Automated generation and evaluation of many-body diagrams

Pierre Arthuis
University of Surrey

Progress in Ab Initio Techniques in Nuclear Physics TRIUMF, Vancouver - February 28th 2019

- Why automated tools for many-body diagrams?
- Application to Bogoliubov Many-Body Perturbation Theory
\diamond Basics of diagrammatic BMBPT formalism
\diamond Automated generation and evaluation for BMBPT diagrams
- Conclusion and perspectives
- Why automated tools for many-body diagrams?
- Application to Bogoliubov Many-Body Perturbation Theory
\diamond Basics of diagrammatic BMBPT formalism
\diamond Automated generation and evaluation for BMBPT diagrams
- Conclusion and perspectives

Progress in ab initio methods

Courtesy of V. Soma, T. Duguet

Progress in ab initio methods

"Exact" methods (80's)

- GFMC, NCSM, FY

Closed-shell methods (00's)

- DSCGF, CC, IMSRG

Open-shell methods (10's)

- GSCGF, BCC, MR-IMSRG

Ab initio shell model (2014)

- EI via CC, IMSRG, NCSM...

Courtesy of V. Soma, T. Duguet

Two-fold force leading progress

\diamond New formal developments
\diamond Progress in numerical methods, computing power

Progress in diagrammatic ab initio methods

The coming extensions

Keep incorporating more physics

- To higher truncation orders
- To higher-rank forces

Progress in diagrammatic ab initio methods

The coming extensions

Keep incorporating more physics

- To higher truncation orders
- To higher-rank forces

The coming difficulties
More complex topologies appearing

- Time-consuming
- Error-prone

Progress in diagrammatic ab initio methods

The coming extensions

Keep incorporating more physics

- To higher truncation orders
- To higher-rank forces

The coming difficulties
More complex topologies appearing

- Time-consuming
- Error-prone

The coming needs
Develop tools to avoid human work

- Automated diagram generation and evaluation
- Automated code-generation

Outline

- Why automated tools for many-body diagrams?
- Application to Bogoliubov Many-Body Perturbation Theory
\diamond Basics of diagrammatic BMBPT formalism [Duguet and Signoracci, J. Phys. G 44 (2017)] [Tichai, Arthuis, Duguet, Hergert, Somà, Roth, PLB 786 (2018)] See A. Tichai's talk for numerical implementation
\diamond Automated generation and evaluation for BMBPT diagrams
- Conclusion and perspectives

Bogoliubov reference state

Bogoliubov vacuum $|\Phi\rangle: \beta_{k}|\Phi\rangle=0 \forall k$

$$
\begin{aligned}
& \beta_{k}=\sum_{p} U_{p k}^{*} c_{p}+V_{p k}^{*} c_{p}^{\dagger} \\
& \beta_{k}^{\dagger}=\sum_{p} U_{p k} c_{p}^{\dagger}+V_{p k} c_{p}
\end{aligned}
$$

Particle-number breaking

$$
A|\Phi\rangle \neq \mathrm{A}|\Phi\rangle
$$

Breaks $U(1)$ symmetry

$$
H \Rightarrow \Omega=H-\lambda A
$$

Bogoliubov reference state

Bogoliubov vacuum $|\Phi\rangle: \beta_{k}|\Phi\rangle=0 \forall k$

$$
\begin{aligned}
& \beta_{k}=\sum_{p} U_{p k}^{*} c_{p}+V_{p k}^{*} c_{p}^{\dagger} \\
& \beta_{k}^{\dagger}=\sum_{p} U_{p k} c_{p}^{\dagger}+V_{p k} c_{p}
\end{aligned}
$$

