Chiral interactions for nuclear matter and medium-mass nuclei

Achim Schwenk

TRIUMF ab initio workshop, Feb. 26, 2019

Bundesministerium für Bildung und Forschung

涿

Outline

Exploring chiral interactions with good saturation properties in medium-mass nuclei with **J. Simonis, R. Stroberg,** K. Hebeler, J.D. Holt

Nuclear landscape based on a chiral NN+3N interaction including uncertainties with **R. Stroberg**, J.D. Holt, J. Simonis

Improved nuclear matter calculations and first N³LO calculations of medium-mass nuclei with **C. Drischler**, K. Hebeler, **J. Hoppe**, **J. Simonis**

Ab initio calculations of neutron-rich oxygen isotopes

based on same NN+3N interactions with different many-body methods

CC theory/CCEI Hagen et al., PRL (2012), Jansen et al., PRL (2014)

Multi-Reference In-Medium SRG and IT-NCSM Hergert et al., PRL (2013)

Self-Consistent Green's Functions Cipollone et al., PRL (2013)

Many-body calculations of medium-mass nuclei have smaller uncertainty compared to uncertainties in nuclear forces

Great progress from medium to heavy nuclei

VS-IMSRG with ensemble normal ordering from NN+3N 1.8/2.0 (EM) Tsukiyama, Bogner, AS, Hergert, Holt, Stroberg, Simonis,...

Great progress from medium to heavy nuclei

VS-IMSRG with ensemble normal ordering from NN+3N 1.8/2.0 (EM) Tsukiyama, Bogner, AS, Hergert, Holt, Stroberg, Simonis,...

Important for medium-mass nuclei:

Consider nuclear forces with good (nuclear matter) saturation properties

 N^2LO_{sat} fit to selected nuclei up to A=24 Ekström et al. (2015)

NN evolved + 3N fit to 3 H, 4 He Hebeler et al. (2011)

Nuclear forces and nuclear matter Monte-Carlo calculation of all energy diagrams up to 4th order in MBPT

Drischler, Hebeler, AS, PRL (2019), automated 5th and 6th order calculation, Drischler et al.

chiral order	Λ/c_D	second order			third order	fourth order	
		NN-only	NN+3N	3N res.	NN+3N	NN-only	$NN+3N^{a}$
$N^{3}LO/N^{2}LO$	$\lambda/\Lambda = 1.8/2.0~{ m fm}^{-1}$	-2.30	-2.24	-0.40	-0.10	-0.20	-0.07

Importance of saturation for nuclear forces Simonis, Stroberg et al. (2017) IM-SRG calculations of closed shell nuclei follow nuclear matter saturation trends

Importance of saturation for nuclear forces Simonis, Stroberg et al. (2017) IM-SRG calculations of closed shell nuclei follow nuclear matter saturation trends

Outline

Exploring chiral interactions with good saturation properties in medium-mass nuclei with **J. Simonis, R. Stroberg,** K. Hebeler, J.D. Holt

Nuclear landscape based on a chiral NN+3N interaction including uncertainties with **R. Stroberg**, J.D. Holt, J. Simonis

Improved nuclear matter calculations and first N³LO calculations of medium-mass nuclei with **C. Drischler**, K. Hebeler, **J. Hoppe**, **J. Simonis**

Simple uncertainty estimates NN+3N interaction 1.8/2.0 (EM) fit to A=3,4 only, remarkably well for energies

calculated all nuclei to Fe in VS-IMSRG, global comparison of S_{1n} with experiment shows Gaussian dist with $\sigma_{1n} \sim 1$ MeV, similar for S_{2n} , S_{1p} , S_{2p} Stroberg, Holt, Simonis, AS, in prep.

predictions for isotope chains (here Cl) assuming same pdf for unknown nuclei

probability for being bound to 1n emission

$$\mathcal{P}_{1n} = \frac{1}{2} \left(\text{Erf} \left[S_n^{(th)}(N, Z) / \sqrt{2} \sigma_{1n} \right] + 1 \right)$$

and prob. bound to 1n+2n: $\mathcal{P}_{1n} \mathcal{P}_{2n} - \delta_{\text{corr}}$

more sophisticated stat. modeling see EDF based work of Neufcourt et al., PRL (2019)

Nuclear landscape based on a chiral NN+3N interaction

ab initio is advancing to global theories, limitations due to input NN+3N

Outline

Exploring chiral interactions with good saturation properties in medium-mass nuclei with **J. Simonis, R. Stroberg,** K. Hebeler, J.D. Holt

