0

X

ñ4ñ5

k̃6

X

vm
l

�(jn5 , jn6 , J56)�(J56, jk4 , j↵)

⇥(�1)j↵�m↵
(�1)j↵+2jn3+jk4�J56+2J 0

p
1 + �k̃1k̃2

Ĵ12

ĵ↵

(2J 0 + 1)

(
jn3 J45 J

0

jk4 J12 j↵

)
p
1 + �alV̄

J56
al,mv

⇥

⇣
X ñ5

m �
(⇡jq)
mn5 X ñ6

v �
(⇡jq)
vn6 � (�1)jn5+jn6�J56 X ñ5

v �
(⇡jq)
vn5 X ñ6

m �
(⇡jq)
mn6

⌘⇤

(1 + �ñ5ñ6)
p
1 + �mv

⇣
Y k̃4
l �

(⇡jq)
lk4

⌘⇤
t
ñ5ñ6ñ3,J56J

0

k̃1k̃2k̃4,J12
. (B29)

c. Interaction matrices with 2p1h and 2h1p ISCs

The interaction matrix Cr̃r̃0 can connect 2p1h propagators through particle-particle, particle-hole and 3NFs, ac-
cording to the terms

Cr̃r̃0 ⌘ Cpp
r̃r̃0

+Cph
r̃r̃0

+C3N
r̃r̃0 , (B30)

which have been introduced in Eqs. (58), (59) and (62), respectively.
The particle-particle interaction matrix results from the diagram in Fig. 2a. Using the angular momentum coupling

of Eq. (B14) we have:

Cpp
r̃r̃0

⌘ �(jn1 , jn2 , J12)�(jk3 , J12, Jr)�(jn4 , jn5 , J12)�(jk6 , J12, Jr)

⇥�J12J45�k̃3k̃6

X
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X ñ1
m �
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mn1 X ñ2

v �
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vn2 � (�1)jn1+jn2�J12X ñ1

v �
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vn1 X ñ2

m �
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mn2p

1 + �ñ1ñ2

p
1 + �mv
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J12
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ln4

X ñ5
p �
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pn5 � (�1)jn4+jn5�J12 X ñ4

p �
(⇡jq)
pn4 X ñ5

l �
(⇡jq)
ln5

⌘⇤

p
1 + �lp

p
1 + �ñ4ñ5

. (B31)

The particle-hole Cph
r̃r̃0

comes from the ring diagram in Fig. 2b, which contains four terms owing to the antisym-
metrization specified in Eq. (59),

Cph
r̃r̃0

⌘ �(jn1 , jn2 , J12)�(jk3 , J12, Jr)�(jn4 , jn5 , J45)�(jk6 , J45, Jr)
1

2
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p l
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9
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X ñ1

v �
(⇡jq)
vn1

Y k̃6
p �

(⇡jq)
pk6

p
1 + �mvV

J
mv,pl

p
1 + �pl

⇣
X ñ4
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Reaching (Gorkov – 3NF – higher ordes…) is a mess
Gorkov at 2nd order and

ONLY NN forces:

Gorkov at 3rd order and ONLY NN forces:
pp/hh-ladders:

hh-interactions (hh int. among pp ladders!!!)

ph-rings:

Automatic generation of diagram needed 

for 3NF and beyond… 
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F. Raimondi and P. Arthuis, in progress….
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Ab-initio Nuclear Computation & BcDor code 
BoccaDorata code:
(C. Barbieri 2006-16
V. Somà 2010-15

A. Cipollone 2011-14)

Code history:

- Provides a C++ class library for handling many-body
propagators (≈40,000  lines, MPI&OpenMP based).

- Allows to solve for nuclear spectral functions, many-body 
propagators, RPA responses, coupled cluster equations and 
effective interaction/charges for the shell model.

new Gorkov formalism for 
open-shell nuclei (at 2nd order)

Three-nucleon forces (≈60 cores, 
35 Gb but on the rise…)
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Ab-initio Nuclear Computation & BcDor code 

  From here you can download a public version of my self-consistent Green’s function (SCGF) code for
nuclear physics. This is a code in J-coupled scheme that allows the calculation of the single particle
propagators (a.k.a. one-body Green’s functions) and other many-body properties of spherical nuclei.
   This version allows to:

- Perform Hartree-Fock calculations.
- Calculate the the correlation energy at second order in perturbation theory (MBPT2).
- Solve the Dyson equation for propagators (self consistently) up to second order in the self-energy.
- Solve coupled cluster CCD (doubles only!) equations.
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detailed at the weblinks below.  In particular, we kindly ask you to refer to the publications that led the
development of this software.
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Chiral EFT interactions
and 

3-nucleon forces

in mid-mass isotopes
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Use effective degrees of freedom: p,n,pions

Effective Field Theory:  Bridges the non-perturbative low-energy regime of QCD with forces
                                      among nucleons

L =
⇤

k

ck

�
Q

�b

⇥k

Have a systematic expansion of the Hamiltonian 
in terms of diagrams

Construct the most general Hamiltonian which is 
consistent with the chiral symmetry of QCD

(3NFs arise naturally at N2LO)

Chiral EFT for nuclear forces:

2

8 201614
Neutron Number (N) Neutron Number (N)

8 201614

s 1/2

(c) G-matrix NN + 3N (∆) forces

d3/2

d5/2

NN 
 NN + 3N (∆)

d3/2

d5/2

s 1/2

 NN + 3N (N  LO)

NN 
 NN + 3N (∆)

low k (d) V         NN + 3N (∆,N LO) forces 
2

2

S
in

g
le

-P
ar

ti
cl

e 
E

n
er

g
y
 (

M
eV

)

4

-4

0

-8

S
in

g
le

-P
ar

ti
cl

e 
E

n
er

g
y
 (

M
eV

)

8 201614

d3/2

d5/2
s 1/2

(a) Forces derived from NN theory

 V

G-matrix 

(b) Phenomenological forces

d3/2

s 1/2

d5/2

 USD-B

SDPF-M 

8 201614
Neutron Number (N)Neutron Number (N)

 low k

4

-4

0

-8

FIG. 2: Single-particle energies of the neutron d5/2, s1/2 and
d3/2 orbitals measured from the energy of 16O as a function of
neutron number N . (a) SPE calculated from a G matrix and
from low-momentum interactions Vlow k. (b) SPE obtained
from the phenomenological forces SDPF-M [14] and USD-
B [15]. (c,d) SPE including contributions from 3N forces due
to∆ excitations and chiral EFT 3N interactions at N2LO [26].
The changes due to 3N forces based on ∆ excitations are
highlighted by the shaded areas.

sures N = 8, 14, 16, and 20. The evolution of the SPE
is due to interactions as neutrons are added. For the
SPE based on NN forces in Fig. 2 (a), the d3/2 orbital
decreases rapidly as neutrons occupy the d5/2 orbital,
and remains well-bound from N = 14 on. This leads
to bound oxygen isotopes out to N = 20 and puts the
neutron drip-line incorrectly at 28O. This result appears
to depend only weakly on the renormalization method
or the NN interaction used. We demonstrate this by
showing SPE calculated in the G matrix formalism [11],
which sums particle-particle ladders, and based on low-
momentum interactions Vlow k [12] obtained from chiral
NN interactions at next-to-next-to-next-to-leading order
(N3LO) [13] using the renormalization group. Both cal-
culations include core polarization effects perturbatively
(including diagram Fig. 3 (d) with the ∆ replaced by a
nucleon and all other second-order diagrams) and start
from empirical SPE [14] in 17O. The empirical SPEs con-
tain effects from the core and its excitations, including
effects due to 3N forces.
We next show in Fig. 2 (b) the SPE obtained from the

phenomenological forces SDPF-M [14] and USD-B [15]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2 (a): As neutrons occupy the d5/2 orbital,
with N evolving from 8 to 14, the d3/2 orbital remains
almost at the same energy and is not well-bound out to
N = 20. The dominant differences between Figs. 2 (a)
and (b) can be traced to the two-body monopole compo-
nents, which determine the average interaction between
two orbitals. The monopole components of a general two-
body interaction V are given by an angular average over
all possible orientations of the two nucleons in orbitals lj
and l′j′ [16],

V mono
j,j′ =

∑

m,m′

⟨jm j′m′|V |jm j′m′⟩
/

∑

m,m′

1 , (1)

where the sum over magnetic quantum numbers m and
m′ can be restricted by antisymmetry (see [17, 18] for
details). The SPE of the orbital j is effectively shifted by
V mono
j,j′ multiplied by the occupation number of the orbital

j′. This leads to the change in the SPE and determines
shell structure and the location of the drip-line [17–20].
The comparison of Figs. 2 (a) and (b) suggests that the

monopole interaction between the d3/2 and d5/2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction
on the d3/2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [21].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repul-
sive monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion princi-
ple. Figure 3 (a) depicts the leading contribution to NN
forces due to the excitation of a ∆, induced by the ex-
change of pions with another nucleon. Because this is
a second-order perturbation, its contribution to the en-
ergy and to the two-neutron monopole components has
to be attractive. This is part of the attractive d3/2-d5/2
monopole component obtained from NN forces.
In nuclei, the process of Fig. 3 (a) leads to a change of

the SPE of the j,m orbital due to the excitation of a core
nucleon to a ∆, as illustrated in Fig. 3 (b) where the ini-
tial valence neutron is virtually excited to another j′,m′

orbital. As discussed, this lowers the energy of the j,m
orbital and thus increases its binding. However, in nuclei
this process is forbidden by the Pauli exclusion princi-
ple, if another neutron occupies the same orbital j′,m′,
as shown in Fig. 3 (c). The corresponding contribution
must then be subtracted from the SPE change due to
Fig. 3 (b). This is taken into account by the inclusion

Need at LEAST 3NF!!!
(“cannot” do RNB physics without…)

Single particle spectrum at Efermi:

Saturation of nuclear matter:

[T. Otsuka et al.,
Phys Rev. Lett 105, 
032501 (2010)]

[A. Carbone et al., 
Phy.s Rev. C 88, 044302  (2013)]

SYMMETRIC NUCLEAR MATTER WITH CHIRAL THREE- . . . PHYSICAL REVIEW C 88, 044302 (2013)

Note that the N2LO potential yields a poorer reproduction of
the phase shifts for selected partial waves compared to the
richer N3LO force.

Most nuclear matter calculations using chiral forces have
been performed within a perturbative framework starting
from evolved interactions. In Ref. [43], convergence has
been analyzed order by order in many-body perturbation
theory. Results have been obtained up to third order, including
particle-particle and hole-hole propagation [43]. In principle,
the equation of state should be independent of the evolution
scales in the 2NF and the 3NF. Moreover, in the perturbative
regime, results should only be mildly dependent on the order in
perturbation theory. Our nonperturbative calculations include
contributions to all orders and hence are neither limited to the
perturbative regime nor dependent on the order of perturbation
theory. If the diagrammatic summation is complete, it should
lead to scale-invariant results.

We test this hypothesis by performing calculations at
different evolution scales, in both the two- and the three-
body sectors. We evolve the 2NF using a free-space SRG
transformation [37]. The transformation renormalizes the 2NF,
suppressing off-diagonal matrix elements and giving rise to
a universal low-momentum interaction. The SRG evolution
flow also induces many-body forces, which should be taken
into account to keep the calculation complete. Following the
philosophy of Ref. [43], we incorporate the effect of induced
forces through the refitting of the cD and cE LECs to the 3H
binding energy and 4He matter radius. We use the values given
in Table I of [43]. Note that in this process we assume that
the operatorial and momentum structures of the original and
the induced 3NFs are the same. Furthermore, we explore the
dependence of our results on the 3NF cutoff, !3NF, appearing
in the density-dependent 2NF. A more complete calculation
would require running a SRG evolution including the 3NF [41].

We present the results of this exploration in Fig. 8.
Numerical calculations obtained using the SRG on the 2NF
have a saturation point which is much closer to the empirical
value when compared to the original force. Moreover, if
the 2NF has been SRG-evolved, the results are somewhat
independent of the cutoff. Overall, one can say that the
more the 2NF is evolved downward, the more attractive the
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FIG. 8. (Color online) SCGF results for the energy per nucleon
of SNM as a function of the density at a temperature of T = 5 MeV.
Different lines represent different choices of cutoffs for the 2NF, λ,
and the 3NF, !3NF.

saturation curve becomes. This effect is a consequence of the
shift in importance between the 2NF and the induced 3NF
associated with the SRG. There is also a small dependence on
!3NF, but the differences agree well with those presented in
Ref. [43].

The large differences between the results obtained with
evolved and unevolved forces is striking. If correlations and
induced many-body forces had been fully taken into account,
one would have expected a much closer agreement between
the results. This difference might indicate that the assumptions
associated with induced 3NFs are not necessarily robust.
Missing induced three-body forces, which up to now have
not been included in SNM calculations, could resolve this
discrepancy. Alternatively, the difference is also an indication
of missing many-body effects such as, for instance, higher
orders in the treatment of the 3NF. It must be emphasized that
the present way to proceed when applying SRG evolution
in infinite matter should be improved by carrying out the
evolution on a full Hamiltonian with both two- and three-body
forces. Recently, improvements toward the solution of this
problem have been presented for calculations in pure neutron
matter [41], where a full Hamiltonian has been consistently
evolved. All in all, our results seem to contradict the idea that
induced 3NFs can be treated simply in nuclear matter.