Particle-number breaking

$$
A|\Phi\rangle \neq \mathrm{A}|\Phi\rangle
$$

Breaks $U(1)$ symmetry

$$
H \Rightarrow \Omega=H-\lambda A
$$

Grand potential Ω in qp basis, normal-ordered w.r.t. $|\Phi\rangle$

$$
\begin{aligned}
\Omega= & \Omega^{00}+\frac{1}{1!} \sum_{k_{1} k_{2}} \Omega_{k_{1} k_{2}}^{11} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}+\frac{1}{2!} \sum_{k_{1} k_{2}}\left\{\Omega_{k_{1} k_{2}}^{20} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger}+\Omega_{k_{1} k_{2}}^{02} \beta_{k_{2}} \beta_{k_{1}}\right\} \\
& +\frac{1}{(2!)^{2}} \sum_{k_{1} k_{2} k_{3} k_{4}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{22} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{4}} \beta_{k_{3}} \\
& +\frac{1}{3!} \sum_{k_{1} k_{2} k_{3} k_{4}}\left\{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{31} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{3}}^{\dagger} \beta_{k_{4}}+\Omega_{k_{1} k_{2} k_{3} k_{4}}^{13} \beta_{k_{1}}^{\dagger} \beta_{k_{4}} \beta_{k_{3}} \beta_{k_{2}}\right\} \\
& +\frac{1}{4!} \sum_{k_{1} k_{2} k_{3} k_{4}}\left\{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{3}}^{\dagger} \beta_{k_{4}}^{\dagger}+\Omega_{k_{1} k_{2} k_{3} k_{4}}^{04} \beta_{k_{4}} \beta_{k_{3}} \beta_{k_{2}} \beta_{k_{1}}\right\}+\ldots
\end{aligned}
$$

Time-dependent BMBPT

Grand potential partitioning

$$
\begin{aligned}
& \Omega_{0}=\Omega^{00}+\bar{\Omega}^{11}=\Omega^{00}+\sum_{k} \mathrm{E}_{k} \beta_{k}^{\dagger} \beta_{k} \\
& \Omega_{1}=\breve{\Omega}^{11}+\Omega^{20}+\Omega^{02}+\Omega^{[4]}+\Omega^{[6]}
\end{aligned}
$$

Time-dependent BMBPT

Grand potential partitioning

$$
\begin{aligned}
& \Omega_{0}=\Omega^{00}+\bar{\Omega}^{11}=\Omega^{00}+\sum_{k} \mathrm{E}_{k} \beta_{k}^{\dagger} \beta_{k} \\
& \Omega_{1}=\breve{\Omega}^{11}+\Omega^{20}+\Omega^{02}+\Omega^{[4]}+\Omega^{[6]}
\end{aligned}
$$

Time-evolved state

$$
\begin{aligned}
|\Psi(\tau)\rangle & \equiv \mathcal{U}(\tau)|\Phi\rangle \\
& =e^{-\tau \Omega_{0}} T e^{-\int_{0}^{\tau} d \tau \Omega_{1}(\tau)}|\Phi\rangle
\end{aligned}
$$

Time-dependent BMBPT

Grand potential partitioning

$$
\begin{aligned}
& \Omega_{0}=\Omega^{00}+\bar{\Omega}^{11}=\Omega^{00}+\sum_{k} \mathrm{E}_{k} \beta_{k}^{\dagger} \beta_{k} \\
& \Omega_{1}=\breve{\Omega}^{11}+\Omega^{20}+\Omega^{02}+\Omega^{[4]}+\Omega^{[6]}
\end{aligned}
$$

Time-evolved state

$$
\begin{aligned}
|\Psi(\tau)\rangle & \equiv \mathcal{U}(\tau)|\Phi\rangle \\
& =e^{-\tau \Omega_{0}} T e^{-\int_{0}^{\tau} d \tau \Omega_{1}(\tau)}|\Phi\rangle
\end{aligned}
$$

Ground state energy of an open-shell nucleus

$$
\mathrm{E}_{0}^{\mathrm{A}}-\lambda \mathrm{A}=\left\langle\Psi_{0}^{\mathrm{A}}\right| \Omega|\Phi\rangle_{c}=\lim _{\tau \rightarrow \infty}\langle\Phi| \mathrm{T} e^{-\int_{0}^{\tau} d \tau \Omega_{1}(\tau)} \Omega|\Phi\rangle_{c}
$$

Grand potential partitioning

$$
\begin{aligned}
& \Omega_{0}=\Omega^{00}+\bar{\Omega}^{11}=\Omega^{00}+\sum_{k} \mathrm{E}_{k} \beta_{k}^{\dagger} \beta_{k} \\
& \Omega_{1}=\breve{\Omega}^{11}+\Omega^{20}+\Omega^{02}+\Omega^{[4]}+\Omega^{[6]}
\end{aligned}
$$