Nuclear landscape based on a chiral NN+3N interaction including uncertainties with **R. Stroberg**, J.D. Holt, J. Simonis

Improved nuclear matter calculations and first N³LO calculations of medium-mass nuclei with **C. Drischler**, K. Hebeler, **J. Hoppe**, **J. Simonis**

Nuclear forces and nuclear matter

Monte-Carlo calculation of all energy diagrams

up to 4th order in MBPT Drischler, Hebeler, AS, PRL (2019)

including NN, 3N, 4N 3N fit to ³H and saturation

systematic improvement from N²LO to N³LO

first full N³LO Hamiltonians for use in nuclear structure and EOS calculations

First N³LO results for medium-mass nuclei Hoppe, Simonis et al. NLO, N²LO, N³LO (EMN 450) with EFT uncertainty bands

bands overlap and at N³LO cutoff variation is within band

underbinding expected from saturation point

First N³LO results for medium-mass nuclei Hoppe, Simonis et al. NLO, N²LO, N³LO (EMN 450) with EFT uncertainty bands

bands overlap and at N³LO cutoff variation is within band

radii in better agreement, larger than expected from saturation point

Exploring sensitivities to 3N force couplings Hoppe, Simonis et al.

vary all LECs by ± 1 for 40,52 Ca largest sensitivity to c_E (but c_E variation breaks 3 H fit)

Exploring sensitivities to 3N force couplings Hoppe, Simonis et al.

vary all LECs by ± 1 for ^{40,52}Ca largest sensitivity to c_E (but c_E variation breaks ³H fit)

explore for closed shell nuclei, also promising results for SRG evolved interaction

Outline

Exploring chiral interactions with good saturation properties in medium-mass nuclei with **J. Simonis, R. Stroberg, K.** Hebeler, J.D. Holt

Nuclear landscape based on a chiral NN+3N interaction including uncertainties with **R. Stroberg**, J.D. Holt, J. Simonis

Improved nuclear matter calculations and first N³LO calculations of medium-mass nuclei with **C. Drischler**, K. Hebeler, **J. Hoppe**, **J. Simonis**

Equation of state at finite temperature

ab initio calcs of EOS at finite T Carbone, Rios, Polls,... Holt, Wellenhofer, Weise,...

Equation of state at finite temperature

ab initio calcs of EOS at finite T Carbone, Rios, Polls,... Holt, Wellenhofer, Weise,...

thermal contributions: thermal index $\Gamma_{\rm th} = 1 + \frac{P_{\rm th}}{\varepsilon_{\rm th}} = 1 + \frac{P - P_{\rm cold}}{\varepsilon - \varepsilon_{\rm cold}}$

Impact on core-collapse supernova simulations

Yasin, Schäfer, Arcones, AS, 1812.02002 constructed EOS that systematically vary nuclear matter properties between LS and Shen et al. EOS

	m^*/m	K	$E_{\rm sym}$	L	n_0	В
LS220	1.0	220	29.6	73.7	0.155	16.0
Shen	0.634	281	36.9^{a}	110.8	0.145	16.3
Theo.	0.9(2)	215(40)	32(4)	51(19)	0.164(7)	15.86(57)

thermal contributions/m^{*} are key for proto-neutron star contraction

faster contraction aids supernova shock to more successful explosion

Impact on core-collapse supernova simulations

Yasin, Schäfer, Arcones, AS, 1812.02002 constructed EOS that systematically vary nuclear matter properties between LS and Shen et al. EOS

	m^*/m	K	$E_{\rm sym}$	L	n_0	В
LS220	1.0	220	29.6	73.7	0.155	16.0
Shen	0.634	281	36.9^{a}	110.8	0.145	16.3
Theo.	0.9(2)	215(40)	32(4)	51(19)	0.164(7)	15.86(57)

thermal contributions/m^{*} are key for proto-neutron star contraction

faster contraction aids supernova shock to more successful explosion

larger m^{*} results in smaller pressure (cold and thermal)

First limits for WIMP-pion interactions

in collaboration with XENON1T Aprile et al., PRL last week based on chiral EFT for WIMP-nucleon/pion interactions

Summary

Exploring chiral interactions with good saturation properties in medium-mass nuclei with **J. Simonis, R. Stroberg,** K. Hebeler, J.D. Holt

Nuclear landscape based on a chiral NN+3N interaction including uncertainties with **R. Stroberg**, J.D. Holt, J. Simonis

Improved nuclear matter calculations and first N³LO calculations of medium-mass nuclei with **C. Drischler**, K. Hebeler, **J. Hoppe**, **J. Simonis**