In terms of evolved interactions, our nonperturbative
calculations can be used to check whether the perturbative
regime is actually reached. To this end, we compare, in
Fig. 9, our results to the perturbative calculations presented
in Ref. [43]. The BHF and SCGF calculations have been
performed with a SRG-evolved 2NF and a 3NF with the same
cut-offs, λ/!3NF = 2.0/2.0 fm−1. Whereas the Brueckner
results have been obtained with a zero-temperature code, the
SCGF calculations have been extrapolated to zero temperature
by means of a simple procedure. At low temperatures,
the Sommerfeld expansion indicates that the effect of tem-
perature is quadratic and is the same, but with opposite sign,
for the energy and the free energy [47]. Consequently, the
semi-sum of both thermodynamical potentials is an estimate
of the zero-temperature energy. We obtain an extremely
good agreement between both many-body approaches and

0 0.08 0.16 0.24 0.32

Density, ρ [fm
-3

]

-20

-15

-10

-5

E
ne

rg
y/

nu
cl

eo
n,

 E
/A

 [
M

eV
]

Hebeler et al.
BHF
SCGF

T=0 MeV λ/Λ3NF=2.0 fm
-1

FIG. 9. (Color online) Comparison of results for the energy per
nucleon of SNM obtained with different approaches using the same
SRG-evolved 2NF and a 3NF. Circles correspond to extrapolated
SCGF results, whereas squares are BHF calculations at T = 0 MeV.
Diamonds correspond to the results of Hebeler et al. [43].
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Realistic nuclear forces form Chiral EFT



Benchmark of ab-initio methods for oxygen isotopic chain Benchmarking di!erent ab-initio methods in the 
oxgyen chain

!

Hebeler,'Holt,'Menendez,'Schwenk,''Ann.'Rev.'Nucl.'Part.'Sci.'in'press'(2015)'

Calcula7ons'based'on'
chiral'NN'and'3NF'forces.'
Con7nuum'not'taken'into'
account''

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1)
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (2.0fm-1)
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à 3NF crucial for reproducing binding energies and driplines around oxygen

à cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1)
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (2.0fm-1)

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)
and Phys. Rev. C 92, 014306 (2015)

Results for the N-O-F chains
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à induced and full 3NF investigated
à genuine (N2LO) 3NF needed to reproduce the energy curvature and S2n

à N=20 and Z=20 gaps overestimated!

à Full 3NF give a correct trend but over bind!

Ab-initio calculation of the whole Ca: induced and full 3NF investigated
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- New fits of chiral interactions (NNLOsat) 
highly improve comparison to data

- Deficiencies remain for neutron rich 
isotopes

structure calculations [3, 4]. Many-body techniques have
themselves undergone major progress and extended their
domain of applicability both in mass and in terms of ac-
cessible (open-shell) isotopes for a given element [5–15].
As a result, today the structure of light and medium-
mass nuclei has become a testing ground for our basic
understanding of nuclear forces.

An emblematic case that has received considerable at-
tention is the one of oxygen binding energies, where sev-
eral calculations have established the crucial role played
by 3N forces in the reproduction of the neutron drip
line at 24O (i.e. in explaining the so-called “oxygen
anomaly”) [6, 16–19]. The excellent agreement between
experimental data and theoretical calculations based on
a next-to-next-to-next-to-leading order (N3LO) 2N and
N2LO 3N chiral interaction (EM) [20–22] was greeted as
a milestone for ab initio methods and modern models
of inter-nucleon interactions, even though a consistent
description of nuclear radii could not be achieved at the
same time [23]. Since then, this mismatch has remained a
puzzle. Subsequent calculations of heavier systems [7–9]
and infinite nuclear matter [24, 25] confirmed the system-
atic underestimation of charge radii, a sizeable overbind-
ing and too spread-out spectra, all pointing to an incor-
rect reproduction of the saturation properties of nuclear
matter. This led to the development of a novel nuclear
interaction, labelled NNLOsat [26], which includes con-
tributions up to N2LO in the chiral EFT expansion (both
in 2N and 3N sector) and di↵ers from EM in two main as-
pects. First, the optimisation of the (“low-energy”) cou-
pling constants is performed simultaneously for 2N and
3N terms [27], while EM and accompanying 3N forces are
optimised sequentially. Second, experimental constraints
from light nuclei (namely energies and charge radii in
some C and O isotopes) are included in the fit of such
low-energy constants in addition to observables from few-
body systems. This second aspect represents a departure
from the usual reductionist strategy of ab initio calcula-
tions followed by EM, in which parameters in the A-body
sector are fixed uniquely by observables in A-body sys-
tems. Although first applications point to good predic-
tive power for ground-state properties [26, 28], the per-
formance of the NNLOsat potential remains to be tested
along isotopic chains and for excited states.

In the present work we employ two di↵erent
many-body approaches, self-consistent Green’s function
(SCGF) and in-medium similarity renormalisation group
(IM-SRG). Each of them is available in two versions.
The first is based on standard expansion schemes and
thus applicable only to closed-shell nuclei. It is referred
to as Dyson-SCGF (DGF) [29] and single-reference IM-
SRG (SR-IM-SRG) [30] respectively. The second version
builds on Bogoliubov-type reference states and thus allow
for a proper treatment of pairing correlations, resulting in
the description of systems displaying an open-shell char-
acter. Such version is labelled Gorkov-SCGF (GGF) [5]
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FIG. 1. Oxygen binding energies. Results from SCGF
and IMSRG calculations performed with EM [20–22] and
NNLOsat [26] interactions are displayed along with available
experimental data.

and multi-reference IM-SRG (MR-IM-SRG) [6] respec-
tively. For the MR-IM-SRG, the reference state is first
projected on good proton and neutron numbers. Hav-
ing di↵erent ab initio approaches at hand is crucial to
benchmark theoretical results and infer as unbiased as
possible information on the input of such calculations,
i.e. inter-nucleon forces. Moreover, while DGF (here in
the ADC(3) approximation scheme), SR- and MR-IM-
SRG feature a comparable content in terms of many-body
expansion, GGF currently includes a lower amount of
many-body correlations, which allows testing the many-
body convergence [7].

We first compute total binding energies EB for oxygen
isotopes 14�24O for the two sets of 2N and 3N interactions
with the four many-body schemes. EM is further evolved
to a low-momentum scale � = 1.88�2.0 fm�1 by means of
SRG techniques [31]. Results are displayed in Fig. 1. For
both interactions, di↵erent many-body calculations yield
values of EB spanning intervals of up to 10 MeV, from 5
to 10% of the total. Compared to experimental binding
energies, EM and NNLOsat perform similarly, following
the trend of available data along the chain both in ab-
solute and in relative terms. Overall, results shown in
Fig. 1 confirm previous findings for EM and validate the
use along the isotopic chain for NNLOsat .

While nuclear masses have been experimentally deter-
mined for the majority of known light and medium-mass
nuclei, measurements of charge and matter radii are typ-
ically more challenging. Charge radii for stable isotopes
have been accessed in the past by means of electron scat-
tering [32]. In addition to charge rms radii, analytical
forms of fitted experimental charge densities can be ex-
tracted from (e,e) cross sections. Standard forms include
2- or 3-parameter Fermi (2pF or 3pF) profiles [33]. For
extended sets of (e,e) data (in terms of momentum trans-
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oxygen chain, the heaviest one for which experimental in-
formation on both binding energies and radii is available
up to the neutron drip line. We showed that analysing
(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
the low-energy constants thus sticking to the (strict) re-
ductionist strategy, yields an excellent reproduction of
binding energies but significantly underestimates charge
and matter radii. On the other hand, unconventional
NNLOsat , while maintaining a good energy systematics,
clearly improves the description of absolute radii, though
leaving room for refinement for what concerns isotope
shifts. Given the alternative fitting procedure, such an
output raises questions about the choice of observables
that should be included in the fit and the resulting pre-
dictive power whenever this strategy is followed.

More precise information on oxygen radii, e.g. rch via
laser spectroscopy measurements, would allow confirming
our (p,p) analysis and further refining the present discus-
sion. Future, similar studies in heavier isotopes will also
preciously contribute to the systematic development of
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nuclear forces. From the many-body point of view, the
consistent inclusion of higher-body terms in the charge
radius operator is envisaged and might eventually a↵ect
the present discussion. Finally, we stress that a simulta-
neous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
function of the size, which should be consistently taken
into account specially when more microscopic reaction
approaches are considered.
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formation on both binding energies and radii is available
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(p,p) scattering data allows one to obtain information
on nuclear sizes of unstable isotopes within 0.1 fm. The
combined comparison of measured charge/matter radii
and binding energies with state-of-the-art ab initio cal-
culations o↵ers unique insight on nuclear forces. On the
one hand, EM, a current standard for nuclear theory em-
ploying only 2-, 3- and 4-body observables in the fit of
the low-energy constants thus sticking to the (strict) re-
ductionist strategy, yields an excellent reproduction of
binding energies but significantly underestimates charge
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clearly improves the description of absolute radii, though
leaving room for refinement for what concerns isotope
shifts. Given the alternative fitting procedure, such an
output raises questions about the choice of observables
that should be included in the fit and the resulting pre-
dictive power whenever this strategy is followed.
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consistent inclusion of higher-body terms in the charge
radius operator is envisaged and might eventually a↵ect
the present discussion. Finally, we stress that a simulta-
neous reproduction of binding energies and radii in stable
and neutron-rich nuclei is mandatory for reliable struc-
ture but even more for reaction calculations. Scattering
amplitudes and nucleon-nucleus interactions evolve as a
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We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from
the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art
ab initio calculations along with binding energy systematics. Experimental matter radii are obtained
through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show
that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear
interactions derived within chiral effective field theory fail to provide a realistic description of charge and
matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the
simultaneous description of the three observables for stable isotopes but shows deficiencies for the most
neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.

DOI: 10.1103/PhysRevLett.117.052501

Our present understanding of atomic nuclei faces the
following major questions. Experimentally, we aim (i) to
determine the location of the proton and neutron drip lines
[1,2], i.e., the limits in neutron numbers N upon which, for
fixed proton number Z, with decreasing or increasing N,
nuclei are not bound with respect to particle emission, and
(ii) to measure nuclear structure observables offering sys-
tematic tests of microscopic models. While nuclear masses
have been experimentally determined for the majority of
known light and medium-mass nuclei [3], measurements of
charge and matter radii are typically more challenging.
Charge radii for stable isotopes have been accessed in the
past bymeans of electron scattering [4]. In recent years, laser
spectroscopy experiments allow extending such measure-
ments to unstable nuclei with lifetimes down to a few
milliseconds [5]. Matter radii are determined by scattering
with hadronic probes which requires a modelization of the
reaction mechanism. Theoretically, intensive works have
also been performed towards linking a universal description
of atomic nuclei to elementary interactions [6–8] amongst
constituent nucleons and, ultimately, to the underlying
theory of strong interactions, quantum chromodynamics
(QCD). If accomplished, this ab initio description would be
beneficial both for a deep understanding of known nuclei
(stable and unstable, totalling around 3300) and to predict on
reliable bases the features of undiscovered ones (few more
thousands are expected). Many of the latter are not, in the
foreseeable future, experimentally at reach, yet they are
crucial to understanding nucleosynthesis phenomena,
modelled using large sets of evaluated data and of calculated
observables.
The reliability of first-principles calculations depends

upon a consistent understanding of fundamental

observables: ground-state characteristics of nuclei related
to their existence (masses, expressed as binding energies)
and sizes (expressed as root mean square—rms—radii).
Special interest resides in the study of masses and sizes for
a given element along isotopic chains. Experimentally, their
determination is increasingly difficult as one approaches
the neutron drip line; as of today, the heaviest element with
available data on all existing bound isotopes is oxygen
(Z ¼ 8) [3]. Using theoretical simulations, the link between
nuclear properties and internucleon forces can be explored
for different N=Z values, thus, critically testing both our
knowledge of nuclear forces and many-body theories.
In this work, we focus on oxygen isotopes for which, in

spite of the tremendous progress of recent ab initiomethods,
a simultaneous reproduction of masses and radii has not yet
been achieved. We present important findings from novel
ab initio calculations along with a complete evaluation of
matter radii, rm, for stable and neutron-rich oxygen isotopes.
Here, rm are deduced via a microscopic reanalysis of proton
elastic scattering data sets. They complement charge radii
rch, offering an extended comparison through the isotopic
chain that allows testing state-of-the-art many-body calcu-
lations. We show that a recent version of two- and
three-nucleon (2N and 3N) forces leads to considerable
improvement in the critical description of radii.
A viable ab initio strategy consists in exploiting the

separation of scales between QCD and (low-energy)
nuclear dynamics, taking point nucleons as degrees of
freedom. For decades, realistic 2N interactions were built
from fitting scattering data, see, e.g., [6]. However, model
limitations were seen through discrepancies with exper-
imental data, like underbinding of finite nuclei and inad-
equate saturation properties of extended nuclear matter.
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Validated by charge distributions and neutron quasiparticle spectra:
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- 34Si is unstable, charge distribution is still unknown

- Suggested central depletion from mean-field 
simulations

- Ab-initio theory confirms predictions

- Other theoretical and experimental evidence:
Phys. Rev. C 79, 034318 (2009),
Nature Physics 13, 152–156 (2017).

Duguet, Somà, Lecuse, CB, Navrátil,
Phys.Rev. C95, 034319 (2017)
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Local vs. non-local chiral N2LO NNN interaction  — by P. Navrátil

Plots courtesy of K. Hebeler (from his Tuesday’s morning talk)

≈ 3-nucleon tot. 
kinetic energy

• Local: chiral N3LO NN+ N2LO 3N500
– cD=-0.2   cE=-0.205 (3H Egs=-8.48 MeV)

• Non-local: chiral N2LOsat NN+3N
– cD=+0.8168 cE=-0.0396 (3H Egs=-8.53 MeV)
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Masses in the Ti isotopic chain
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FIG. 4. The mass landscape of titanium isotopes is shown from three perspectives: (a) absolute masses (shown in binding
energy format), (b) its first “derivative” as two-neutron separation energies (S2n), and (c) its second “derivative” as empirical
neutron-shell gaps (�2n). Both theoretical ab-initio calculations (lines) and experimental values (points) are shown.