Time-evolved state

$$
\begin{aligned}
|\Psi(\tau)\rangle & \equiv \mathcal{U}(\tau)|\Phi\rangle \\
& =e^{-\tau \Omega_{0}} T e^{-\int_{0}^{\tau} d \tau \Omega_{1}(\tau)}|\Phi\rangle
\end{aligned}
$$

Ground state energy of an open-shell nucleus

$$
\mathrm{E}_{0}^{\mathrm{A}}-\lambda \mathrm{A}=\left\langle\Psi_{0}^{\mathrm{A}}\right| \Omega|\Phi\rangle_{c}=\lim _{\tau \rightarrow \infty}\langle\Phi| \mathrm{T} e^{-\int_{0}^{\tau} d \tau \Omega_{1}(\tau)} \Omega|\Phi\rangle_{c}
$$

Propagators

$$
\begin{aligned}
& G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2}\right) \equiv \frac{\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}^{\dagger}\left(\tau_{1}\right) \beta_{k_{2}}\left(\tau_{2}\right)\right]|\Phi\rangle}{\langle\Phi \mid \Phi\rangle} \\
& G_{k_{1} k_{2}}^{-+(0)}\left(\tau_{1}, \tau_{2}\right) \equiv \frac{\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}\left(\tau_{1}\right) \beta_{k_{2}}^{\dagger}\left(\tau_{2}\right)\right]|\Phi\rangle}{\langle\Phi \mid \Phi\rangle} \\
& G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2}\right)=-G_{k_{2} k_{1}}^{-+(0)}\left(\tau_{2}, \tau_{1}\right)
\end{aligned}
$$

Grand potential partitioning

$$
\begin{aligned}
& \Omega_{0}=\Omega^{00}+\bar{\Omega}^{11}=\Omega^{00}+\sum_{k} \mathrm{E}_{k} \beta_{k}^{\dagger} \beta_{k} \\
& \Omega_{1}=\breve{\Omega}^{11}+\Omega^{20}+\Omega^{02}+\Omega^{[4]}+\Omega^{[6]}
\end{aligned}
$$

Time-evolved state

$$
\begin{aligned}
|\Psi(\tau)\rangle & \equiv \mathcal{U}(\tau)|\Phi\rangle \\
& =e^{-\tau \Omega_{0}} \mathrm{~T} e^{-\int_{0}^{\tau} d \tau \Omega_{1}(\tau)}|\Phi\rangle
\end{aligned}
$$

Ground state energy of an open-shell nucleus

$$
\mathrm{E}_{0}^{\mathrm{A}}-\lambda \mathrm{A}=\left\langle\Psi_{0}^{\mathrm{A}}\right| \Omega|\Phi\rangle_{c}=\lim _{\tau \rightarrow \infty}\langle\Phi| \mathrm{T} e^{-\int_{0}^{\tau} d \tau \Omega_{1}(\tau)} \Omega|\Phi\rangle_{c}
$$

Propagators

$$
\begin{aligned}
& G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2}\right) \equiv \frac{\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}^{\dagger}\left(\tau_{1}\right) \beta_{k_{2}}\left(\tau_{2}\right)\right]|\Phi\rangle}{\langle\Phi \mid \Phi\rangle} \\
& G_{k_{1} k_{2}}^{-+(0)}\left(\tau_{1}, \tau_{2}\right) \equiv \frac{\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}\left(\tau_{1}\right) \beta_{k_{2}}^{\dagger}\left(\tau_{2}\right)\right]|\Phi\rangle}{\langle\Phi \mid \Phi\rangle} \\
& G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2}\right)=-G_{k_{2} k_{1}}^{-+(0)}\left(\tau_{2}, \tau_{1}\right)
\end{aligned}
$$

Perturbative expansion of g.s. energy

$$
\begin{aligned}
\mathrm{E}_{0}^{\mathrm{A}}-\lambda \mathrm{A}= & \langle\Phi|\left\{\Omega(0)-\int_{0}^{\infty} \mathrm{d} \tau_{1} \mathrm{~T}\left[\Omega_{1}\left(\tau_{1}\right) \Omega(0)\right]\right. \\
& +\frac{1}{2!} \int_{0}^{\infty} \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2} \mathrm{~T}\left[\Omega_{1}\left(\tau_{1}\right) \Omega_{1}\left(\tau_{2}\right) \Omega(0)\right] \\
& +\ldots\}|\Phi\rangle_{c}
\end{aligned}
$$

