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Table 4: Regularization schemes for 3N interactions. We have suppressed all spin and isospin indices for the sake of simple notation. In general
only spin-independent regulator functions have been applied so far. For the local and semilocal regularization the factorization V3N = V⇡3NV�3N has
been employed.
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regulators:
long-range f long
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h

��(p2 + 3/4 q2)/⇤2�n
i

short-range f short
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p0q0|V�3N|pq
E
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• First, we can categorize the regularization in a momentum space or coordinate space formulation. In the first
case the regulator function is a general function of all Jacobi momenta in some chosen basis representation {ab}:

f⇤ = f⇤(p,q,p0,q0). (77)

This regulator function is then applied as a multiplicative factor to 3N contributions without loop contributions
(see, e.g. Eq. (52)):

V reg
3N = V reg

3N (p,q,p0,q0) f⇤(p,q,p0,q0). (78)

For 3N contributions involving loop structures the regulator functions can in principle also be applied to internal
loop momenta. We will discuss this in more detail further below.
Accordingly, in coordinate space the regulator function depends in general on all relative coordinates

fR = fR(r, s, r0, s0). (79)

In the present work we will not discuss methods to apply directly regulator functions in coordinate space since
the calculation and decomposition of the 3N interactions is performed in momentum space. Instead we Fourier-
transform coordinate-space regulators of the form (79) to momentum space and apply them in the basis dis-
cussed in Section 3.4 via convolution integrals. We discuss the regularization in detail below.

• Second, the regulator function can be categorized into local and nonlocal regulator functions. According to the
discussion in Section 3.3 in momentum space local regulator functions are functions of momentum transfers
only, i.e. di↵erences of Jacobi momenta:

f local
⇤ = f⇤(p0 � p,q0 � q) = f⇤(p̃, q̃) (80)
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Illustration of 3NF in different regularization schemes

KH, in preparation
⇠2 = p2 + 3/4q2
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• First, we can categorize the regularization in a momentum space or coordinate space formulation. In the first
case the regulator function is a general function of all Jacobi momenta in some chosen basis representation {ab}:

f⇤ = f⇤(p,q,p0,q0). (77)

This regulator function is then applied as a multiplicative factor to 3N contributions without loop contributions
(see, e.g. Eq. (52)):

V reg
3N = V reg

3N (p,q,p0,q0) f⇤(p,q,p0,q0). (78)

For 3N contributions involving loop structures the regulator functions can in principle also be applied to internal
loop momenta. We will discuss this in more detail further below.
Accordingly, in coordinate space the regulator function depends in general on all relative coordinates

fR = fR(r, s, r0, s0). (79)

In the present work we will not discuss methods to apply directly regulator functions in coordinate space since
the calculation and decomposition of the 3N interactions is performed in momentum space. Instead we Fourier-
transform coordinate-space regulators of the form (79) to momentum space and apply them in the basis dis-
cussed in Section 3.4 via convolution integrals. We discuss the regularization in detail below.

• Second, the regulator function can be categorized into local and nonlocal regulator functions. According to the
discussion in Section 3.3 in momentum space local regulator functions are functions of momentum transfers
only, i.e. di↵erences of Jacobi momenta:

f local
⇤ = f⇤(p0 � p,q0 � q) = f⇤(p̃, q̃) (80)
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of 3H, i.e. we set J = 1/2, T = 1/2 and P = +1. Such studies of three-body systems are particularly instructive
since four- and higher-body forces cannot contribute and it is possible to cleanly disentangle e↵ects from neglected
higher-body forces and model space truncations for NN and 3N interactions. In Figure 35 we show the ground state
energy of 3H for di↵erent values of Jmax as a function of the resolution scales s resp. �. The calculations are based on
the nonlocal NN interaction of Ref. [150] at N2LO for the cuto↵ value of ⇤ = 500 MeV and have been obtained from
the T-matrix solutions of the momentum-space Faddeev equations. The three-body force has been fitted to reproduce
the experimental binding energy of 3H with Egs = �8.482 MeV. In particular, for this we used the values c1 = �0.74
GeV �1, c3 = �3.61 GeV �1, c4 = 2.44 GeV �1, cD = 1.0, cE = �0.384 and a regulator of the form shown in Eq. (85)
with n = 4. However, we stress that these particular values are rather arbitrary and the general features shown in
this Figure are independent of these specific choices. The figure demonstrates that the results converge rapidlt as a
function of Jmax for the present Hamiltonian. Already for Jmax = 2 the energy for the unevolved Hamiltonian is within
about 5 keV of the fully converged result. The degree on unitarity also drops dramatically from Jmax = 1 to Jmax = 2.
We find that the variation of the energy for model spaces Jmax � 2 is smaller than 4 keV over the shown range of
resolution scales, while the variation decreases systematically with increasing model space. When reaching a level
of less than 1 keV (like for Jmax = 5) we start to become sensitive to numerical truncation e↵ects due to the finite
discretization of the momentum basis when representing the flow equation Eq. (162) using Np = Nq = 25.