FIG. 5. Empirical neutron-shell gaps for titanium and neigh-
boring isotopic chains show the abrupt rise of the N = 32
shell closure between V and Sc. VS-IMSRG calculations us-
ing the 1.8/2.0(EM) interaction (lines) show remarkable over-
all agreement, but overpredict the extent of the N = 32 shell
closure towards heavier isotones. Data (points) were calcu-
lated from AME16 [12] values, red data points also include
the measurements reported in this work. Unconnected dashed
lines in Sc chain are guides to the eye. Each isotopic chain
was shifted by a multiple of 3.5 MeV for clarity.

trast, calculated shell gaps in titanium steeply rise from
N = 30 to N = 32 compared to experiment, indicating
that the N = 32 closure is predicted to arise too early
towards calcium. While the origin of this discrepancy is
not completely clear, we note that generally signatures
of shell closures, such as first excited 2+ energies and
neutron shell gaps, are often modestly overestimated by
VS-IMSRG [48]. From direct comparisons with coupled
cluster theory [54], it is expected that some controlled ap-
proximation to include three-body operators in the VS-
IMSRG will improve such predictions in magic nuclei and
possibly this discrepancy in titanium as well.

In summary, precision mass measurements performed
with TITAN’s Penning trap and multiple-reflection time-

of-flight mass spectrometers on neutron-rich titanium iso-
topes were able to narrow down the evolution of the
N = 32 shell and its abrupt quenching. Although cal-
culations from ab-initio theories perform well in this re-
gion, our data provide fine information on where they
can currently be improved. These results also highlight
the scientific capabilities of the new TITAN MR-TOF-
MS, whose sensitivity enables probing much rarer species
with competitive precision.
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Lepton-nucleon cross section

2

tributed in energy and momentum inside the tar-
get [? ].

The formalism based on the impulse approximation
(IA) and realistic hole spectral functions (SFs) allows to
combine a realistic description of the initial state of the
nuclear target with a fully-relativistic interaction vertex
and kinematics [16]. Calculations carried out employing
hole SF computed within the correlated-basis function
(CBF) and the SCGF theories have been extensively val-
idated against electron-nucleus scattering data on a num-
ber of nuclei [17? –19]. The somewhat oversimplified
treatment of final-state interactions (FSI) to which the
struck nucleon undergoes has been corroborated compar-
ing the electromagnetic response functions of 12C from
CBF with those of the GFMC [20].

More recently, the factorisation scheme underlying
IA and the SF formalism has been generalized to in-
clude electromagnetic relativistic meson-exchange two-
body currents (MEC), arising from pairs of interacting
nucleons [21]. Employing nuclear overlaps and consis-
tent SFs obtained within the CBF theory, the authors
of Refs. [22] have analyzed the role of MEC in electron
scattering o↵ 12C. They found that two-body currents
are mostly e↵ective in the “dip” region, between the
quasielastic and the �-production peaks. Their inclu-
sion appreciably improves the agreement between theory
and data.

In this work, we further extend the IA scheme by in-
troducing the MEC relevant for charged-current (CC)
and neutral-current (NC) interactions. We study their
role in neutrino and anti-neutrino scattering o↵ 12C and
16O nuclei, both used as targets in neutrino-oscillation
experiments. We adopt the two-body currents derived
in Ref. [23] from the weak pion-production model of
Ref. [24]. It has been shown that they provide results
consistent with those of Ref. [25], which were also
adopted in the extension of the IA and SF formal-
ism of Ref. [22].

We develop a dedicated code that automatically carries
out the calculation of the MEC spin-isospin matrix ele-
ments, performing the integration using the Metropolis
Monte Carlo algorithm [26]. To validate our implementa-
tion of the two-body currents, we perform a benchmark
calculation of the CC response functions within the rela-
tivistic Fermi gas model, comparing our results with the
findings of Ref. [23].

We consider two nuclear SFs, derived within
the framework of nuclear many-body theory us-
ing the CBF formalism [27] and the self-consistent
Green’s function (SCGF) theory [28]. These two
approaches start from di↵erent, albeit realistic, nuclear
hamiltonians to describe the interactions between pro-
tons and neutrons. Moreover, the approximations in-
volved in the calculations of the hole spectral function
are also peculiar to of each of the two methods. Hence,
a comparison of the cross sections obtained employing
the CBF and the SCGF nuclear SFs helps gauging the
theoretical error of the calculation.

More specifically, we analyze the double-di↵erential
cross sections of 12C and 16O for both CC and NC
transitions for incoming (anti)neutrino energy of 1 GeV
and two values of the scattering angle: ✓µ = 30� and
✓µ = 70�. We also present results for the total CC cross
section for neutrino and anti-neutrino scattering o↵ 12C
as a function of the incoming (anti)neutrino energy. Our
calculations are compared with the experimental data ex-
tracted by the MiniBooNE collaboration [29].
The structure of the nuclear cross section, as well as

its expression in terms of relevant response functions are
reviewed in Section II. Section III is devoted to the de-
scription of the IA, including its extension to account for
a consistent treatment of one- and two-nucleon current
contributions. The CBF theory and SCGF approaches
are also briefly outlined. In Section IV we discuss the
explicit expressions of the relativistic two-body currents
employed, while Section V is dedicated to their numeri-
cal implementation. In Section VI we present our results
and in Section VII we state our conclusions.

II. FORMALISM

The double-di↵erential cross section for ⌫ and ⌫̄ inclu-
sive scattering o↵ a nucleus can be expressed as [30, 31]

⇣ d�

dT 0d cos ✓0

⌘

⌫/⌫̄
=

G2

2⇡

k0

2E⌫

h
L̂CCRCC + 2L̂CLRCL

+ L̂LLRLL + L̂TRT ± 2L̂T 0RT 0

i
, (1)

where G = GF and G = GF cos ✓c for NC and CC pro-
cesses, respectively, with cos ✓c = 0.97425 [32]. The +
(�) sign corresponds to ⌫ (⌫̄) induced reactions. We
adopt the value GF = 1.1803⇥ 10�5 GeV�2, as from the
analysis of 0+ ! 0+ nuclear �-decays of Ref. [33], which
accounts for the bulk of the inner radiative corrections.
With k = (E⌫ ,k) and k0 = (E`,k0) we denote the initial
neutrino and the final lepton four-momenta, respectively,
and ✓ is the lepton scattering angle. Introducing the four-
momentum

Q = k + k0 = (⌦,Q) , Q = (Qx, 0, Qz) (2)

and the momentum transfer

q = k � k0 = (!,q) , q = (0, 0, qz), (3)

the kinematical factors can be conveniently cast in the
form

L̂CC = ⌦2
� q2z �m2

`

L̂CL = (�⌦Qz + !qz)

L̂LL = Qz
2
� !2 +m2

`

L̂T =
Qx

2

2
� q2 +m2

`

L̂T 0 = ⌦qz � !Qz , (4)
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Nuclear structure is in the
hadronic tensor:
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where �̃↵(k) is the Fourier transform of the single-
particle wave function

�̃↵(k) =

Z
d3r eik r�↵(r) . (35)

In this work, the SCGF calculations are performed em-
ploying a spherical harmonic-oscillator basis, with fre-
quency ~⌦ = 20 MeV and dimension Nmax = max{2n+
`} = 11.

The SCGF correlated one-body propagator obtained
by solving the Dyson equation of Eq. (30) is used to de-
termine the hole SF of 16O. The results for open shell
nuclei, such as 12C discussed in this work, have been
obtained within the Gorkov’s theory, in which the de-
scription of pairing correlations characterizing open shell
systems is achieved by breaking the particle number sym-
metry [54–56].

C. Inclusion of two-body currents

The inclusion of two-body current operator requires
the generalization of the factorization ansatz of Eq. (9).
Following Refs. [21, 22] and neglecting the contribution of
[h A�1

f |⌦ hp|]|jµ2b| 
A
0 i, the matrix element of the nuclear

current reads

h A
f |j

µ
2b| 

A
0 i !X

k k0

[h A�2
f |⌦ hk k0|] | A

0 iahp p
0
|

X

ij

jµij |k k
0
i . (36)

where |p p0ia = |p p0i� |p0 pi. In infinite matter the corre-
lated nuclear many-body state can be labeled with their
single-particle momenta, implying | A�2

f i = |hh0
i, where

|hh0
i with |h|, |h0

|  kF denotes a 2-hole state of (A� 2)
nucleons. A diagrammatic analysis of the cluster expan-
sion of the overlap �hh

0

kk0 ⌘ h 0|[|kk0i⌦ | hh0i was carried
out by the Authors of Ref. [57]. Their analysis shows
that only unlinked graphs (i.e., those in which the points
reached by the k1, k2 lines are not connected to one other
by any dynamical or statistical correlation lines) survive
in the A ! 1 limit

�hh
0

kk0 = �hk�
h0

k0 (2⇡)3�(3)(h� k)(2⇡)3�(3)(h0
� k0) , (37)

where �hk is the the Fourier transform of the overlap be-
tween the ground state and the one-hole (A� 1)-nucleon
state, the calculation of which is discussed in Ref. [42]

Therefore, using the �(3)-function to perform the inte-
gration over p0 = k+k0+q�p, the pure two-body current
component of the hadron tensor in nuclear matter turns
out to be [21]

Wµ⌫
2b (q,!) =

V

4

Z
dE

d3k

(2⇡)3
d3k0

(2⇡)3
d3p

(2⇡)3
m4

e(k)e(k0)e(p)e(p0)

⇥ PNM
h (k,k0, E)2

X

ij

hk k0|jµij
†
|p p0iahp p

0
|j⌫ij |k k

0
i

⇥ �(! + E � e(p)� e(p0)) . (38)

The normalization volume for the nuclear wave func-
tions V = ⇢/A with ⇢ = 3⇡2k3F /2 depends on the Fermi
momentum of the nucleus, which we take to be kF = 225
MeV. The factor 1/4 accounts for the fact that we sum
over indistinguishable pairs of particles, while the factor
2 stems from the equality of the product of the direct
terms and the product of the two exchange terms after
interchange of indices [58]. The two-nucleon SF entering
the hadron tensor is

PNM
h (k,k0, E) =

Z
d3h

(2⇡)3
d3h0

(2⇡)3
|�hh

0

kk0 |
2�(E + e(h) + e(h0))

⇥ ✓(kF � |h|)✓(kF � |h0
|) . (39)

Consistently with the fact that, in absence of long-range
correlations, the two-nucleon momentum distribution of
infinite systems factorizes according to [59]

n(k,k0) = n(k)n(k0) +O

✓
1

A

◆
, (40)

exploiting the factorization of the two-nucleon overlaps of
Eq. (37), the two-body contribution of the hadron tensor
can be rewritten as

Wµ⌫
2b (q,!) =

V

2

Z
dẼ

d3k

(2⇡)3
dẼ0 d

3k0

(2⇡)3
d3p

(2⇡)3

⇥
m4

e(k)e(k0)e(p)e(p0)
PNM
h (k, Ẽ)PNM

h (k0, Ẽ0)

⇥

X

ij

hk k0|jµij
†
|p p0ihp p0|j⌫ij |k k

0
i

⇥ �(! + Ẽ + Ẽ0
� e(p)� e(p0)) . (41)

In order to make contact with finite systems, we take

PNM
h (k, E) '

k3F
6⇡2

Ph(k, E) (42)

where the hole SF of the nucleus Ph(k, E) is obtained
from either the CBF theory or the SCGF approach.
We are aware that the assumptions made to include

the contribution of two-body currents deserve further in-
vestigations. For instance, the strong isospin-dependence
of short-range correlations, elucidated in a number of re-
cent works [60–62], is not properly accounted for if the
factorization of Eq. (37). In this regard, it has to be men-
tioned that in the present work we do not account for the
interference between one- and two-body currents. While
in the two-nucleon knockout final states this contribution
is relatively small [21, 22], it has been argued that ten-
sor correlations strongly enhance the interference terms
for final states associated single-nucleon knock out pro-
cesses [63]. This is consistent with the Green’s function
Monte Carlo calculations of Refs. [64, 65], in which the
interference between one- and two-body currents domi-
nate the total two-body current contribution.
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where τ = −q2/(4m2). Finally, using the identity

δ
(
ω − e(p) − EA−1

f + EA
0

)

=
∫

dE δ(ω + E − e(p)) δ
(
E + EA−1

f − EA
0

)
, (33)

we can rewrite the hadron tensor as

Wµν(q,ω) =
∫

d3k

(2π )3
dEPh(k,E)

m2

e(k)e(k + q)

×
∑

i

⟨k|jµ
i
†|k + q⟩⟨k + q|j ν

i |k⟩

× δ(ω + E − e(k + q)) , (34)

where the factors m/e(k) and m/e(k + q) have to be included
to account for the implicit covariant normalization of the four-
spinors of the initial and final nucleons in the matrix elements
of the relativistic current.

The hole spectral function

Ph(k,E) =
∑

f

∣∣〈ψA
0

∣∣[|k⟩ ⊗
∣∣ψA−1

f

〉]∣∣2

× δ
(
E + EA−1

f − EA
0

)
(35)

gives the probability distribution of removing a nucleon with
momentum k from the target nucleus, leaving the residual
(A − 1) system with an excitation energy E. Note that in
Eq. (34) we neglected Coulomb interactions and the other
(small) isospin-breaking terms and made the assumption,
largely justified in the case of closed-shell nuclei, that the
proton and neutron spectral functions are identical.