Building blocks of the diagrammatic

Normal-ordered form of Ω with respect to $|\Phi\rangle$

Building blocks of the diagrammatic

Normal-ordered form of Ω with respect to $|\Phi\rangle$

Quasiparticle propagators

$$
G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2}\right) \prod_{k_{1} \tau_{1}}^{k_{2} \tau_{2}} G_{k_{1} k_{2}}^{-+(0)}\left(\tau_{1}, \tau_{2}\right) k_{1}^{k_{2}}
$$

Diagrammatic rules for observable $\mathrm{E}_{0}^{\mathrm{A}}-\lambda \mathrm{A}$

Diagrams of observables from building blocks

I. Topological rules

- No external legs
- No oriented loop between vertices
- No self-contraction
- Propagators go out of the Ω vertex at time 0

Diagrammatic rules for observable $\mathrm{E}_{0}^{\mathrm{A}}-\lambda \mathrm{A}$

Diagrams of observables from building blocks

I. Topological rules

- No external legs
- No oriented loop between vertices
- No self-contraction
- Propagators go out of the Ω vertex at time 0

II. Algebraic rules

- Vertex, propagators labelling
- Sign factor for crossing lines
- Symmetry factor for equivalent lines, vertex exchange
- Sum over all q.p. states, integrate over all time labels

Derivation of a second-order diagram

Convention
 Order p
 I

Order $p+1$ in standard counting

Time-dependent and time-integrated expressions:

$$
\begin{aligned}
\mathrm{P} \Omega 2.6 & =-\frac{1}{3!} \sum_{k_{1} k_{2} k_{3} k_{4} k_{8}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{1} k_{2} k_{3} k_{8}}^{04} \breve{\Omega}_{k_{8} k_{4}}^{11} \int_{0}^{\infty} \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2} \theta\left(\tau_{1}-\tau_{2}\right) e^{-\tau_{1}\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{8}}\right)} e^{\tau_{2}\left(E_{k_{8}}-E_{k_{4}}\right)} \\
& =-\frac{1}{3!} \sum_{k_{1} k_{2} k_{3} k_{4} k_{8}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{1} k_{2} k_{3} k_{8}}^{04} \breve{\Omega}_{k_{8} k_{4}}^{11} \frac{1}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{8}}\right)}
\end{aligned}
$$

Outline

- Why automated tools for many-body diagrams?
- Application to Bogoliubov Many-Body Perturbation Theory
\diamond Basics of diagrammatic BMBPT formalism
\diamond Automated generation and evaluation for BMBPT diagrams [Arthuis, Duguet, Tichai, Lasseri, Ebran, CPC in print, arXiv:1809.01187]
- Conclusion and perspectives

Technical goal

p-order diagram production
p-order diagram evaluation

Technical goal
p-order diagram production
p-order diagram evaluation

Challenges

Handling complexity of diagrams
Perform p-tuple time integral

How to build an automated framework

Technical goal
p-order diagram production
p-order diagram evaluation

Challenges
Handling complexity of diagrams
Perform p-tuple time integral

Tools
Adjacency matrices
Time-structure diagrams

How to build an automated framework

Technical goal
p-order diagram production
p-order diagram evaluation

Challenges
Handling complexity of diagrams
Perform p-tuple time integral

Tools
Adjacency matrices
Time-structure diagrams

End product

Open-source computer code

How to build an automated framework

Technical goal

```
p-order diagram production
```


Challenges

Handling complexity of diagrams
Perform p-tuple time integral

Tools

Adjacency matrices

Automatic generation of diagrams

Oriented adjacency matrix from graph theory

$a_{i j}$: number of edges going from node i to node j

Topological rules constraining the matrices

- Upper triangular
- Zeros on the diagonal
- Cannot be recast as block-diagonal
- For each vertex $i, \sum_{j}\left(a_{i j}+a_{j i}\right)$ is 2,4 or 6

Automatic generation of diagrams

Oriented adjacency matrix from graph theory

$a_{i j}$: number of edges going from node i to node j

Topological rules constraining the matrices

- Upper triangular
- Zeros on the diagonal
- Cannot be recast as block-diagonal
- For each vertex $i, \sum_{j}\left(a_{i j}+a_{j i}\right)$ is 2,4 or 6

