Tests of *ab-initio* nuclear theory via the isobaric multiplet mass equation in T = 1 superallowed beta decay systems

Matthew S. Martin<sup>1</sup>, K.G. Leach<sup>1</sup>, J.D. Holt<sup>2</sup>, S.R. Stroberg<sup>3</sup>

<sup>1</sup>Department of Physics, Colorado School of Mines
<sup>2</sup>Theory Division, TRIUMF, Canada
<sup>3</sup>Department of Physics, University of Washington

February 28, 2019

- The mass eigenstates and weak-interaction eigenstates of the quarks are not equal
- In the Standard Model, the Cabbibo-Kobayashi-Maskawa (CKM) matrix provides a unitary transformation between these eigenstates

$$\begin{bmatrix} d'\\s'\\b'\end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb}\end{bmatrix} \begin{bmatrix} d\\s\\b\end{bmatrix}$$

If CKM unitarity does not hold, it implies that there is physics outside the Standard Model

# Experimental Allowed ft Value



## Experimental Superallowed ft Value



### Experimental Superallowed $\mathcal{F}t$ Value

$$\mathcal{F}t = ft(1-\delta_R)(1-\delta_C) = \frac{K}{2G_V^2(1+\Delta_R)}$$

 $\mathcal{F}t = \text{corrected } ft \text{ value}$ 

 $\delta_R$  = transition-dependent radiative correction

 $\delta_{\mathcal{C}} = \text{isospin symmetry breaking correction}$ 

$$K = \text{constants}$$

$$G_V^2 =$$
vector coupling constant

 $\Delta_R$  = transition-independent correction

### Experimental Superallowed $\mathcal{F}t$ Value



## Isobaric Analogue States

• Superallowed  $\beta$  decay chain is a T = 1 isobaric analogue triplet



$$M = Nm_n + Zm_p - E_{bind} - A$$

- Testing the validity of theoretical methods for use in calculating isospin symmetry breaking corrections for superallowed decay
- Using the Isobaric Multiplet Mass Equation

$$M(T_z) = a + bT_z + cT_z^2$$

- IMME derived from first order perturbation of Coulomb potential<sup>12</sup>
- b and c coefficients very sensitive to isospin symmetry breaking

<sup>1</sup>J.M. Dong *et al.*, Physical Review C **99**, 014319 (2019) <sup>2</sup>Baczyk *et al.*, J Phys G Accepted Manuscript

Matthew S. Martin (Mines)

TRIUMF ab initio Workshop

 $M(T_z) = a + \frac{b}{b}T_z + cT_z^2$ 

• Seem to converge well

• Similar for all  $A \in \{14: 74\}$ 



 $M(T_z) = a + b T_z + cT_z^2$ 

• General trend of uniform sphere • Slight peak at A = 14,38



 $M(T_z) = a + \frac{b}{T_z} + cT_z^2$ 

• Same peaks can be seen

• sd-shell VS reduces error



**VS-IMSRG** 

 $0\hbar\omega$ -shell Valence Space

#### sd-shell Valence Space



Induced Error  $\propto \langle \Psi | \Delta H | \Psi \rangle$ 

 $M(T_z) = a + bT_z + \frac{c}{c}T_z^2$ 

• Converging?

• Similar for all  $A \in \{14: 70\}$ 



 $M(T_z) = a + bT_z + c T_z^2$ 

• A = 14,38 peaks larger

• Fixed by *sd*-shell VS



Matthew S. Martin (Mines)

February 28, 2019 14 / 16

**VS-IMSRG** 

 $0\hbar\omega$ -shell Valence Space

#### sd-shell Valence Space



Induced Error  $\propto \langle \Psi | \Delta H | \Psi \rangle$ 

- IMME coefficients converge well with emax
  - *b* coefficients converging
  - c coefficients not changing much wtih emax
  - Need to check emax = 14 to see further
- Both coefficients follow trend predicted by uniform charged sphere
  - IMME seems to remove systematic theoretical and many-body errors
- Significant error/deviation at shell closures
  - Fixed by forcing valence space to be same in IAT
  - Currently running the rest of these cases
- Determine use of *ab initio* methods for *superallowed* decay