Rewriting the nuclear matrix element as

[ 〈
ψA−1

f

∣∣ ⊗ ⟨k|
]∣∣ψA

0

〉
=

∑

α

Yk
α(̃α(k)

=
∑

α

(̃α(k)
〈
ψA−1

f

∣∣aα

∣∣ψA
0

〉
, (36)

we recover the more familiar expression of the spectral function
written as the imaginary part of the Green’s function describing
the propagation of a hole state

Ph(k,E) = 1
π

∑

αβ

(̃∗
β(k)(̃α(k)

× Im
〈
ψA

0

∣∣a†
β

1
E + (H − EA

0 ) − iϵ
aα

∣∣ψA
0

〉
. (37)

In the kinematical region in which the interactions between
the struck particle and the spectator system cannot be ne-
glected, the IA results have to be modified to include the effect
of FSI. Following Refs. [19,20], the multiple scatterings that
the struck particle undergoes during its propagation through the
nuclear medium are taken into account through a convolution
scheme. The IA responses are folded with a function fk+q,

normalized as
∫ +∞

−∞
dωfk+q(ω) = 1 . (38)

The double differential cross section is then given by
(

d2σ

dEe′d,e′

)

FSI

=
∫

d3k

(2π )3
dE

∫
dω′ fk+q(ω − ω′)

× m

e(k)
m

e(k + q)
Ph(k,E)

α2

q4

Ee′

Ee

× Lµν

∑

i

⟨k|
(
j

µ
i

)†|k + q⟩⟨k + q|j ν
i |k⟩

× δ(ω′ + E − ẽ(k + q))θ (|k + q| − pF ).

(39)

In the last equation, we modified the energy spectrum of the
struck nucleon

ẽ(k + q) = e(k + q) + U (tkin(k + q)) (40)

by considering the real part of the optical potential U derived
from the Dirac phenomenological fit of Ref. [37]. This allows
to describe the propagation of the knocked-out particle in the
mean-field generated by the spectator system.

IV. RESULTS

Our calculations have been performed using the NNLOsat
chiral interaction [15], which was specifically designed to
accurately describe both binding energies and nuclear radii of
midmass nuclei [38,39]. In Fig. 2 we analyze the convergence
of the SCGF-ADC(3) point-proton densities of 4He with
respect to the oscillator frequency (h̄,) and the size of the
model space (Nmax). The different lines almost superimpose,
indicating that for h̄, ≈ 20 MeV and Nmax ! 11 the cal-
culation converges and no longer depends on the oscillator
parameters. The density calculated from the OpRS is also
displayed. The nice agreement with the SCGF-ADC(3) curves
follows from the requirement that the overlap functions in the

FIG. 2. Point proton densities in 4He, as predicted by NNLOsat.
The dashed (blue) line corresponds to the OpRS derived for Nmax =
11 and h̄, = 20 MeV. The other lines have been obtained using the
SCGF full propagator for Nmax = 11, 13 and h̄, = 20, 22 MeV.
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tributed in energy and momentum inside the tar-
get [? ].

The formalism based on the impulse approximation
(IA) and realistic hole spectral functions (SFs) allows to
combine a realistic description of the initial state of the
nuclear target with a fully-relativistic interaction vertex
and kinematics [16]. Calculations carried out employing
hole SF computed within the correlated-basis function
(CBF) and the SCGF theories have been extensively val-
idated against electron-nucleus scattering data on a num-
ber of nuclei [17? –19]. The somewhat oversimplified
treatment of final-state interactions (FSI) to which the
struck nucleon undergoes has been corroborated compar-
ing the electromagnetic response functions of 12C from
CBF with those of the GFMC [20].

More recently, the factorisation scheme underlying
IA and the SF formalism has been generalized to in-
clude electromagnetic relativistic meson-exchange two-
body currents (MEC), arising from pairs of interacting
nucleons [21]. Employing nuclear overlaps and consis-
tent SFs obtained within the CBF theory, the authors
of Refs. [22] have analyzed the role of MEC in electron
scattering o↵ 12C. They found that two-body currents
are mostly e↵ective in the “dip” region, between the
quasielastic and the �-production peaks. Their inclu-
sion appreciably improves the agreement between theory
and data.

In this work, we further extend the IA scheme by in-
troducing the MEC relevant for charged-current (CC)
and neutral-current (NC) interactions. We study their
role in neutrino and anti-neutrino scattering o↵ 12C and
16O nuclei, both used as targets in neutrino-oscillation
experiments. We adopt the two-body currents derived
in Ref. [23] from the weak pion-production model of
Ref. [24]. It has been shown that they provide results
consistent with those of Ref. [25], which were also
adopted in the extension of the IA and SF formal-
ism of Ref. [22].

We develop a dedicated code that automatically carries
out the calculation of the MEC spin-isospin matrix ele-
ments, performing the integration using the Metropolis
Monte Carlo algorithm [26]. To validate our implementa-
tion of the two-body currents, we perform a benchmark
calculation of the CC response functions within the rela-
tivistic Fermi gas model, comparing our results with the
findings of Ref. [23].

We consider two nuclear SFs, derived within
the framework of nuclear many-body theory us-
ing the CBF formalism [27] and the self-consistent
Green’s function (SCGF) theory [28]. These two
approaches start from di↵erent, albeit realistic, nuclear
hamiltonians to describe the interactions between pro-
tons and neutrons. Moreover, the approximations in-
volved in the calculations of the hole spectral function
are also peculiar to of each of the two methods. Hence,
a comparison of the cross sections obtained employing
the CBF and the SCGF nuclear SFs helps gauging the
theoretical error of the calculation.

More specifically, we analyze the double-di↵erential
cross sections of 12C and 16O for both CC and NC
transitions for incoming (anti)neutrino energy of 1 GeV
and two values of the scattering angle: ✓µ = 30� and
✓µ = 70�. We also present results for the total CC cross
section for neutrino and anti-neutrino scattering o↵ 12C
as a function of the incoming (anti)neutrino energy. Our
calculations are compared with the experimental data ex-
tracted by the MiniBooNE collaboration [29].
The structure of the nuclear cross section, as well as

its expression in terms of relevant response functions are
reviewed in Section II. Section III is devoted to the de-
scription of the IA, including its extension to account for
a consistent treatment of one- and two-nucleon current
contributions. The CBF theory and SCGF approaches
are also briefly outlined. In Section IV we discuss the
explicit expressions of the relativistic two-body currents
employed, while Section V is dedicated to their numeri-
cal implementation. In Section VI we present our results
and in Section VII we state our conclusions.

II. FORMALISM

The double-di↵erential cross section for ⌫ and ⌫̄ inclu-
sive scattering o↵ a nucleus can be expressed as [30, 31]

⇣ d�

dT 0d cos ✓0

⌘

⌫/⌫̄
=

G2

2⇡

k0

2E⌫

h
L̂CCRCC + 2L̂CLRCL

+ L̂LLRLL + L̂TRT ± 2L̂T 0RT 0

i
, (1)

where G = GF and G = GF cos ✓c for NC and CC pro-
cesses, respectively, with cos ✓c = 0.97425 [32]. The +
(�) sign corresponds to ⌫ (⌫̄) induced reactions. We
adopt the value GF = 1.1803⇥ 10�5 GeV�2, as from the
analysis of 0+ ! 0+ nuclear �-decays of Ref. [33], which
accounts for the bulk of the inner radiative corrections.
With k = (E⌫ ,k) and k0 = (E`,k0) we denote the initial
neutrino and the final lepton four-momenta, respectively,
and ✓ is the lepton scattering angle. Introducing the four-
momentum

Q = k + k0 = (⌦,Q) , Q = (Qx, 0, Qz) (2)

and the momentum transfer

q = k � k0 = (!,q) , q = (0, 0, qz), (3)

the kinematical factors can be conveniently cast in the
form

L̂CC = ⌦2
� q2z �m2

`

L̂CL = (�⌦Qz + !qz)

L̂LL = Qz
2
� !2 +m2

`

L̂T =
Qx

2

2
� q2 +m2

`

L̂T 0 = ⌦qz � !Qz , (4)
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hadronic tensor:
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where �̃↵(k) is the Fourier transform of the single-
particle wave function

�̃↵(k) =

Z
d3r eik r�↵(r) . (35)

In this work, the SCGF calculations are performed em-
ploying a spherical harmonic-oscillator basis, with fre-
quency ~⌦ = 20 MeV and dimension Nmax = max{2n+
`} = 11.

The SCGF correlated one-body propagator obtained
by solving the Dyson equation of Eq. (30) is used to de-
termine the hole SF of 16O. The results for open shell
nuclei, such as 12C discussed in this work, have been
obtained within the Gorkov’s theory, in which the de-
scription of pairing correlations characterizing open shell
systems is achieved by breaking the particle number sym-
metry [54–56].

C. Inclusion of two-body currents

The inclusion of two-body current operator requires
the generalization of the factorization ansatz of Eq. (9).
Following Refs. [21, 22] and neglecting the contribution of
[h A�1

f |⌦ hp|]|jµ2b| 
A
0 i, the matrix element of the nuclear

current reads

h A
f |j

µ
2b| 

A
0 i !X

k k0

[h A�2
f |⌦ hk k0|] | A

0 iahp p
0
|

X

ij

jµij |k k
0
i . (36)

where |p p0ia = |p p0i� |p0 pi. In infinite matter the corre-
lated nuclear many-body state can be labeled with their
single-particle momenta, implying | A�2

f i = |hh0
i, where

|hh0
i with |h|, |h0

|  kF denotes a 2-hole state of (A� 2)
nucleons. A diagrammatic analysis of the cluster expan-
sion of the overlap �hh

0

kk0 ⌘ h 0|[|kk0i⌦ | hh0i was carried
out by the Authors of Ref. [57]. Their analysis shows
that only unlinked graphs (i.e., those in which the points
reached by the k1, k2 lines are not connected to one other
by any dynamical or statistical correlation lines) survive
in the A ! 1 limit

�hh
0

kk0 = �hk�
h0

k0 (2⇡)3�(3)(h� k)(2⇡)3�(3)(h0
� k0) , (37)

where �hk is the the Fourier transform of the overlap be-
tween the ground state and the one-hole (A� 1)-nucleon
state, the calculation of which is discussed in Ref. [42]

Therefore, using the �(3)-function to perform the inte-
gration over p0 = k+k0+q�p, the pure two-body current
component of the hadron tensor in nuclear matter turns
out to be [21]

Wµ⌫
2b (q,!) =

V

4

Z
dE

d3k

(2⇡)3
d3k0

(2⇡)3
d3p

(2⇡)3
m4

e(k)e(k0)e(p)e(p0)

⇥ PNM
h (k,k0, E)2

X

ij

hk k0|jµij
†
|p p0iahp p

0
|j⌫ij |k k

0
i

⇥ �(! + E � e(p)� e(p0)) . (38)

The normalization volume for the nuclear wave func-
tions V = ⇢/A with ⇢ = 3⇡2k3F /2 depends on the Fermi
momentum of the nucleus, which we take to be kF = 225
MeV. The factor 1/4 accounts for the fact that we sum
over indistinguishable pairs of particles, while the factor
2 stems from the equality of the product of the direct
terms and the product of the two exchange terms after
interchange of indices [58]. The two-nucleon SF entering
the hadron tensor is

PNM
h (k,k0, E) =

Z
d3h

(2⇡)3
d3h0

(2⇡)3
|�hh

0

kk0 |
2�(E + e(h) + e(h0))

⇥ ✓(kF � |h|)✓(kF � |h0
|) . (39)

Consistently with the fact that, in absence of long-range
correlations, the two-nucleon momentum distribution of
infinite systems factorizes according to [59]

n(k,k0) = n(k)n(k0) +O

✓
1

A

◆
, (40)

exploiting the factorization of the two-nucleon overlaps of
Eq. (37), the two-body contribution of the hadron tensor
can be rewritten as

Wµ⌫
2b (q,!) =

V

2

Z
dẼ

d3k

(2⇡)3
dẼ0 d

3k0

(2⇡)3
d3p

(2⇡)3

⇥
m4

e(k)e(k0)e(p)e(p0)
PNM
h (k, Ẽ)PNM

h (k0, Ẽ0)

⇥

X

ij

hk k0|jµij
†
|p p0ihp p0|j⌫ij |k k

0
i

⇥ �(! + Ẽ + Ẽ0
� e(p)� e(p0)) . (41)

In order to make contact with finite systems, we take

PNM
h (k, E) '

k3F
6⇡2

Ph(k, E) (42)

where the hole SF of the nucleus Ph(k, E) is obtained
from either the CBF theory or the SCGF approach.
We are aware that the assumptions made to include

the contribution of two-body currents deserve further in-
vestigations. For instance, the strong isospin-dependence
of short-range correlations, elucidated in a number of re-
cent works [60–62], is not properly accounted for if the
factorization of Eq. (37). In this regard, it has to be men-
tioned that in the present work we do not account for the
interference between one- and two-body currents. While
in the two-nucleon knockout final states this contribution
is relatively small [21, 22], it has been argued that ten-
sor correlations strongly enhance the interference terms
for final states associated single-nucleon knock out pro-
cesses [63]. This is consistent with the Green’s function
Monte Carlo calculations of Refs. [64, 65], in which the
interference between one- and two-body currents domi-
nate the total two-body current contribution.
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The energy-dependence exhibited by P corr
h (k, E),

showing a widespread background extending up to large
values of both k and E, is completely di↵erent from that
of P 1h

h (k, E). For k > pF , P corr
h (k, E) coincides with

Ph(k, E) and its integral over the energy gives the so-
called continuous part of the momentum distribution.