Automatic generation of diagrams

Oriented adjacency matrix from graph theory

$a_{i j}$: number of edges going from node i to node j

Topological rules constraining the matrices

- Upper triangular
- Zeros on the diagonal
- Cannot be recast as block-diagonal
- For each vertex $i, \sum_{j}\left(a_{i j}+a_{j i}\right)$ is 2,4 or 6

Automatic generation of diagrams

Oriented adjacency matrix from graph theory

$a_{i j}$: number of edges going from node i to node j

Topological rules constraining the matrices

- Upper triangular
- Zeros on the diagonal
- Cannot be recast as block-diagonal
- For each vertex $i, \sum_{j}\left(a_{i j}+a_{j i}\right)$ is 2,4 or 6

Automatic generation of diagrams

Oriented adjacency matrix from graph theory

$a_{i j}$: number of edges going from node i to node j

Topological rules constraining the matrices

- Upper triangular
- Zeros on the diagonal
- Cannot be recast as block-diagonal
- For each vertex $i, \sum_{j}\left(a_{i j}+a_{j i}\right)$ is 2,4 or 6

Generation of BMBPT diagrams of order p

Algorithm

(1) Generate all $(p+1) \times(p+1)$ matrices
\diamond Fill the matrices "vertex-wise" with all allowed integers
\diamond Check the degree of each vertex before moving on

Automatic generation of diagrams

Oriented adjacency matrix from graph theory

$a_{i j}$: number of edges going from node i to node j

Topological rules constraining the matrices

- Upper triangular
- Zeros on the diagonal
- Cannot be recast as block-diagonal
- For each vertex $i, \sum_{j}\left(a_{i j}+a_{j i}\right)$ is 2,4 or 6

Generation of BMBPT diagrams of order p

Algorithm

(1) Generate all $(p+1) \times(p+1)$ matrices
\diamond Fill the matrices "vertex-wise" with all allowed integers
\diamond Check the degree of each vertex before moving on

Automatic generation of diagrams

Oriented adjacency matrix from graph theory

$a_{i j}$: number of edges going from node i to node j

Topological rules constraining the matrices

- Upper triangular
- Zeros on the diagonal
- Cannot be recast as block-diagonal
- For each vertex $i, \sum_{j}\left(a_{i j}+a_{j i}\right)$ is 2,4 or 6

Generation of BMBPT diagrams of order p

Algorithm

(1) Generate all $(p+1) \times(p+1)$ matrices
\diamond Fill the matrices "vertex-wise" with all allowed integers
\diamond Check the degree of each vertex before moving on
$\left(\begin{array}{lll}0 & 2 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)$

Automatic generation of diagrams

Oriented adjacency matrix from graph theory

$a_{i j}$: number of edges going from node i to node j

Topological rules constraining the matrices

- Upper triangular
- Zeros on the diagonal
- Cannot be recast as block-diagonal
- For each vertex $i, \sum_{j}\left(a_{i j}+a_{j i}\right)$ is 2,4 or 6

Generation of BMBPT diagrams of order p

Algorithm

(1) Generate all $(p+1) \times(p+1)$ matrices
\diamond Fill the matrices "vertex-wise" with all allowed integers
\diamond Check the degree of each vertex before moving on
(2) Discard matrices leading to topologically identical diagrams

Automatic generation of diagrams

Oriented adjacency matrix from graph theory

$a_{i j}$: number of edges going from node i to node j

Topological rules constraining the matrices

- Upper triangular
- Zeros on the diagonal
- Cannot be recast as block-diagonal
- For each vertex $i, \sum_{j}\left(a_{i j}+a_{j i}\right)$ is 2,4 or 6

Generation of BMBPT diagrams of order p

Algorithm

(1) Generate all $(p+1) \times(p+1)$ matrices
\diamond Fill the matrices "vertex-wise" with all allowed integers
\diamond Check the degree of each vertex before moving on
(2) Discard matrices leading to topologically identical diagrams
(3) Translate the matrix into drawing instructions

Automatic generation of diagrams

3rd order BMBPT diagrams for vertices with 2, 4 and 6 legs

Automatic generation of diagrams

3rd order BMBPT diagrams for vertices with 2, 4 and 6 legs

Systematic combinatoric

Order		0	1	2	3	4	5
deg_max $=4$	General	1	2	8	59	568	6805
	HFB vacuum	1	1	1	10	82	938
deg_max $=6$	General	1	3	23	396	10716	+100000
	HFB vacuum	1	2	8	77	5055	+100000