In Fig. 36 we demonstrate the decoupling of low- and high-energy components of 3N interactions as a function of
resolution scale � (columns) for di↵erent regularization schemes. The panels show the matrix elements as a function
of the hyperradius ⇠2 = p2+3/4q2 for a fixed hyperangle tan ✓ = p/(

p
3/2q) = ⇡4 (see Section 3.8) for the partial wave

with ↵̄ = 0 = {L = 0, S = 0, J = 0,T = 1, l = 0, j = 1/2} (see Appendix A). The values of the low energy couplings of
the 3N interactions are chosen such that the experimental binding energy of 3H is reproduced. The precise values are
given in Table 5. The figure shows that the initial matrix elements at � = 1 di↵er quite substantially in the di↵erent
regularization schemes. However, as the resolution scale � is lowered, attractive components at small momenta are
generated for all interactions, whereas the o↵-diagonal contributions get systematically suppressed. Here the width of
the diagonal band is approximately given by the scale �2, similarly to NN interactions [Dick paper]. These features
are general and hold for matrix elements at di↵erent hyperangles and partial waves. In addition, the overall e↵ects
of the SRG evolution are stronger for initial potentials with stronger o↵-diagonal couplings. In addition, it is quite
remarkable that at the lowest shown resolution scale � = 1.7 fm�1, all interactions are quantitatively very similar for
the shown hyperangle and partial wave channel, a property that has already been observed for NN Interactions and
usually referred to as universality [126, 211]. This universality of NN interactions can be attributed to common long-
range pion physics and phase-shift equivalence of all realistic potentials, which is reflected in the matrix elements at
low resolution. It is an interesting question to what extend the same is true for 3N forces since there are important
di↵erences: First, 3N forces up to N3LO are fixed by fitting only two low-energy constants cD and cE , in contrast to
numerous couplings in NN interactions. Second, 3N forces give only subleading contributions to observables. Since
universality is only approximate in NN interactions, it is not obvious to what extent 3N forces are constrained by long-
range physics at low resolution. The results shown in Fig. 36 indicate that universality also holds for 3N interactions
at low resolution scales, even though not as pronounced as for NN interactions (see also Ref. [226]). However, more
detailed investigations are needed to draw more robust conclusions.

In Fig. 37 we demonstrate the improved perturbativeness and the accelerated convergence of many-body calcula-
tions based on interactions at lower resolution scales. The di↵erent panels show the binding energy of 3H for di↵erent
resolution scales � as a function of the model space indicated by Nmax, obtained by a diagonalization of the Hamil-

regularization c1 [GeV �1] c3 [GeV �1] c4 [GeV �1] cD cE Ref.
nonlocal MS -0.74 -3.61 2.44 �1.5 -0.61 [95]
local MS -0.81 -3.2 5.4 0.83 -0.052 [175]
semilocal MS -0.74 -3.61 2.44 2.0 0.23
semilocal CS -0.81 -4.69 3.4 1.0 -0.25 [9]

Table 5: For the momentum space regularization scales we set ⇤ = 500 MeV and R = 0.9 fm for the semilocal coordinate space regularization
(which corresponds to ⇤ = 2R ⇡ 355 MeV for the nonlocal regulators). Indicate also corresponding NN interactions (Refs?).
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Figure 36: Matrix elements of the antisymmetrized interaction
D

p0q0↵̄|Vas
3N |pq↵̄

E

at di↵erent resolution scales � (columns) for the di↵erent
regularization schemes (rows, see section 3.7). In contrast to the Figures of Section 3.8 we show the matrix elememnts as a function of
the square of the hyperradius ⇠2 = p2 + 3/4q2. As in Fig.26 we choose the hyperangle tan ✓ = p/(

p
3/2q) = ⇡

4 and the partial wave
↵̄ = 0 ⌘ {L = 0, S = 0, J = 0,T = 1, l = 0, j = 1/2} (see Appendix A). The values of the low energy couplings for the interactions within the
di↵erent regularization schemes are shown in Table 5. For optimized visibility we multiplied the matrix elements for the ’local MS’ interactions by
2 and those of the ’semilocal MS’ and ’semilocal CS regularization’ scheme by a factor 3.

tonian in a Jacobi harmonic oscillator three-body basis [16]10. It is obvious that the convergence properties of the
initial interactions at � = 1 di↵er quite significantly for the di↵erent regularization schemes and the shown oscillator
parameter ⌦ = 20 MeV. However, note that the the optimal frequency is not the same for all interactions and also
depend on the resolution scale. In particular, for the semilocal MS and semilocal CS interactions in the bottom row
the calculations converge much faster for an oscillator parameter of about ⌦ = 40 MeV at � = 1, whereas the optimal
frequency is getting shifted systematically to lower values as we evolve to lower resolution scales (see Fig. 38). This
shift represents a challenge when performing the SRG evolution in an oscillator basis at a given frequency. In order to
ensure a converged SRG evolution, a frequency conversion method was employed [20]. In contrast, at low scales the
many-body convergence is quite similar for all shown interactions and we are able to obtain converged results used
only moderate model space sizes of about Nmax = 16 for the used three-body basis.