B. Self-consistent Green’s function

The one-body Green’s Function is written as a sum of
two di↵erent contributions describing the propagation of
a particle and hole state [46]:

g↵�(!) = h A
0 |a↵

1

! � (H � EA
0 ) + i⌘

a†� | 
A
0 i

+ h A
0 |a

†
�

1

! + (H � EA
0 )� i⌘

a↵| 
A
0 i , (25)

where  A
0 is the ground state wave function of A nucle-

ons, a†↵ and a↵ are the creation and annihilation opera-
tor in the quantum state ↵, respectively. The so-called
Lehmann representation results from inserting complete-
ness relations in Eq. (25). This is

g↵�(!) =
X

n

h A
0 |a↵| 

A+1
n ih A+1

n |a†� | 
A
0 i

! � (EA+1
n � EA

0 ) + i⌘

+
X

k

h A
0 |a

†
� | 

A�1
k ih A�1

k |a↵| A
0 i

! � (EA
0 � EA�1

k )� i⌘
, (26)

where | A+1
n i (| A�1

k i) are the eigenstates and EA+1
n

(EA�1
k ) the eigenvalues of the (A ± 1)-body system. In-

troducing the transition amplitudes

(Xn
↵ )

⇤ = h A
0 |a↵| 

A+1
n i ,

Y
k
↵ = h A�1

k |a↵| 
A
0 i (27)

and the corresponding quasiparticle energies

✏+n = EA+1
n � EA

0 ,

✏�k = EA
0 � EA�1

k (28)

leads to the more compact expression

g↵�(!) =
X

n

(Xn
↵ )

⇤
X

n
�

! � ✏+n + i⌘
+

X

k

Y
k
↵ (Yk

� )
⇤

! � ✏�k � i⌘
. (29)

The one-body propagator given in Eqs. (25) and (26) is
completely determined by solving the Dyson equation

g↵�(!) = g0↵�(!) +
X

��

g0↵�(!)⌃
?
��(!)g��(!) , (30)

where g0↵�(!) is the unperturbed single-particle propaga-
tor and ⌃?

��(!) is the irreducible self-energy that encodes

nuclear medium e↵ects in the particle propagator [46].
The latter is given by the sum of two di↵erent terms

⌃?
↵�(!) = ⌃1

↵� + ⌃̃↵�(!) , (31)

the first one describes the average mean field while the
second one contains dynamic correlations. In practi-
cal calculations the self-energy is expanded as a func-
tion of the propagator itself, implying that an iterative
procedure is required to solve the Dyson equation self-
consistently. The self-energy can be calculated system-
atically within the Algebraic Diagrammatic Construc-
tion (ADC) method. The third order truncation of this
scheme [ADC(3)] yields a propagator that includes all
possible Feynman contributions up to third order but it
further resums infinite series of relevant diagrams in a
non-perturbative fashion [28, 47]. A first organization of
the contributions to the self-energy comes by considering
the particle irreducible (PI) and skeleton diagrams. In
order to reduce the number of Feynman diagrams con-
taining two- and three-body forces to be considered, a
useful strategy is to include only interaction-irreducible
diagrams [48] in which medium dependent or e↵ective
one- and two-body interactions are used. The residual
contribution of e↵ective three-body forces is expected to
be smaller and can be safely neglected [49–52].
The expressions of the static and dynamic self-energy

up to third order, including all possible two- and three-
nucleon terms that enter the expansion of the self-energy,
as well as interaction-irreducible (i.e. not averaged)
three-nucleon diagrams have been recently derived in
Ref. [53].
The dynamical part of the self-energy of Eq.(31) can be
rewritten in the Lehmann representation as

⌃̃↵�(!) =
X

ij0

D†
↵i

h 1

! � (K+C)

i

ij
D†

j� , (32)

where K are the unperturbed 2p1h and 2h1p energies,
D coupling matrices and C interaction matrices for the
forward and backward intermediate states.
Rewriting the nuclear matrix element entering Eq. (13)

as

[ h A�1
f |⌦ hk|]| A

0 i =
X

↵

Y
k
↵�̃↵(k)

=
X

↵

�̃↵(k)h 
A�1
f |a↵| 

A
0 i , (33)

we recover the more familiar expression of the spectral
function written as the imaginary part of the Green’s
function describing the propagation of a hole state

Ph(k, E) =
1

⇡

X

↵�

�̃⇤
�(k)�̃↵(k)

⇥ Imh A
0 |a

†
�

1

E + (H � EA
0 )� i✏

a↵| 
A
0 i , (34)
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In the kinematical region in which the interactions be-
tween the struck particle and the spectator system can-
not be neglected, the IA results are modified to include
the e↵ect of final-state interactions (FSI). The multiple
scatterings that the struck particle undergoes during its
propagation through the nuclear medium can be taken
into account through a convolution scheme [17, 36], which
amounts to integrating the IA prediction with a folding
function that describes the e↵ects of FSI between the
struck particle and the A � 1 spectator system. In ad-
dition, to describe the propagation of the knocked-out
particle in the mean-field generated by the spectator sys-
tem, the energy spectrum of the knocked-out nucleon is
modified with the real part of an optical potential derived
from the Dirac phenomenological fit of Ref [37].

In this work, aimed at devising the formalism for in-
cluding relativistic meson-exchange currents within two
realistic models of the nuclear ground-state, FSI are dis-
regarded. On the other hand, we will fully account them
in the forthcoming calculations of the flux-integrated
double-di↵erential neutrino-nucleus cross sections.

A. Correlated basis function theory

Exploiting the spectral representation of the
two-point Green’s function, the CBF hole SFs of
12C and 16O can be written as the sum of two
contributions [38]

Ph(k, E) = P 1h
h (k, E) + P corr

h (k, E) . (17)

The one-hole term is obtained from a modified mean-
field scheme

P 1h
h (k, E) =

X

↵2{F}

Z↵|�↵(k)|
2F↵(E � e↵) , (18)

where the sum runs over all occupied single-particle nu-
clear states, labeled by the index ↵, and �↵(k) is the
Fourier transform of the shell-model orbital with energy
e↵. The spectroscopic factor Z↵ < 1 and the function
F↵(E � e↵), describing the energy width of the state
↵, account for the e↵ects of residual interactions that
are not included in the mean-field picture. In the ab-
sence of residual interactions, Z↵ ! 1 and F↵(E�e↵) !
�↵(E � e↵). The spectroscopic factors and the widths of
the s and p states of 12C and 16O have been taken from
the analysis of (e, e0p) data carried out in Refs. [39–41].

To evaluate the correlated part, P corr
h (k, E), at first

CBF calculations of the hole SF in isospin-symmetric
nuclear matter are carried out for several values of the
density, considering overlaps involving the ground-state
and one-hole and two-holes-one-particle excitations in
| A�1

f i [38, 42]. They are consistently obtained from the
following set of correlated basis (CB) states

| niCB =
F|�ni

h�n|F
†F|�ni

1/2
, (19)

where |�ni is an independent-particle state, generic
eigenstate of the free Fermi gas Hamiltonian, and the
many-body correlation operator F is given by

F = S

h AY

j>i=1

Fij

i
. (20)

The form of the two-body correlation operator Fij reflects
the complexity of realitistic NN potential [43]

Fij =
6X

n=1

fn(rij)O
n
ij , (21)

with rij = |ri � rj | and

On6
ij = [1, (�i · �j), Sij ]⌦ [1, (⌧i · ⌧j)] , (22)

In the above equation, �i and ⌧i are Pauli matrices acting
in the spin and isospin space, respectively, and Sij is the
tensor operator given by

Sij =
3

r2ij
(�i · rij)(�j · rij)� (�i · �j) . (23)

The CB states are first orthogonalized (OCB) [44] pre-
serving, in the thermodynamical limit, the diagonal ma-
trix elements between CB states. Then, standard per-
turbation theory is used to express the eigenstates of the
nuclear Hamiltonian in terms of the OCB. Any eigenstate
has a large overlap with the n�hole-m�particle OCB and
hence perturbation theory in this basis is rapidly converg-
ing.
The nuclear-matter SF can be conveniently split into

two components, displaying distinctly di↵erent energy
dependences [8, 16, 38, 45]. The single-particle one, as-
sociated to one-hole states in | A�1

f i of Eq. (34), ex-
hibits a collection of peaks corresponding to the energies
of the single-particle states belonging to the Fermi sea.
The continuum, or correlation, component corresponds
to states involving at least two-hole–one-particle contri-
butions in | A�1

f i. Its behavior as a function of E is
smooth and it extends to large values of removal energy
and momentum [42]. It has to be noted that the corre-
lated part would be strictly zero if nuclear correlations
were not accounted for.
Finally, the correlated part of the SF for finite nu-

clei is then obtained through local density approximation
(LDA) procedure

P corr
h (k, E) =

Z
d3R ⇢A(R)P corr

h,NM (k, E; ⇢A(R)) , (24)

where ⇢A(R) is the nuclear density distribution of the
nucleus and P corr

h ,NM (k, E; ⇢) is the correlation component
of the SF of isospin-symmetric nuclear matter at density
⇢. The use of the LDA to account for P corr

h (k, E) is
based on the premise that short-range nuclear dynamics
are largely una↵ected by surface and shell e↵ects.
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where τ = −q2/(4m2). Finally, using the identity

δ
(
ω − e(p) − EA−1

f + EA
0

)

=
∫

dE δ(ω + E − e(p)) δ
(
E + EA−1

f − EA
0

)
, (33)

we can rewrite the hadron tensor as

Wµν(q,ω) =
∫

d3k

(2π )3
dEPh(k,E)

m2

e(k)e(k + q)

×
∑

i

⟨k|jµ
i
†|k + q⟩⟨k + q|j ν

i |k⟩

× δ(ω + E − e(k + q)) , (34)

where the factors m/e(k) and m/e(k + q) have to be included
to account for the implicit covariant normalization of the four-
spinors of the initial and final nucleons in the matrix elements
of the relativistic current.

The hole spectral function

Ph(k,E) =
∑

f

∣∣〈ψA
0

∣∣[|k⟩ ⊗
∣∣ψA−1

f

〉]∣∣2

× δ
(
E + EA−1

f − EA
0

)
(35)

gives the probability distribution of removing a nucleon with
momentum k from the target nucleus, leaving the residual
(A − 1) system with an excitation energy E. Note that in
Eq. (34) we neglected Coulomb interactions and the other
(small) isospin-breaking terms and made the assumption,
largely justified in the case of closed-shell nuclei, that the
proton and neutron spectral functions are identical.

Rewriting the nuclear matrix element as

[ 〈
ψA−1

f

∣∣ ⊗ ⟨k|
]∣∣ψA

0

〉
=

∑

α

Yk
α(̃α(k)

=
∑

α

(̃α(k)
〈
ψA−1

f

∣∣aα

∣∣ψA
0

〉
, (36)

we recover the more familiar expression of the spectral function
written as the imaginary part of the Green’s function describing
the propagation of a hole state

Ph(k,E) = 1
π

∑

αβ

(̃∗
β(k)(̃α(k)

× Im
〈
ψA

0

∣∣a†
β

1
E + (H − EA

0 ) − iϵ
aα

∣∣ψA
0

〉
. (37)

In the kinematical region in which the interactions between
the struck particle and the spectator system cannot be ne-
glected, the IA results have to be modified to include the effect
of FSI. Following Refs. [19,20], the multiple scatterings that
the struck particle undergoes during its propagation through the
nuclear medium are taken into account through a convolution
scheme. The IA responses are folded with a function fk+q,

normalized as
∫ +∞

−∞
dωfk+q(ω) = 1 . (38)

The double differential cross section is then given by
(

d2σ

dEe′d,e′

)

FSI

=
∫

d3k

(2π )3
dE

∫
dω′ fk+q(ω − ω′)

× m

e(k)
m

e(k + q)
Ph(k,E)

α2

q4

Ee′

Ee

× Lµν

∑

i

⟨k|
(
j

µ
i

)†|k + q⟩⟨k + q|j ν
i |k⟩

× δ(ω′ + E − ẽ(k + q))θ (|k + q| − pF ).

(39)

In the last equation, we modified the energy spectrum of the
struck nucleon

ẽ(k + q) = e(k + q) + U (tkin(k + q)) (40)

by considering the real part of the optical potential U derived
from the Dirac phenomenological fit of Ref. [37]. This allows
to describe the propagation of the knocked-out particle in the
mean-field generated by the spectator system.

IV. RESULTS

Our calculations have been performed using the NNLOsat
chiral interaction [15], which was specifically designed to
accurately describe both binding energies and nuclear radii of
midmass nuclei [38,39]. In Fig. 2 we analyze the convergence
of the SCGF-ADC(3) point-proton densities of 4He with
respect to the oscillator frequency (h̄,) and the size of the
model space (Nmax). The different lines almost superimpose,
indicating that for h̄, ≈ 20 MeV and Nmax ! 11 the cal-
culation converges and no longer depends on the oscillator
parameters. The density calculated from the OpRS is also
displayed. The nice agreement with the SCGF-ADC(3) curves
follows from the requirement that the overlap functions in the

FIG. 2. Point proton densities in 4He, as predicted by NNLOsat.
The dashed (blue) line corresponds to the OpRS derived for Nmax =
11 and h̄, = 20 MeV. The other lines have been obtained using the
SCGF full propagator for Nmax = 11, 13 and h̄, = 20, 22 MeV.

025501-5

N. Rocco, CB, O. Benhar, de Pace , A. Lovato, Phys. Rev. C99, 025502 (2019)



Prediction for chrg./mom. distributions and form factors

• Calculations from the 
spectral functions 
obtained using SCGF 

• Based on the 
saturating chiral 
N2LO-sat nuclear 
force

• Comparison to QMC 
calculations based on 
local chiral forces 
and/or AV18+UIX
[PRC96, 024326 (‘17)
PRC96, 054007 (‘17)
PRC97, 044318 (‘18)]

⇢ch(r
0) =

Z
d3q

(2⇡)3
e�iq·r0 (G

p
E(Q

2
el +Gn

E(Q
2
el))⇢̃p(q)p

1 +Q2
el/(4m

2)

The 4He  SGFC charge density distribution
• The nuclear charge density distribution is written in terms of the  charge elastic form factor

• The cOm issue: The subtraction of the cOm contribution from the wave function is a long standing 
problem affecting a number of many-body approaches relying on single-nucleon basis

To estimate the error due to residual 
cOm contribution in 4He we developed 
Metropolis Monte Carlo calculation 


• Trial wave function: | V i = | OpRS

0 i

• A sequence of points in the 3A-
dimensional space are generated by 
sampling from P (R) = | OpRS

0 (R)|2

• The intrinsic coordinates are given by

r̃i = ri �Rcm , Rcm =
1

A

X

i

ri

He4

6

����������������������������

� ��� � ��� � ��� � ��� �

ᅻ 	ԡ
(7
K

ϯ )

ԡ (7K)

ԃֈռ֓ � ��- ဇ4ky܉ J2o- PT_aԃֈռ֓ � ��- ဇ4ky܉ J2o- �.*UjVԃֈռ֓ � ��- ဇ4kk܉ J2o- �.*UjVԃֈռ֓ � ��- ဇ4ky܉ J2o- �.*UjVԃֈռ֓ � ��- ဇ4kk܉ J2o- �.*UjV

FIG. 2. Point proton densities in 4He, as predicted by
NNLOsat. The dashed (blue) line corresponds to the OpRS
derived for Nmax = 11 and ~⌦ = 20 MeV. The other
lines have been obtained using the SCGF full propagator for
Nmax =11, 13 and ~⌦ =20, 22 MeV.