Automatic generation of diagrams

3rd order BMBPT diagrams for vertices with 2, 4 and 6 legs

Systematic combinatoric
Generated by computer code in 2'30

Order		0	1	2	3	4	5
deg_max $=4$	General	1	2	8	59	568	6805
	HFB vacuum	1	1	1	10	82	938
deg_max $=6$	General	1	3	23	396	10716	+100000
	HFB vacuum	1	2	8	77	5055	+100000

How to build an automated framework

Technical goal
p-order diagram production
p-order diagram evaluation

Challenges
Handling complexity of diagrams
Perform p-tuple time integral

Tools
Adjacency matrices
Time-structure diagrams

End product

Open-source computer code

Technical goal

p-order diagram evaluation

Challenges

Perform p-tuple time integral

Tools

Time-structure diagrams

End product

Open-source computer code

Time-structure diagrams

Integrand of p-tuple time-integral governed by time structure of the diagram

$$
T S D=\lim _{\tau \rightarrow \infty} \int_{0}^{\tau} \mathrm{d} \tau_{1} \ldots \mathrm{~d} \tau_{p} \theta\left(\tau_{q}-\tau_{r}\right) \ldots \theta\left(\tau_{u}-\tau_{v}\right) e^{-a_{1} \tau_{1}} \ldots e^{-a_{p} \tau_{p}}
$$

Time-structure diagrams

Integrand of p-tuple time-integral governed by time structure of the diagram

$$
T S D=\lim _{\tau \rightarrow \infty} \int_{0}^{\tau} \mathrm{d} \tau_{1} \ldots \mathrm{~d} \tau_{p} \theta\left(\tau_{q}-\tau_{r}\right) \ldots \theta\left(\tau_{u}-\tau_{v}\right) e^{-a_{1} \tau_{1}} \ldots e^{-a_{p} \tau_{p}}
$$

Time-structure diagrams

Integrand of p-tuple time-integral governed by time structure of the diagram

$$
T S D=\lim _{\tau \rightarrow \infty} \int_{0}^{\tau} \mathrm{d} \tau_{1} \ldots \mathrm{~d} \tau_{p} \theta\left(\tau_{q}-\tau_{r}\right) \ldots \theta\left(\tau_{u}-\tau_{v}\right) e^{-a_{1} \tau_{1}} \ldots e^{-a_{p} \tau_{p}}
$$

Time-structure diagrams

Integrand of p-tuple time-integral governed by time structure of the diagram

$$
T S D=\lim _{\tau \rightarrow \infty} \int_{0}^{\tau} \mathrm{d} \tau_{1} \ldots \mathrm{~d} \tau_{p} \theta\left(\tau_{q}-\tau_{r}\right) \ldots \theta\left(\tau_{u}-\tau_{v}\right) e^{-a_{1} \tau_{1}} \ldots e^{-a_{p} \tau_{p}}
$$

- Several BMBPT diagrams may have same TSD
- Replace a_{i} with appropriate q.p.e. sum for BMBPT final expression

Topologies of time-structure diagrams

- TSD topology crucial for result extraction

Topologies of time-structure diagrams

- TSD topology crucial for result extraction
TOM

Topologies of time-structure diagrams

- TSD topology crucial for result extraction

Topologies of time-structure diagrams

- TSD topology crucial for result extraction

Topologies of time-structure diagrams

- TSD topology crucial for result extraction

- Extraction of time-integrated expression depends on tree / non-tree

Topologies of time-structure diagrams

- TSD topology crucial for result extraction

- Extraction of time-integrated expression depends on tree / non-tree

Direct diagrammatic rule

Topologies of time-structure diagrams

- TSD topology crucial for result extraction

- Extraction of time-integrated expression depends on tree / non-tree

Direct diagrammatic rule

Decompose into sum of trees

How to build an automated framework

Technical goal
p-order diagram production
p-order diagram evaluation

Challenges
Handling complexity of diagrams
Perform p-tuple time integral

Tools
Adjacency matrices
Time-structure diagrams

End product

Open-source computer code

Technical goal

p-order diagram production
p-order diagram evaluation

Challenges

Handling complexity of diagrams
Perform p-tuple time integral

Tools
Adjacency matrices
Time-structure diagrams

End product

Open-source computer code

Open-source code ADG

Technical aspects

- Python 2
- Use of NetworkX and NumPy libraries
- OS-independent
- BMBPT, HF-MBPT (NN only)