Note that such three-body calculations can be performed without any obvious conceptual limitation on the reso-
lution scale � since we are able to solve the SRG flow equations exactly up to numerical e↵ects. For systems with
A > 3, however, the evolution will not be perfectly unitary anymore since contributions from four- and higher-body
interactions tend to become systematically stronger with decreasing resolution scale. This puts some implict practical
constraints on the range of the resolution scales:

10Credits to Andreas Ekström for providing the diagonalization code.
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FIG. 4. (Color online) Saturation density and energy of symmetric nuclear matter at di↵erent orders in MBPT for the NN and
3N interactions at N2LO and N3LO of Fig. 3. The points are for di↵erent values of cD (annotated numbers), while the red-dotted,
green-dashed, and blue-solid lines correspond to calculations at second, third, and fourth order in MBPT. The left (right) two
panels are for N2LO (N3LO) with ⇤ = 450MeV and ⇤ = 500MeV. The diamonds in each panel represent the calculations with
a simultaneous good reproduction of both saturation density and energy at fourth order in MBPT. The empirical saturation
region is given by the gray box (see Fig. 1).

small for the “1.8/2.0” interaction, but also in the other
cases smaller than the third-order contributions.
Fit to saturation region.– The observed convergence

pattern indicates that the studied nonlocal interactions
are su�ciently perturbative and allow calculations with
controlled many-body uncertainties. This o↵ers the possi-
bility to use the newMonte-Carlo framework for constrain-
ing the 3N couplings using information from nuclear mat-
ter. In this Letter, we demonstrate this using the N2LO
and N3LO NN potentials of Entem, Machleidt, and Nosyk
(ENM) [39] with ⇤ = 450MeV and ⇤ = 500MeV, which
are very promising also in terms of their Weinberg eigen-
values [52]. As a first step, we fit to the 3H binding energy,
which leads to a relation of the 3N couplings cD and cE
shown in Fig. 3. For the fits, we include all 3N contri-
butions consistently up to N2LO and N3LO, respectively.
The corresponding 3N matrix elements were computed
as in Ref. [43]. We use ⇤3N = ⇤NN = ⇤ and a nonlocal
regulator of the form f⇤(p, q) = exp[�((p2+3/4q2)/⇤2)4]
for the Jacobi momenta p and q of the initial and final
states [33]. For both cuto↵s and chiral orders, we obtain
cE couplings of natural size in the wide cD range explored.
As a second step, we calculate nuclear matter for the

range of 3N couplings and determine the saturation point.
In Fig. 4, we present the saturation points at N2LO and
N3LO as a function of the cD and at di↵erent orders in
MBPT. Similar to the interactions shown in Fig. 2, we
find a natural convergence pattern. Note that the shown
points on the trajectories correspond to di↵erent cD val-
ues at second order compared to third and fourth order.
Contributions at third order are therefore more signifi-
cant in these cases, whereas fourth-order corrections are
again much smaller as is shown in Table I. In general,
Fig. 4 demonstrates that it is possible to determine natu-

ral cD/cE combinations at N2LO and N3LO with reason-
able saturation properties for both cuto↵ cases considered.
However, with respect to our N2LO results, N3LO contri-
butions provide slightly too much repulsion.
In each panel of Fig. 4, we mark the three couplings

that provide a reasonable fit to the saturation region
by black diamonds, whereas the actual cD/cE values are
given in the annotations in Fig. 3. The resulting equa-
tions of state of symmetric nuclear matter and neutron
matter at N2LO and N3LO are shown in Fig. 5. Note
that only two lines are present in neutron matter since
the shorter-range 3N interactions do not contribute [25].
For completeness, the calculated N3LO 4N Hartree-Fock
energies at n0 are ⇡ 150 keV for both cuto↵s, which is
negligible compared to the overall uncertainty [18]. As
for the Hebeler+ and NNLOsim results, the symmetry
energy and the L parameter are predicted with a remark-
ably narrow range. In symmetric matter, we also observe
a weak cuto↵ dependence at N3LO, whereas the results
for ⇤ = 450MeV are clearly separated from ⇤ = 500MeV
at N2LO, with the former achieving the best fits to the
saturation region. Finally, we estimate the theoretical un-
certainty from the chiral expansion following Ref. [38],
using Q = p/⇤b with breakdown scale ⇤b = 500MeV
and average momentum p =