IV. RESULTS

Our calculations have been performed using the
NNLOsat chiral interaction [15], which was specifically
designed to accurately describe both binding energies and
nuclear radii of mid-mass nuclei [38, 39]. In Fig. 2 we an-
alyze the convergence of the SCGF-ADC(3) point-proton
densities of 4He with respect to the oscillator frequency
(~⌦) and the size of the model space (Nmax). The di↵er-
ent lines almost superimpose, indicating that for ~⌦ ⇡ 20
MeV and Nmax �11 the calculation converges and no
longer depends on the oscillator parameters. The den-
sity calculated from the OpRS is also displayed. The
nice agreement with the SCGF-ADC(3) curves follows
from the requirement that the single particle energies and
overlap functions in the OpRS propagator are chosen to
approximate at best the true (correlated) one-body den-
sity.

The charge densities in 4He can be obtained from the
point-proton densities through Eqs. (17) and (18). In
Fig. 3 we compare the experimental charge density de-
termined through the “Sum-of-Gaussians” parametriza-
tion given in Ref. [40] with those obtained from the QMC
results of Ref. [41] and from the OpRS calculated in the
present work. For the latter, we display both the result
already shown in Fig. 2 and the distribution obtained af-
ter subtracting the center of mass e↵ect with the MMC
algorithm outlined in Sec. II. When the center of mass
contamination is subtracted, we obtain the short-dashed
(black) line. The comparison with the total OpRS re-
sults, corresponding to the dot-dashed (blue) line, clearly
shows that for 4He the center of mass contribution is size-
able and can not be neglected. The use of the intrinsic
wave function yields a strong enhancement of the charge
density, which turns out to be very close to the QMC re-
sult. Note that the discrepancy between the experiment
and the intrinsic OpRS and QMC calculations is moti-
vated by the absence of the two-body meson exchange
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FIG. 3. Charge densities of 4He. The (green) dots have
been obtained using the “Sum-of-Gaussians” parametrization
of the charge densities given in Ref. [40]. The dashed (red)
line refers to the QMC calculation of Ref. [41] that used
the AV18+UIX two- and three-body interactions. The dot-
dashed (blue) line corresponds to the same OpRS propagator
shown in Fig. 2, while in the short-dashed (black) line the
center-of-mass contamination has been subtracted from the
OpRS wave function by means a MMC calculation.
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FIG. 4. Charge elastic form factor for 4He. The solid
(light green) and (violet) lines correspond to the calculation
of Ref. [44] where chiral two- and three-body interactions
at N2LO have been used for R0 = 1.0fm and R0 = 1.2fm
coordinate- space cuto↵s, respectively. The uncertainty bands
include the statistical MC uncertainties added in quadrature
to the uncertainty from the truncation of the chiral expansion.
The dashed (red) line is obtained within QMC Ref. [44] while
the dot-dashed (blue) and short-dashed (black) line refers to
the OpRS calculation with and without the center-of-mass
contamination. The shaded area indicates the statistical MC
uncertainty. Experimental data are from an unpublished com-
pilation by I. Sick, based on Refs. [45–48].

current contributions. These are known to have little
e↵ect on larger nuclei such as 16O but their inclusion
is fundamental in order to correctly reproduce the 4He
elastic form factor, from which the charge densities are
extracted [30, 41–43].
In Fig. 4 we compare the results for the charge elastic

form factor for 4He obtained within three many-body ap-

✤ The QMC AV18+UIX results are taken from D. Lonardoni et al, Phys. Rev. C96, 024326 (2017) 

4He

• Single particle momentum distribution of 16O, log scale
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FIG. 7. Momentum distributions of 4He. The dashed (red)
line corresponds to the QMC calculation [41], the dotted
(green) curve have been obtained using the SCGF-ADC(3)
propagator while the short-dashed (blue) and solid (black)
lines correspond to the total and intrinsic OpRS results, re-
spectively.

lations strongly reduce the SCGF-ADC(3) momentum
distribution in the high momentum region. In the upper
panel we observe an enhancement of the SCGF-ADC(3)
results with respect to the QMC calculation. This can
be understood by recalling that the QMC and SCGF-
ADC(3) momentum distribution are normalized to num-
ber of nucleons. In order for the normalization condition
to be satisfied, the missing strength in the tails of the
NNLOsat curve has to be compensated by an enhance-
ment in the low-momentum region.

Fig. 9 shows the electron-4He inclusive double-
di↵erential cross sections at di↵erent values of Ee and
✓e. The curves are obtained from the full SCGF-ADC(3)
spectral function, from its OpRS approximation and from
the intrinsic OpRS. The SCGF-ADC(3) cross-section
represented by the dashed (red) line is quenched with
respect to the solid (green) line that refers to the un-
corrected OpRS. This has to be attributed to the di↵er-
ent behavior of the curves displayed in Fig. 7. Whilst
the OpRS wave functions are built to reproduce low-
est energy momenta of the ADC(3) propagator—which
optimizes the quasiparticle energies and strength near
the Fermi surface—this leaves small discrepancies in the
single-nucleon momentum distribution. The compari-
son between the solid (green) and dashed (black) curve
clearly shows that the subtraction of the center of mass
component from the wave function leads to a reduction of
the width and an enhancement of the quasielastic peak.
Since this strongly a↵ects the cross section in all the kine-
matical setups that we considered, we applied FSI cor-
rections only to the intrinsic OpRS calculation. In order
to do it, we follow the approach outlined in Sec. III, with
the di↵erence that the optical potential has been disre-
garded in the energy conserving �-function since to the
best of our knowledge neither the 3H-p nor the 3He-n op-
tical potentials are present in the literature. The results
are shown in Fig. 10. The convolution of the OpRS cross
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FIG. 8. Computed momentum distributions of 16O. The
dashed (red) and solid (black) lines are obtained within
QMC [41] and SCGF-ADC(3) approaches, respectively. In
the lower panel, a logarithmic scale has been used to demon-
strate the weak tail at large momenta that arises from the soft
chiral interaction adopted in the SCGF-ADC(3) calculation.

section with the folding function of Eq. (38) leads to a
redistribution of the strength, which quenches the peak
and enhances the tails. For Ee = 300 MeV, ✓ = 60�,
and Ee = 500 MeV, ✓ = 34� the OpRS intrinsic calcu-
lation overestimates the data. Moreover, in all the kine-
matical configurations under consideration the position
of the quasielastic peak is not correctly reproduced. This
is likely to be ascribed to the approximate procedure we
adopted to account for FSI e↵ects, i.e. we neglected the
real part of the optical potential. Its inclusion would
shift the cross section towards lower values of ! possibly
improving the agreement with the experimental data.

In Fig. 11 we compare the experimental data of the in-
clusive double-di↵erential electron-16O cross sections as
computed from the fully correlated SCGF-ADC(3) spec-
tral function. In the dashed (green) curve FSI e↵ects
have been implemented in full, yielding a very nice agree-
ment with the data. In particular, the inclusion of the
real part of the optical potential in the final state nu-
cleon energy shifts the cross sections towards lower val-
ues of ! and the quasielastic-peak position is correctly
reproduced.

The 16O  SGFC momentum distribution

• The momentum distribution reflects the fact that NNLOsat is softer the AV18+UIX.

16O
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The charge elastic form factor 4He 

• The charge elastic form factor is given by 

✤ The N2LO results are taken from J. E. Lynn et al, Phys. Rev. C 96, 054007 (2017) where two different 
coordinate space cut offs have been adopted

FL(q) =
1

Z

Gp
E(Q

2
el)⇢̃p(q) +Gn

E(Q
2
el)⇢̃n(q)p

1 +Q2
el/(4m

2)
,

4He

The charge elastic form factor for16O

✤ The N2LO results are taken from D. Lonardoni, et. al, Phys. Rev. C97, 044318 (2018) where two 
different coordinate-space cutoffs have been adopted
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FIG. 5. Charge densities in 16O. The (green) dots and the
dashed (red) line are the same as Fig. 3. The dot-dashed
(black) line corresponds to the full SCGF density calculated
at the ADC(3) level.

It is visible that up to q = 3 fm�1 the removal of the
center-of-mass contamination enhances the strength and
improves the agreement between the OpRS and the QMC
and the calculations of Ref. [44]. For larger values of
the momentum we found some discrepancies for both the
OpRS calculations.

For medium-mass nuclei, the center of mass correc-
tions are known to be less significant. Therefore, in
Fig. 5 we compare the experimental charge density in
16O with the full SCGF-ADC(3) and the QMC calcula-
tions. There is an overall nice agreement between the
theoretical curves. The SCGF-ADC(3) results perfectly
reproduce the experimental points, confirming the good-
ness of the NNLOsat potential which was fitted to repro-
duce the experimental radius of 16O.

Figure 6 displays the charge elastic form factor for 16O.
In this case we find an excellent agreement between the
SCGF, the QMC calculations and the experimental data.
The results of Ref. [49] for two di↵erent values of the
coordinate cuto↵s are also shown. While for R0=1.0 fm
the curve has the correct behavior some discrepancies are
visible for R0=1.2 fm.

In Fig. 7 we benchmark the intrinsic and uncorrected
OpRS single-nucleon momentum distribution of 4He with
the QMC calculation of Ref. [41]. The OpRS result, cor-
responding to the dashed (blue) line, correctly follows
that of the dressed ADC(3) propagator, although the
agreement is not as close as in Fig. 2. Note that, also
in this case the subtraction of the center of mass compo-
nent has a sizable e↵ect, which is crucial for recovering
the agreement with the intrinsic QMC results.

The 16O single-nucleon momentum distributions ob-
tained within the SCGF-ADC(3) and QMC approach are
compared in Fig. 8. The di↵erences displayed in the tails
of the single-nucleon momentum distributions are clearly
visible in the lower panel of Fig. 8 where the logarithmic
scale has been used. The dashed (red) line, corresponding
to the QMC calculation, is found to be above the SCGF-
ADC(3) results for high momenta. This is likely to be
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FIG. 6. Charge elastic form factor for 16O. The solid
(light green) and (violet) lines correspond to the calculation
of Ref. [49] for R0 = 1.0fm and R0 = 1.2fm coordinate-
space cuto↵s, respectively. The uncertainty bands include
the statistical MC uncertainties added in quadrature to the
uncertainty from the truncation of the chiral expansion. The
dashed (red) line is obtained within QMC Ref. [44] while the
dot-dashed (black) refers to the SCGF results calculated at
the ADC(3) level. The shaded area indicates the statistical
MC uncertainty. Experimental data are from Ref. [40].
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FIG. 7. Momentum distributions of 4He. The dashed (red)
line corresponds to the QMC calculation [41], the dotted
(green) curve have been obtained using the SCGF-ADC(3)
propagator while the short-dashed (blue) and solid (black)
lines correspond to the total and intrinsic OpRS results, re-
spectively.

ascribed to the di↵erent choice made for the potentials.
In fact, the NNLOsat is much softer than the AV18+UIX
potential adopted in the QMC study. The use of an hard
potential implies the presence of stronger high momen-
tum components in the nuclear wave function. While the
QMC momentum distribution exhibits a long tail extend-
ing to p > 1 GeV, the softer potential adopted in our cal-
culations strongly reduce the SCGF-ADC(3) momentum
distribution in the high momentum region. In the upper
panel we observe an enhancement of the SCGF-ADC(3)
results with respect to the QMC calculation. This can be
explained by recalling that the QMC and SCGF-ADC(3)

16O
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The charge elastic form factor 4He 

• The charge elastic form factor is given by 

✤ The N2LO results are taken from J. E. Lynn et al, Phys. Rev. C 96, 054007 (2017) where two different 
coordinate space cut offs have been adopted
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N. Rocco, CB, Phys. Rev. C98, 025501 (2018).



16O-e- cross sections from the SCGF Spect. Fnct.

Based on the 
saturating chiral 
N2LO-sat 
nuclear force

16O-e- cross sections within the SCGF approach
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Charged-current reaction for 1 GeV neutrinos
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One-body current describe quasi 
elastic peak  

Difference between CBF(AV18) and 
SCGF(NNLOsat) from 1-b terms

Two-body currents fiull up dip region

Missing Delta and meson emission 
contributions

X-sec. droppin with scattering angle

N. Rocco, CB, O. Benhar, de Pace , A. 
Lovato, Phys. Rev. C99, 025502 (2019)



Neutrino Oscillations – next generation experiments

DUNE experiment will measure long base line 
neutrino oscillations to:

- Resolve neutrino mass hierarchy
- Search for CP violation in weak interaction
- Search for other physics beyond SM

Liquid Argon projection chamber is being used.  It will require 
one order of magnitude (20% à 2%) improvement in theoretical 
prediction for  ν-40Ar  cross sections to achieve proper event 
reconstruction.

è Need good knowledge of 40Ar spectral functions and consistent 
structure-scattering theories.



Spectral function for 40Ar and Ti
Jlab experiment E12-14-012 (Hall A)
Phys. Rev. C 98, 014617 (2018); arXiv:1810.10575 

40Ar

Z=18
N=22

ATi

Z=22
N=24-28

Ar (e,e’)X
Ti(e,e’)X
C (e,e’)X

40Ar(e,e’p)  and  Ti(e,e’p)  data being analyzed

Proton distribution in Ti similar 
to neutron in 40Ar ??