Diffusion

- Accepted in CPC
- Available on GitHub, PyPI
- GPLv3 license

Output example

Diagram 5:

$$
\begin{aligned}
& \mathrm{P} \Omega 3.5=\lim _{\tau \rightarrow \infty} \frac{(-1)^{3}}{2(2!)^{4}} \sum_{k_{i}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{5} k_{6} k_{7} k_{8}}^{40} \Omega_{k_{5} k_{6} k_{1} k_{2}}^{04} \Omega_{k_{7} k_{8} k_{3} k_{4}}^{04} \\
& \times \int_{0}^{\tau} \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2} \mathrm{~d} \tau_{3} \theta\left(\tau_{2}-\tau_{1}\right) \theta\left(\tau_{3}-\tau_{1}\right) e^{-\tau_{1} \epsilon_{5} k_{6} k_{7} k_{8}} e^{-\tau_{2} \epsilon_{1}} k_{1} k_{2} k_{5} k_{6} e^{-\tau_{3} \epsilon_{k} k_{4} k_{7} k_{8}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T} 2=\frac{1}{\left(a_{1}+a_{2}+a_{3}\right) a_{2} a_{3}}
\end{aligned}
$$

Coming extensions of ADG: v2

Projected BMBPT diagrams now generated as well

[Ripoche, Arthuis, Tichai, Duguet, in prep.]

- Co-developped with the method from the start
- Symmetry breaking and restoration at arbitrary order

Coming extensions of ADG: v2

Projected BMBPT diagrams now generated as well

[Ripoche, Arthuis, Tichai, Duguet, in prep.]

- Co-developped with the method from the start
- Symmetry breaking and restoration at arbitrary order
- Critical need for automatized tools from diagram number

Order	0	1	2	3	4
BMBPT (deg_max $=4$)	1	2	8	59	568
PBMBPT (deg_max $=4)$	1	3	37	951	33985

Coming extensions of ADG: v3

Extension to Gorkov Self-Consistent Green's Function in progress
[Raimondi, Arthuis, Barbieri, Somà, Duguet, in prep.]

$\Sigma_{a b}^{11(C)_{30}^{30}}$

$\Sigma_{a b}^{11(C)}{ }_{12}^{30}$

$$
\Sigma_{a b}^{11(C)_{12}^{21}}
$$

- Extend Gorkov SCGF to ADC(3)
\diamond Capture more correlations
\diamond Put Gorkov SCGF on equal footing with Dyson SCGF
- Incorporate 3NFs from the start

Coming extensions of ADG: v3

Extension to Gorkov Self-Consistent Green's Function in progress
[Raimondi, Arthuis, Barbieri, Somà, Duguet, in prep.]

$\Sigma_{a b}^{11(C)_{30}^{30}}$

$$
\Sigma_{a b}^{11(C)_{12}^{21}}
$$

- Extend Gorkov SCGF to ADC(3)
\diamond Capture more correlations
\diamond Put Gorkov SCGF on equal footing with Dyson SCGF
- Incorporate 3NFs from the start

See C. Barbieri's colloquium for more SCGF!

- Why an automated tool for many-body diagrams?
- Application to Bogoliubov Many-Body Perturbation Theory
\diamond Basics of diagrammatic BMBPT formalism
\diamond Automated generation and evaluation for BMBPT diagrams
- Conclusion and perspectives

Conclusion and perspectives

(P)BMBPT diagrams generated and evaluated automatically
\checkmark Fast and error-safe
\checkmark Easier numerical implementation

ADG open-source code available

\checkmark HF-MBPT and BMBPT diagrams and expressions
\checkmark PBMBPT to come soon
\diamond On-going work on GSCGF for ADC(n)

Interface with other codes

\checkmark Text-format output available for interface with numerical codes (e.g. [Drischler, Hebeler and Schwenk, PRL 122 (2019)])
\diamond To be interfaced with J-coupling tools (see J. Ripoche's poster)

Behind the ADG project

Thank you for your attention!