p
3/5 kF. The bands overlap

from N2LO to N3LO, and we clearly see that the theoret-
ical uncertainties are significantly reduced at N3LO.
Summary.– We have presented a new Monte-Carlo

framework for calculations of nuclear matter, which al-
lows to include higher order contributions from chiral
interactions and is capable of going to high enough or-
ders in the many-body expansion for suitable interac-
tions. The new method was applied to the calculation of
the symmetric-matter and neutron-matter energy in an

3

TABLE I. Contributions to the energy per particle at n0 = 0.16 fm�3 in symmetric nuclear matter at consecutive orders in
MBPT based on the Hebeler+ [16] interaction with �/⇤ = 1.8/2.0 fm�1 and the N2LO and N3LO interactions of this work
with ⇤/cD [for the central cD fit value (black diamonds) in Fig. 4]. All energies are in MeV.

chiral order ⇤/cD second order third order fourth order
NN-only NN+3N 3N res. NN+3N NN-only NN+3Na

N3LO/N2LO �/⇤ = 1.8/2.0 fm�1 �2.30 �2.24 �0.40 �0.10 �0.20 �0.07

N2LO
450/+ 2.50 �6.23 �13.38 �0.42 �2.08 0.07 0.24
500/� 1.50 �8.61 �14.49 �0.66 �0.77 0.32 0.75

N3LO
450/+ 0.50 �8.93 �15.54 �0.38 �2.85 0.61 0.92
500/� 3.00 �10.63 �14.65 �0.87 �1.00 0.65 1.10

a
Contributions from 3N forces at fourth order in MBPT are not included in our fits. These values here are an uncertainty estimate using

normal-ordered 3N contributions in the P = 0 approximation (see Refs. [22, 25]).

NN potential of Ref. [47] to di↵erent resolution scales �,
whereas the 3N couplings cD and cE were fixed at these
resolution scales by fits to the 3H binding energy and the
4He charge radius. Despite being fitted to only few-body
data, these interactions are able to reproduce empirical
saturation in Fig. 1 within uncertainties given by the
band of the Hebeler+ interactions [16]. In addition, re-
cent calculations of medium-mass and heavy nuclei based
on some of these interactions show remarkable agreement
with experimental data [2, 4, 8–10, 48] and thus o↵er new
ab initio possibilities to investigate the nuclear chart.

The second column of Fig. 1 shows results for the
NNLOsim potentials [6] (using Trel = 290MeV) for dif-
ferent cuto↵ values (see legend). These interactions were
obtained by a simultaneous fit of all low-energy couplings
to two-body and few-body data. We observe a weak cut-
o↵ dependence for these potentials in neutron matter
over the entire density range and in symmetric matter
up to n . 0.08 fm�3. At higher densities, the variation
of the energy per particle increases up to ⇠ 3MeV at
n0 = 0.16 fm�1 with a very similar density dependence.
Overall, all the NNLOsim interactions turn out to be too
repulsive compared to the empirical saturation region.

We study the many-body convergence of the Hebeler+
and NNLOsim interactions by plotting in Fig. 2 the cal-
culated saturation energy as a function of the calculated
saturation density at second, third, and fourth order in
MBPT. The annotated values denote the cuto↵ scales
of the di↵erent potentials (see legend of Fig. 1). For all
shown interactions, we observe a very good convergence
in the many-body expansion, indicating that these chi-
ral interactions are perturbative over this density regime.
Moreover, we find a pronounced linear correlation band
(similar to the Coester line [49] for NN potentials), which
however overlaps with the empirical saturation region as
3N forces are included. Note that the Hebeler+ inter-
action that breaks most from the linear correlation is
“2.0/2.0 (PWA)”, for which the ci values in the 3N forces
are significantly larger.

Finally, in Table I we show the hierarchy of contri-
butions from second, third, and fourth order at n0 =

FIG. 3. (Color online) Three-nucleon couplings cD and cE
that reproduce the 3H binding energy using the EMN NN
potentials of Ref. [39] with ⇤ = 450MeV (dashed) and ⇤ =
500MeV (solid line) at N2LO (red) and N3LO (blue) combined
with consistent 3N interactions at these orders using ⇤3N =
⇤NN. The points (diamonds) on each line correspond to the
fits to the empirical saturation region (see Fig. 4), while the
annotated numbers give the corresponding values of cD/cE .