Spectral function for 40Ar

N. Rocco, V. Somà, CB, in preparation

- Experimental datat now available from Jlab:
H. Dai et al., arXiv:1803.01910/ 1810.10575

- Ab initio simulations based on the ADC(2)
truncation of the N2LO-sat Hamiltoninan

è Want validation of initial state correlation 
before they are implementer in neutrino-40Ar 
simulations
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FIG. 3. (color online). Double di↵erential cross section for
the Ti(e, e0) process measured at beam energy of 2.222 GeV
and fixed scattering angle of 15.541 deg. The inner and outer
uncertainty bars correspond to statistical and total uncertain-
ties, respectively. The maximum uncertainties in the full kine-
matical range are provided.

tainty includes beam charge (0.03%), detector and trig-
ger e�ciencies (0.1%), DAQ live-time (0.02%), VDC, and
VDC track reconstruction e�ciencies (0.1%) and uncer-
tainties due to the charge-symmetric background predic-
tion [31] (0.01%). A detailed list of the systematic un-
certainties is given in Table I. All uncertainties are con-
sidered as fully uncorrelated.

The solid line of Fig. 2 represents theoretical results ob-
tained within the scheme described in Refs. [12, 14, 15,
32], based on the factorization ansatz dictated by the IA
and the spectral function formalism. Note that this ap-
proach does not involve any adjustable parameters, and
allows for a consistent inclusion of single-nucleon inter-
actions—both elastic and inelastic—and meson-exchange
current (MEC) contributions. The e↵ects of FSI on the
quasielastic cross section has been taken into account fol-
lowing the procedure developed in Ref. [32]. A detailed
account of the calculation of the electron-carbon cross
section will be provided in a forthcoming paper [33].

Figure 3 presents the inclusive electron-titanium cross
section, measured at the same kinematics as for carbon
and with an error up to ⇠2.75%, sum in quadrature of
statistical (1.65%) and systematic (2.2%) uncertainties.
In the absence of any previous electron-scattering studies
carried out using a titanium target, we determined the
Ti(e, e0) cross sections using:

✓
d2�Born

d⌦dE0

◆i

Ti

=

✓
d2�Born

d⌦dE0

◆i

C

⇥ YieldiTi

YieldiC
(2)

where YieldiC/Ti denotes the luminosity normalized yield
respectively for C and Ti. By normalizing the yield ratio
to published radiatively unfolded carbon cross sections
d�Born

C , we are implicitly unfolding bremsstrahlung from
the quoted Ti cross sections. In this approach, most of
the systematic uncertainties are fully correlated between
C and Ti, due to the fact that the data was collected in
the same kinematical setup and analyzed using the same
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FIG. 4. (color online). Ratios defined by Eq.(3), computed
using the measured carbon and titanium cross sections.

cuts of the carbon data. Uncertainties due to radiative
corrections, target thickness and density were evaluated
independently for Ti, and added in quadrature to the
uncertainties from C. Note that this is the first electron-
scattering data ever collected using a titanium target.
Therefore, the model of Refs. [12, 14, 15, 32], requiring
as an input the target spectral function, could not be
used to obtain theoretical results comparable to the data
of Fig. 3. As a matter of fact, the determination of the
titanium and argon spectral functions—to be extracted
from the analysis of the (e, e0p) cross sections—is the pri-
mary purpose of our experiment.
Figure 4 shows the ratio

(d2�/d⌦dE0)/[Z�ep + (A� Z)�en] , (3)

for carbon and titanium,. Here �ep and �en denote
the elastic electron-proton and electron-neutron cross
sections stripped of the energy-conserving delta func-
tion. The di↵erence between the results obtained us-
ing the measured carbon and titanium cross sections re-
flect di↵erent nuclear e↵ects, that can be conveniently
parametrized in terms of a nuclear Fermi momentum ex-
ploiting the concept of scaling of second kind, or super-
scaling [34]. The superscaling analysis of our data, illus-
trated in Fig. 5, suggests that the Fermi momentum in
titanium is ⇠240 MeV, to be compared to 220 MeV in
carbon [35].
In this Letter, we have reported the first results of

JLab experiment E12-14-012, consisting of the Ti(e, e0)
and C(e, e0) cross sections at beam energy E = 2.222
GeV and scattering angle ✓ =15.541 deg. The quality
of the CEBAF electron beam and the excellent perfor-
mances of the high resolution spectrometer and detec-
tor packages available in Hall A allowed for a quick and
smooth data taking, and an accurate determination of
the cross sections over the broad range of energy transfer
in which quasielastic scattering—induced by both one-
and two-nucleon currents—and resonance production are
the main contributions to the inclusive cross sections.
Our measurement, providing the first experimental in-

formation ever on electron-titanium scattering, will be of
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Electron and ν scattering on 40Ar and Ti
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Ti protons contribution 
(‘mix’) is nearly identical 
to neutrons in 40Ar.



Ab initio optical potentials from 
propagator theory

Relation to Fesbach theory:
Mahaux & Sartor, Adv. Nucl. Phys. 20 (1991)
Escher & Jennings Phys. Rev. C66, 034313 (2002) 

Previous SCGF work:
CB, B. Jennings, Phys. Rev. C72, 014613 (2005)
S. Waldecker, CB, W. Dickhoff, Phys. Rev. C84, 034616 (2011)
A. Idini, CB, P. Navrátil, arXiv:1612.01478v1 [nucl-th] and in prep.



Microscopic optical potential
Nuclear self-energy               :
• contains both particle and hole props.
• it is proven to be a Feshbach opt. pot

à in general it is non-local !

EF

A+1

A-1

Solve scattering and overlap functions directly in 
momentum space:

E
2

tral representation,
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! � (K< +D) � i⌘
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r,s

N†
s,� ,

(1)

where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. The Hamiltonian used to
generate the self energy is

H(A) = T � Tc.m.(A) + V + W (2)

where Tc.m.(A) is the kinetic energy center of mass for
A particle, V and W are the two and three body in-
teractions. In the case of SRG-N3LO EM500 potential
[31] only the two body interaction has been used. For
NNLOsat [26], we apply the reduction of the three body
interaction to an equivalent e↵ective two–body, consid-
ering the normal ordering contribution, as demonstrated
in [25].

The resulting dressed single particle propagator can be
written in the Lehmann representation as

g↵,�(!) =
X

n

h A
0 |c↵| A+1

n ih A+1
n |c†� | A

0 i
! � E
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n + E
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0 + i⌘

+
X

i

h A
0 |c†↵| A�1

n ih A�1
n |c� | A

0 i
! � E

A
0 + E

A�1
i � i⌘

, (3)

the poles of the propagator E
A+1
n �E

A
0 indicate then the

energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A par-
ticles and the propagator contains excited states of the
A + 1 system. The center of mass separation is not triv-
ial in truncated many–body spaces, such as the SCGF or
CC. For this reason both hpsi| and |psii in the definition
of the self energy and optical potential are not eigenstates
of the total momentum. This carries an intrinsic uncer-
tainint in center of mass definition, that however is under
control in the systems in considerations (cf. Fig. 1).

To be noted that the parameter i⌘ enter in our cal-
culation only in the construction of the optical potential
spectral representation, and plays no role in the iterative
solution of the many-body problem, that comes from the
diagonalization of the equation of motion [9, 20, 30]. For

the calculation here shown put the i⌘ parameter as en-
ergy dependent 0.002MeV✏2/⇡(✏2 � (22.36MeV)2) where
✏ = ! � EF , with EF the Fermi energy, checking the
convergence of the observables under consideration. All
intermediate states in the selected space n, i must be con-
sidered in the calculation, for the basis states to be com-
plete, in the case of Nmax = 13 this corresponds to con-
sidering all excitations up to J = 25 and to 400 MeV of
excitation energy.
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,

⌃? l,j(k, k
0;E) =

X

n,n0

fn,l(k)⌃
? l,j
n,n0(E) fn0,l(k

0) , (4)

which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
We solve the corresponding scattering problem in the

full one-body space, embedding the ADC(3) self energy
calculated in the discreet harmonic oscillator basis, in
the continuum. We diagonalize the Schrödinger equation
in momentum space using the appropriate reduced mass
µ = A/(A + 1)m,
✓

k
2

2µ
� Ec.m. +

Z
dk

0
k
02⌃? l,j(k, k

0;E)

◆
 l,j(k) = E l,j(k),

(5)
so that, the kinetic energy is treated exactly, without
truncations. Ec.m. is the reaction energy in the center of
mass frame. We fully account for the non locality and
l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
the projectile energy, from where the di↵erential cross
section are calculated.

RESULTS

We start by comparing in Fig. 1 results for phase
shifts of neutrons scattering o↵ 16O, calculated with
NCSM/RGM and SCGF. These calculations [15] were
carried out using SRG-N3LO EM500 potential evolved
with � = 2.66fm

1 [31]. This proof of principle calcula-
tion shows a good comparison between the two methods,
testifying to the validity of SCGF approach and the cen-
ter of mass correction. To exclude couplings with excita-
tions, only the static part of the self energy ⌃1 has been
included in this comparison. As noted in [15], phase shifts
calculation are well converged within this model space as
can be seen in Fig. 2 for d3/2 and s1/2.
In Fig. 3 we show the result for the calculation for both

in NCSM/RGM, including the coupling with 3�, 2�, 1�

low lying states of 16O (the technical limit of 2010 [15]),

2

investigate properties of the NNLOsat Hamiltonian com-
paring with neutron elastic scattering experimental cross
sections in 16O and 40Ca nuclei.

THE MICROSCOPIC OPTICAL POTENTIAL

The Hamiltonian used to generate the self energy is

H(A) = T � Tc.m.(A+ 1) + V +W (1)

where Tc.m.(A + 1) is the kinetic energy center of mass
for a system of A nucleons plus 1 projectile, V and W

are the two and three body interactions. We verified
that applying the reduction of Tc.m.(A) instead has less
then 2% e↵ect in the propagator energies and resulting
phase shifts. When also the 3 body termW is considered,
we apply the reduction of the three body interaction to
an equivalent e↵ective two–body, considering the normal
ordering contribution, as demonstrated in [25].

The SCGF calculation is then performed by iterating
the Dyson equation g(!) = g

0(!) + g
0(!)⌃?(!)g(!) in

the harmonic oscillator basis of Nmax+1 oscillator shells.
g
0(!) is the free particle propagator, and ⌃?(!) the irre-

ducible self-energy which has the following general spec-
tral representation,
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where ↵ and � label the single particle quantum numbers
and ⌃(1) is the correlated and energy independent mean
field.

We perform calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrices M (N) couple single particle states to interme-
diate 2p1h (2h1p) configurations, C (D) are interaction
matrices among these configurations and K are their un-
perturbed energies [29, 30]. All intermediate particle–
hole states in the selected space n, k must be considered
in the calculation, for the basis states to be complete, in
the case of Nmax = 13 this corresponds to considering all
excitations up to J = 29 of both parities and to about
400 MeV of excitation energy.

The resulting dressed single particle propagator can be
written in the Lehmann representation as
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the poles of the propagator EA+1
n �E

A
0 indicate then the

energy of the n–th exited state in the A+1 system respect
to the ground state of the A system. To be noted that
there is an ambiguity in this solution, our Hamiltonian
has been explicitly corrected for center of mass of A +
1 particles and the propagator contains both | Ai and
| A+1i.
The center of mass separation is not guaranteed in

spherical harmonic oscillator basis, which breaks transla-
tional invariance, when a truncation is being employed.
It is numerically verified only for Nmax

>⇠ 19 [31]. For
this reason both h | and | i in the definition of the self
energy and optical potential are not eigenstates of the to-
tal momentum. This carries an intrinsic uncertaininty in
center of mass definition, that however can be checked by
benchmarking with full Nh̄!–space NCSM calculations
(cf. Fig. 1).
The optical potential for a given partial wave (l, j) is

expressed in momentum space from the harmonic oscilla-
tor space using the fn,l(k) harmonic oscillator wavefunc-
tions,
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which is non local and energy–dependent. Hence, at
variance with other methods, Green functions provide
a parametrized, separable and analytical form of the op-
tical potential within the Lehmann representation.
To be noted that the parameter i� enters in our cal-

culation only in the construction of the optical potential
spectral representation of Eq. 4, and plays no role in
the iterative solution of the many-body problem, that
comes from the diagonalization of the equation of mo-
tion [5, 20, 30]. For the calculation here shown put the
i� parameter as energy dependent 0.002MeV✏2/⇡(✏2 �
(22.36MeV)2) where ✏ = E�EF , with EF the Fermi en-
ergy, checking the convergence of the observables under
consideration.
We solve the corresponding scattering problem in the

full one-body space, embedding in the continuum the
ADC(3) self energy calculated in the harmonic oscilla-
tor basis using Eq. 4. We diagonalize the Schrödinger–
like equation in momentum space using the appropriate
reduced mass µ = A/(A+ 1)m,
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(5)
so that, the kinetic energy is treated exactly, without
truncations. The solution eigenvalue E is the reaction
energy in the center of mass frame, and the eigenfunction
 l,j(k) is the resulting overlap (or scattering) wavefunc-
tion h A+1

n |cn| A
0 i. We fully account for the non locality

and l, j dependence of Eq. (4). For each partial wave and
parity, the phase shifts �(E) are obtained as function of
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16O(n,n)16O

[A. Idini, CB, Navratil, arXiv:1903.xxzzww]
Low energy scattering – from SCGF



Low energy scattering – from SCGF

Jπ 5/2+ 1/2+ 3/2+ 1/2- 3/2- 5/2+ 5/2- 7/2-
NNLO-sat [MeV] -5.06 -3.58 0.91 -0.15 -2.24 4.57 3.36 3.37 

Experiment [MeV] -4.14 -3.27 0.94 -1.09 0.41 3.23 3.02 3.77 

⌃?(k, k0;E)⌃(1)(k, k0;E)

[A. Idini, CB, Navratil, arXiv:1903.xxzzww]
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Low energy scattering – from SCGF
[A. Idini, CB, Navratil, in prep.]
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Two-Nucleon HAL potentials in flavour SU(3) symm.

46

NN potentials from QCD

● Left:  NN potentials in partial waves at the lightest mq.
● Repulsive core & attractive pocket & strong tensor force.
● Similar to phenomenological potentials qualitatively.
● Least χ2 fit of data which give central value of observable.
● Higher orders in velocity expansions are not available yet.

We restrict us to these leading order potentials.

● Right:  Quark mass dependence of V(r) of NN 1S0.
● Potentials become stronger as mq decrease.

e.g.  AV18

Quark mass dependence of V(r) for NN partial wave (1S0, 3S1, 3S1-3D1)

è Potentials become stronger mπ as decreases.

Prog. Theor. Exp. Phys. 01A105 (2012)

23

● Direct ： utilize energy eigenstates (eigenvalues)
● Lüscher's finite volume method for a phase-shift
● Infinite volume extrapolation for a bound state

● HAL  ： utilize a potential V(r) + ...  of interaction

● Advantages
● No need to separate E eigenstate.

Just need to measure
● Then, potential can be extracted.
● Demand a minimal lattice volume.

No need to extrapolate to V=∞.
● Can output many observables.

V ( r⃗ ) =
1

2μ
∇ 2ψ( r⃗ , t)
ψ( r⃗ , t )

−

∂
∂ t

ψ( r⃗ , t)

ψ( r⃗ , t)
− 2MB

ψ( r⃗ , t) : 4-point function

contains NBS w.f.

ψ( r⃗ , t)

Multi-hadron in LQCD

HALQCD method;   è
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O(D−1(U ))
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N
∑
i=1

N

O(D−1(Ui))

Vacuum expectation value

 { Ui } : ensemble of gauge conf. U
 generated w/ probability det D(U) e −SU(U)

path integral

quark propagator

Fully non-perturvative
Highly predictive
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Mixed SCGF–Brueckner approach

ℓ
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Solve full many-body dynamics in model space (P+Q’) and the Goldstone’s
ladders outside it (i.e. in Q’’ only):

"(
k)

⇠ k
2 /2

m

G’’(w)
+

"

#’

#’’ + F-RPA

G00(!) = V +

Z
dkadkbV

Q̂00

! � "(ka)� "(kb) + i⌘
G00(!)



Infrared convergence

Deuteron g.s. Energy
EM(500) – N3LO two-nucleon force4 6 8 10 12 14 16 18
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Short-range repulsion in the 
HALQCD-type potentials can be
tamed correctly even for large nuclei.
C. McIlroy, CB, et al., Phys. Rev. C97, 021303(R) (2018) 
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Results for binding
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spherical wave functions…
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FIG. 2. (Color online) Ground state energy of 4He, 16O and 40Ca as a function of the harmonic oscillator frequency, ~⌦, and the model space
size, Nmax. Symbols mark the results for the HAL469 potential from full self-consistent calculations in the G-matrix plus ADC(3) approach.

Results. The one-body propagators of 4He, 16O and
40Ca were calculated in spherical harmonic oscillator spaces
of di↵erent frequencies, ~⌦, and increasing sizes up to
Nmax=max{2n + `}=11 (and Nmax  9 for 40Ca). A G-matrix
was calculated for each frequency and model space and then
it was used to derive the static interactions of Eq. (5). We sub-
tracted the kinetic energy of the center of mass according to
Ref. [50] and calculated the intrinsic ground state energy from
g(!) using the Koltun sum rule. The same lattice simulation
setup used to generate the HAL469 interaction gives a nucleon
mass of mN=1161.1 MeV/c2 in addition to the pseudo-scalar
mass of MPS=469 MeV/c2. Thus, we employed this value of
mN in all the kinetic energy terms.

The exact binding energy of 4He for HAL469 is known
to be 5.09 MeV [51] and can be used to benchmark our ap-
proach. Fig. 2 displays the ground state energies calculated
with the G-matrix plus ADC(3) method. The resummation
of ladder diagrams outside the model space tames ultravio-
let corrections and we find that the infrared convergence dis-
cussed in Ref. [52] applies very well for large oscillaltor fre-
quencies. From calculations up to ~⌦=50 MeV, we estimate
a converged binding energy of 4.80(3) MeV for 4He, where
the error corresponds to the uncertainties in the extrapolation.
All results for 4He are summarised in Tab. I where we also list
BHF calculations done with the same gap choice and methods
of Ref. [22]. This suggests that the BHF method can overes-
timate the binding energy for HAL469 even sizeably. On the
other hand, the full inclusion of long-range e↵ects in ADC(3)

E
A

0 [MeV] 4He 16O 40Ca
BHF [22] -8.1 -34.7 -112.7
G(!) + ADC(3) -4.80(0.03) -17.9 (0.3) (1.8) -75.4 (6.7) (7.5)
Exact Result [51] -5.09 – –
Separation into 4He clusters: -2.46 (0.3) (1.8) 24.5 (6.7) (7.5)

TABLE I. Ground state energies of 4He, 16O and 40Ca
at MPS=469 MeV/c2 obtained from the HAL469 interaction.
‘G(!)+ADC(3)’ are the results of the present work and are compared
to BHF and exact results. The last line is the breakup energy for split-
ting the system in 4He clusters (of total energy A/4⇥5.09 MeV).

deviates from the exact solution by less than 10%. Since the
SCGF approach resums linked diagrams, and thus is size ex-
tensive, one should expect that similar errors will apply for
larger isotopes. Fig. 2 also demonstrates that 16O and 40Ca
convergence similarly to 4He. Their extrapolated ground state
energies are also given in Tab. I, where the first error is the un-
certainties in the model space extrapolation [52]. The second
error corresponds to many-body truncations and we estimate
it to be 10% based on the finding for 4He. The SCGF results
are sensibly less bound than our previous BHF results [22].
This pattern is completely analogous to the case of 4He and
we interpret it as a limitation of BHF theory.

A key feature of our calculations is the use of an har-
monic oscillator space, which e↵ectively confines all nucle-
ons. The last line Tab. I reports the deduced breakup ener-
gies for separating the computed ground states into infinitely
distant 4He clusters. The 16O is unstable with respect to 4-↵
break up, by ⇡2.5 MeV. Allowing an error in our binding en-
ergies of more than 10% could make oxygen bound but only
very weakly. This is in contrast to the experimental results, at
the physical quarks masses, where the 4-↵ breakup requires
14.4 MeV. On the other hand, 40Ca is stable with respect to
breakup in ↵ particles by ⇡24 MeV. We expect that these
observations are rather robust even when we consider the
(LQCD) statistical errors in the HAL469 interaction. While
such statistical fluctuations introduce additional ⇠10% errors
on binding energies [22], they are expected to be strongly cor-
related among 4He, 16O and 40Ca. Hence, for QCD in the
SU(3) limit at MPS=469 MeV/c2, we find that the deuteron is
unbound [20] and 16O is only just slightly above the threshold
for ↵ breakup, while 4He and 40Ca are instead bound. The
HAL469 interaction has the lowest MPS value among those
considered in Refs. [19, 20], while from Ref. [21] we know
that it is the only one saturating nuclear matter (although not
at the physical saturation point). Moreover, we have tested
that SCGF attempts at calculating asymmetric isotopes, like
28O, predict strongly unbound systems even for HAL469. All
these results together suggest that, when lowering of the pion
mass toward its physical value, closed shell isotopes are cre-
ated at first around the traditional magic numbers. This hy-
pothesis should also be seen in the light of the limitations in
the present HAL469 Hamiltonian, which was built to include
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Future application for Ys in nuclei now possible
• AV4’ + UIX requires very large with phenomenological hypernuclear forces requires large ΛNN 3-baryon force

• Physical mass now under reach (mπ≈ 145 MeV)  for hyperons

• HALQCD  ΛN 3-baryon force is already very close to experiment 

HALQCD simulations 
D. Lonardoni, A. Lovato, CB
(work in progress)

: phenomenological NΛ potential

: phenomenological NΛ + NNΛ potential

: HALQCD NΛ potential

D. Lonardoni, A. Lovato, et al, Phys. Rev. Lett. 
114, 092301 (2015) & arXiv:1506.04042

Preliminary !!!!



This meeting will focus on the theme ofwhat next in ab initio theory?We anticipate discussions on:

• Technical challenges: the precision frontier, the limits of mass number and nuclear properties;

• Computational and statistical techniques to guide the quantification of theoretical uncertainties, and

• Physics opportunities: neutrino oscillations, physics beyond the standard model, hypernuclear physics.

https://sites.google.com/view/ab-initio-surrey-workshop-2019/



Summary
Future challenges in SCGF (and ab-initio theories in general) in mid-mass nuclei:

à Description of nuclear g.s. in the pf shell is improved-especially in the 
trends w.r.t. iso-sopin asymmetry.

à Higher accuracy, density of scattering states and absorption(for optical poten-
tials), etc…. all require new formalisms and automatic generation of diagrams 

à The implementation will call top-end supercomputing facilities.
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The charge elastic form factor for16O

✤ The N2LO results are taken from D. Lonardoni, et. al, Phys. Rev. C97, 044318 (2018) where two 
different coordinate-space cutoffs have been adopted
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FIG. 5. Charge densities in 16O. The (green) dots and the
dashed (red) line are the same as Fig. 3. The dot-dashed
(black) line corresponds to the full SCGF density calculated
at the ADC(3) level.

It is visible that up to q = 3 fm�1 the removal of the
center-of-mass contamination enhances the strength and
improves the agreement between the OpRS and the QMC
and the calculations of Ref. [44]. For larger values of
the momentum we found some discrepancies for both the
OpRS calculations.
For medium-mass nuclei, the center of mass correc-

tions are known to be less significant. Therefore, in
Fig. 5 we compare the experimental charge density in
16O with the full SCGF-ADC(3) and the QMC calcula-
tions. There is an overall nice agreement between the
theoretical curves. The SCGF-ADC(3) results perfectly
reproduce the experimental points, confirming the good-
ness of the NNLOsat potential which was fitted to repro-
duce the experimental radius of 16O.
Figure 6 displays the charge elastic form factor for 16O.

In this case we find an excellent agreement between the
SCGF, the QMC calculations and the experimental data.
The results of Ref. [49] for two di↵erent values of the
coordinate cuto↵s are also shown. While for R0=1.0 fm
the curve has the correct behavior some discrepancies are
visible for R0=1.2 fm.
In Fig. 7 we benchmark the intrinsic and uncorrected

OpRS single-nucleon momentum distribution of 4He with
the QMC calculation of Ref. [41]. The OpRS result, cor-
responding to the dashed (blue) line, correctly follows
that of the dressed ADC(3) propagator, although the
agreement is not as close as in Fig. 2. Note that, also
in this case the subtraction of the center of mass compo-
nent has a sizable e↵ect, which is crucial for recovering
the agreement with the intrinsic QMC results.
The 16O single-nucleon momentum distributions ob-

tained within the SCGF-ADC(3) and QMC approach are
compared in Fig. 8. The di↵erences displayed in the tails
of the single-nucleon momentum distributions are clearly
visible in the lower panel of Fig. 8 where the logarithmic
scale has been used. The dashed (red) line, corresponding
to the QMC calculation, is found to be above the SCGF-
ADC(3) results for high momenta. This is likely to be
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FIG. 6. Charge elastic form factor for 16O. The solid
(light green) and (violet) lines correspond to the calculation
of Ref. [49] for R0 = 1.0fm and R0 = 1.2fm coordinate-
space cuto↵s, respectively. The uncertainty bands include
the statistical MC uncertainties added in quadrature to the
uncertainty from the truncation of the chiral expansion. The
dashed (red) line is obtained within QMC Ref. [44] while the
dot-dashed (black) refers to the SCGF results calculated at
the ADC(3) level. The shaded area indicates the statistical
MC uncertainty. Experimental data are from Ref. [40].

��  ��΅�  ��Ϩ���  ��Ϩ�  ��Ϩ���  ��Ϩ�  ��Ϩ���  ��Ϩ�  ��Ϩ���  ��Ϩ

� ��� ��� ��� ��� ���

ԝ	ԟ
(J
2o

ϯ )

ԟ (J2o)

ZJ* �oR3YlAs
�.*UjV

PT_a BMi`BMbB+
PT_a

FIG. 7. Momentum distributions of 4He. The dashed (red)
line corresponds to the QMC calculation [41], the dotted
(green) curve have been obtained using the SCGF-ADC(3)
propagator while the short-dashed (blue) and solid (black)
lines correspond to the total and intrinsic OpRS results, re-
spectively.

ascribed to the di↵erent choice made for the potentials.
In fact, the NNLOsat is much softer than the AV18+UIX
potential adopted in the QMC study. The use of an hard
potential implies the presence of stronger high momen-
tum components in the nuclear wave function. While the
QMC momentum distribution exhibits a long tail extend-
ing to p > 1 GeV, the softer potential adopted in our cal-
culations strongly reduce the SCGF-ADC(3) momentum
distribution in the high momentum region. In the upper
panel we observe an enhancement of the SCGF-ADC(3)
results with respect to the QMC calculation. This can be
explained by recalling that the QMC and SCGF-ADC(3)

16O

Applications to electron and neutrino scattering:
à Spectral functions are extracted naturally from 

the SCGF formalism.

à Inclusion of electroweak currents (1b and 2b) and
SCGF spectral functions to be applied in event
reconstruction for neutrino oscillation experiments.

HALQCD Nuclear forces:

à At mπ=469MeV, closed shell 4He and 40Ca are bound. But oxygen is unstable toward 4-! break up.

à Preliminary forces for Lambda-nucleon at near the physical pion mass (m" = 145 MeV/c2) very promising!
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