0.16 fm�3 for the Hebeler+ “1.8/2.0” interaction, which
is most commonly used in the recent ab initio calculations
of medium-mass and heavy nuclei. At second order, we
give the contributions from NN interactions (NN-only),
from NN plus 3N contributions that can be represented in
form of a density-dependent NN interactions (NN+3N),
and the residual 3N contribution (3N res.). We find that
the residual 3N term is significantly smaller compared
to the other contributions. This justifies that this con-
tribution was usually neglected in previous calculations
because it requires an explicit treatment of 3N forces in
MBPT. However, note that this in general depends on de-
tails of the NN and 3N interactions [50, 51]. Furthermore,
we find that the third-order contributions are significantly
smaller than the second-order terms for all studied inter-
actions. The fourth order contributions are particularly

fits for 3NF at N2LO and N3LO to 3H and 
matter for new family of NN forces by                  
Entem, Machleidt and Nosyk:
Entem et al. PRC 96, 024004 (2017)

Fits of 3N interactions to saturation properties of nuclear matter
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FIG. 4. (Color online) Saturation density and energy of symmetric nuclear matter at di↵erent orders in MBPT for the NN and
3N interactions at N2LO and N3LO of Fig. 3. The points are for di↵erent values of cD (annotated numbers), while the red-dotted,
green-dashed, and blue-solid lines correspond to calculations at second, third, and fourth order in MBPT. The left (right) two
panels are for N2LO (N3LO) with ⇤ = 450MeV and ⇤ = 500MeV. The diamonds in each panel represent the calculations with
a simultaneous good reproduction of both saturation density and energy at fourth order in MBPT. The empirical saturation
region is given by the gray box (see Fig. 1).

small for the “1.8/2.0” interaction, but also in the other
cases smaller than the third-order contributions.
Fit to saturation region.– The observed convergence

pattern indicates that the studied nonlocal interactions
are su�ciently perturbative and allow calculations with
controlled many-body uncertainties. This o↵ers the possi-
bility to use the newMonte-Carlo framework for constrain-
ing the 3N couplings using information from nuclear mat-
ter. In this Letter, we demonstrate this using the N2LO
and N3LO NN potentials of Entem, Machleidt, and Nosyk
(ENM) [39] with ⇤ = 450MeV and ⇤ = 500MeV, which
are very promising also in terms of their Weinberg eigen-
values [52]. As a first step, we fit to the 3H binding energy,
which leads to a relation of the 3N couplings cD and cE
shown in Fig. 3. For the fits, we include all 3N contri-
butions consistently up to N2LO and N3LO, respectively.
The corresponding 3N matrix elements were computed
as in Ref. [43]. We use ⇤3N = ⇤NN = ⇤ and a nonlocal
regulator of the form f⇤(p, q) = exp[�((p2+3/4q2)/⇤2)4]
for the Jacobi momenta p and q of the initial and final
states [33]. For both cuto↵s and chiral orders, we obtain
cE couplings of natural size in the wide cD range explored.
As a second step, we calculate nuclear matter for the

range of 3N couplings and determine the saturation point.
In Fig. 4, we present the saturation points at N2LO and
N3LO as a function of the cD and at di↵erent orders in
MBPT. Similar to the interactions shown in Fig. 2, we
find a natural convergence pattern. Note that the shown
points on the trajectories correspond to di↵erent cD val-
ues at second order compared to third and fourth order.
Contributions at third order are therefore more signifi-
cant in these cases, whereas fourth-order corrections are
again much smaller as is shown in Table I. In general,
Fig. 4 demonstrates that it is possible to determine natu-

ral cD/cE combinations at N2LO and N3LO with reason-
able saturation properties for both cuto↵ cases considered.
However, with respect to our N2LO results, N3LO contri-
butions provide slightly too much repulsion.
In each panel of Fig. 4, we mark the three couplings

that provide a reasonable fit to the saturation region
by black diamonds, whereas the actual cD/cE values are
given in the annotations in Fig. 3. The resulting equa-
tions of state of symmetric nuclear matter and neutron
matter at N2LO and N3LO are shown in Fig. 5. Note
that only two lines are present in neutron matter since
the shorter-range 3N interactions do not contribute [25].
For completeness, the calculated N3LO 4N Hartree-Fock
energies at n0 are ⇡ 150 keV for both cuto↵s, which is
negligible compared to the overall uncertainty [18]. As
for the Hebeler+ and NNLOsim results, the symmetry
energy and the L parameter are predicted with a remark-
ably narrow range. In symmetric matter, we also observe
a weak cuto↵ dependence at N3LO, whereas the results
for ⇤ = 450MeV are clearly separated from ⇤ = 500MeV
at N2LO, with the former achieving the best fits to the
saturation region. Finally, we estimate the theoretical un-
certainty from the chiral expansion following Ref. [38],
using Q = p/⇤b with breakdown scale ⇤b = 500MeV
and average momentum p =

p
3/5 kF. The bands overlap

from N2LO to N3LO, and we clearly see that the theoret-
ical uncertainties are significantly reduced at N3LO.
Summary.– We have presented a new Monte-Carlo

framework for calculations of nuclear matter, which al-
lows to include higher order contributions from chiral
interactions and is capable of going to high enough or-
ders in the many-body expansion for suitable interac-
tions. The new method was applied to the calculation of
the symmetric-matter and neutron-matter energy in an

Comparing systematics of results for matter and nuclei

Figure 14: Saturation density and energy of symmetric nuclear matter at 2nd, 3rd and 4th order in MBPT for the NN and 3N interactions at N2LO
and N3LO. The points indicate di↵erent values of cD, while the red-dotted, green-dashed, and blue-solid lines correspond to calculations at di↵erent
orders. The left (right) two panels are for N2LO (N3LO) interactions with ⇤ = 450 and 500 MeV [150]. The diamonds in each panel represent
the calculations with th best simultaneous reproduction of both saturation density and energy at fourth order. Figure taken from Ref. [95]. See this
reference for details.

original Coester line with NN potentials only, however, the green band encompassing all shown theoretical saturation
points overlaps with the empirical saturation region because of the inclusion of 3N forces.

Furthermore we find a systematic trend towards higher saturation densities and larger binding energies as we are
decreasing the NN resolution scale �SRG. This trend translates in a systematic way to the ground state energies and
radii of finite nuclei over a wide mass range, from 4He to much heavier nuclei up to 78Ni as shown in Fig. 13. Remark-
ably, all calculated ground-state energies from the 1.8/2.0 interaction are in very good agreement with experiment,
except for the neutron-rich oxygen isotopes 22,24O. The other three shown interactions follow the same pattern but are
shifted by as much as 1.5 MeV/A in the case of the ’2.0/2.0 (PWA)’ interaction (see Ref. [88] for details). The exper-
imental charge radii are enclosed by the 2.2/2.0 and 2.0/2.0 (PWA) results, but the trend observed for the closed-shell
nuclei studied in detail already above appears to hold at least up to 78Ni. That is, radii with 1.8/2.0 to 2.2/2.0 are too
small, but 2.0/2.0 (PWA) gives slightly too large radii. As in the case of ground-state energies, the radius systematics
is similar for all Hamiltonians, with mainly only a constant shift for the di↵erent interactions. This behavior for the
ground-state energy and charge radii is clearly reminiscent of the Coester-like line for the saturation points of the four
Hamiltonians considered, as shown in the right panel of Fig. 12. However, the reason why in particular interaction
1.8/2.0 leads to such an excellent agreement with experimental ground state energies remains an open question. Nev-
ertheless, thanks to these promising results for heavier nuclei this set of interactions has been used quite intensively
in recent years in ab initio studies of medium-mass nuclei. We will present a selection of these results in more detail
in Sect. 5.

The results discussed above highlight the importance of realistic saturation properties of infinite matter for nuclear
forces, even though a deeper and more quantitative understanding of the connection between properties of matter and
finite nuclei is still lacking. This suggestes that it might be useful to include information about saturation properties
in the construction of the interactions. However, the explicit incorporation of nuclear matter properties in the fit
process of nuclear forces has not been achieved until recently [95]. In Fig. 14 we show results form the saturation
point based in NN interactions of Ref. [150] at N2LO and N3LO as a function of the LEC cD (annotated numbers of
the data points), while the relation between cD and cE was determined via the 3H binding energy (see Fig. 8). Note
that for such fits to nuclear matter properties e↵ectively two LECs are fitted to three observables, E3H, the saturation
energy E(n0)/A, and the saturation density n0. That implies that it is not obvious if a simultaneous reproduction of all
observables can be achieved. Remarkably, for the shown cases in Fig. 14 a reasonable reproduction can be found for
all four interactions. These best fits are indicated by the black diamonds in each panel. In Section 5 we will present
first results for finite nuclei based on these interactions.

Finally, NN and 3N interactions derived within chiral EFT have been applied to nuclei using Lattice methods [76,
81, 83, 188]... How are 3N LECs fitted (cE to 3H bininging energy plus e↵ective 4N copupling bacuase of artifacts).
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FIG. 7. (Color online) Ground-state energies and charge radii
of 16O and 40Ca in blue and red, respectively, as a function of
cD with corresponding cE value, see Table I. We show results
for unevolved and SRG-evolved to � = 1.8 fm�1 interactions.
The experimental values are given by the dashed lines.

V. SUMMARY AND OUTLOOK

• In this paper we have studied for the first time con-
sistent NN+3N interactions with realistic saturation
properties in the IM-SRG.

• We investigated ground-state energies and charge
radii of closed- and open-shell nuclei and their de-
pendencies on cuto↵ and LEC variations.

• Binding energies predicted by the novel interactions
underbind nuclei and lead to charge radii that are
somewhat too large, however the relative discrep-
ancy to experiment is smaller.

• We found a weak cuto↵ dependence for the EMN
NN+3N calculations, although the predictions for
the NN-only interactions show a clear dependence
on the cuto↵.

• Our results remain nearly insensitive to variations of
the 3N couplings fixed to the triton binding energy.

FIG. 8. (Color online) Ground-state energies and charge radii
of 40Ca and 52Ca in blue and red, respectively, for variation
of the LECs c

3

, c
4

by ±1 GeV�1 and cD, cE by ±1. We ad-
ditionally show variations of cE + 0.7 and cE + 0.4, as well
as setting all LECs but c

3

to zero (c
3

only). The first point
(central value) indicates the result for the fit to the saturation
region.

• Moreover, for variations of the N2LO LECs we found
large changes for energies and radii only for adjust-
ments of c

E

. Two c
E

modified interactions lead to
better agreement of binding energies and charge
radii but significantly overbind the triton.

• This work has shown that even if interactions lead
to reasonable saturation properties, predictions for
medium-mass and heavy nuclei still can deviate
from experiment.

• This finding remains puzzling, is still not fully un-
derstood and requests further investigations.

• Finally, we examined ground-state energies, charge
radii, and first excited 2+ energies of the calcium
isotopic chain in the VS-IM-SRG.

• The results presented in this work can serve as use-
ful feedback for fitting new potentials, especially
regarding the 3N force.

4

FIG. 4. (Color online) Saturation density and energy of symmetric nuclear matter at di↵erent orders in MBPT for the NN and
3N interactions at N2LO and N3LO of Fig. 3. The points are for di↵erent values of cD (annotated numbers), while the red-dotted,
green-dashed, and blue-solid lines correspond to calculations at second, third, and fourth order in MBPT. The left (right) two
panels are for N2LO (N3LO) with ⇤ = 450MeV and ⇤ = 500MeV. The diamonds in each panel represent the calculations with
a simultaneous good reproduction of both saturation density and energy at fourth order in MBPT. The empirical saturation
region is given by the gray box (see Fig. 1).

small for the “1.8/2.0” interaction, but also in the other
cases smaller than the third-order contributions.
Fit to saturation region.– The observed convergence

pattern indicates that the studied nonlocal interactions
are su�ciently perturbative and allow calculations with
controlled many-body uncertainties. This o↵ers the possi-
bility to use the newMonte-Carlo framework for constrain-
ing the 3N couplings using information from nuclear mat-
ter. In this Letter, we demonstrate this using the N2LO
and N3LO NN potentials of Entem, Machleidt, and Nosyk
(ENM) [39] with ⇤ = 450MeV and ⇤ = 500MeV, which
are very promising also in terms of their Weinberg eigen-
values [52]. As a first step, we fit to the 3H binding energy,
which leads to a relation of the 3N couplings cD and cE
shown in Fig. 3. For the fits, we include all 3N contri-
butions consistently up to N2LO and N3LO, respectively.
The corresponding 3N matrix elements were computed
as in Ref. [43]. We use ⇤3N = ⇤NN = ⇤ and a nonlocal
regulator of the form f⇤(p, q) = exp[�((p2+3/4q2)/⇤2)4]
for the Jacobi momenta p and q of the initial and final
states [33]. For both cuto↵s and chiral orders, we obtain
cE couplings of natural size in the wide cD range explored.
As a second step, we calculate nuclear matter for the

range of 3N couplings and determine the saturation point.
In Fig. 4, we present the saturation points at N2LO and
N3LO as a function of the cD and at di↵erent orders in
MBPT. Similar to the interactions shown in Fig. 2, we
find a natural convergence pattern. Note that the shown
points on the trajectories correspond to di↵erent cD val-
ues at second order compared to third and fourth order.
Contributions at third order are therefore more signifi-
cant in these cases, whereas fourth-order corrections are
again much smaller as is shown in Table I. In general,
Fig. 4 demonstrates that it is possible to determine natu-

ral cD/cE combinations at N2LO and N3LO with reason-
able saturation properties for both cuto↵ cases considered.
However, with respect to our N2LO results, N3LO contri-
butions provide slightly too much repulsion.
In each panel of Fig. 4, we mark the three couplings

that provide a reasonable fit to the saturation region
by black diamonds, whereas the actual cD/cE values are
given in the annotations in Fig. 3. The resulting equa-
tions of state of symmetric nuclear matter and neutron
matter at N2LO and N3LO are shown in Fig. 5. Note
that only two lines are present in neutron matter since
the shorter-range 3N interactions do not contribute [25].
For completeness, the calculated N3LO 4N Hartree-Fock
energies at n0 are ⇡ 150 keV for both cuto↵s, which is
negligible compared to the overall uncertainty [18]. As
for the Hebeler+ and NNLOsim results, the symmetry
energy and the L parameter are predicted with a remark-
ably narrow range. In symmetric matter, we also observe
a weak cuto↵ dependence at N3LO, whereas the results
for ⇤ = 450MeV are clearly separated from ⇤ = 500MeV
at N2LO, with the former achieving the best fits to the
saturation region. Finally, we estimate the theoretical un-
certainty from the chiral expansion following Ref. [38],
using Q = p/⇤b with breakdown scale ⇤b = 500MeV
and average momentum p =

p
3/5 kF. The bands overlap

from N2LO to N3LO, and we clearly see that the theoret-
ical uncertainties are significantly reduced at N3LO.
Summary.– We have presented a new Monte-Carlo

framework for calculations of nuclear matter, which al-
lows to include higher order contributions from chiral
interactions and is capable of going to high enough or-
ders in the many-body expansion for suitable interac-
tions. The new method was applied to the calculation of
the symmetric-matter and neutron-matter energy in an
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• connection between results for matter and nuclei still not fully understood

• role of higher-body forces in SRG evolution? 
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Figure 43: Memory required to store the T -coe�cients (u), as well as the three-body matrix elements in the antisymmetrized-Jacobi (⌅),
JT -coupled (s), and m-scheme (l) representation as function of the maximum three-body energy quantum number E3max. All quantities are
assumed to be single-precision floating point numbers. Figure taken from Rev. [20].

By inserting a complete set of two-body single-particle momentum states and projeting on these states this can be
rewritten in the form:
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, (190)

with
⌦

k|nlm
↵

= Rnl(k)Ylm(k̂). Here we used the completeness of the single-particle momentum states
R

dki|ki
↵⌦

ki| = 1
and projected on the momentum states of particles 1, 2, 10 and 20 on both sides by using the orthogonality of the HO
wave functions. As a next step we rewrite the single-particle momentum representation of V and Vas

3N in a Jacobi
representation by using Eq. (25):
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�3|k03
↵⌦

k3|�3
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. (191)

The e↵ective potential we expressed in terms of the Jacobi momentum p and the two-body center of mass momentum
P, i.e. P = k1 + k2 and P0 = k01 + k02. The single particle momentum of particle 3 can be easily expressed in terms of
these momenta (see Table 2): k3 = 3/2q + P/2. Note that the two-body center of mass momentum P is in general not
conserved since k3 , k03, in contrast to normal ordering with respect to a momentum eigenstate like for nuclear matter
(see Section 4.3.1). If the orbital occupation numbers n3 do not depend on m3 the sum can be performed immediately:

⌦
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dk3dk03
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4⇡
Pl3 (k̂3 · k̂03) (192)

For the following we stick to this simplified case for illustration. However, the generalization poses no fundamental
problems.

Eventually we are interested in the partial wave matrix elements of the e↵ective potential V . Due to the non-
Galileian invariance the partial wave structure becomes more complex compared to a free-space NN interaction (see
discussion in Section 4.3). We extend the partial wave basis by the center of mass quantum numbers and project the
interaction in Eq. (192) onto these states:
D

p0P0L0M0L0cmM0cm|V |pPLMLcmMcm
E

=

Z

dp̂dP̂dp̂0dP̂0Y⇤L0cm M0cm
(P̂0)Y⇤L0M0 (p̂

0)
⌦

p0P0|V |pP
↵

YLcm Mcm (P̂)YLM(p̂) . (193)
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3. Decomposition in generalized Jacobi partial wave momentum states:
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5. transformation to single-particle HO basis via generalized Talmi 
transformation (taking into account Lcm dependence) 

• single-particle 3N matrix elements are not needed at any point
• generalization to general spin-dependent 3N interactions 

straightforward and already implemented
• Nmax can be increased easily

• number of partial waves grows quickly with increasing L and Lcm

• model space limitations governed by in Lmax resp. Jmax

• currently implemented for HO reference state,                       
HF reference state work in progress



Novel normal ordering framework for 3N interactions:
Pure contact 3N interaction
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Figure 5: 3N interactions at N2LO in the chiral interactions. The long-range pion-nucleon couplings ci (blue circle) also enter the NN interactions
at this and higher orders and can hence be constrained by NN data and ⇡-N scattering data. The short-range couplings cD (green square) and cE
(red pentagon) need to be fixed in three- or higher-body systems.

The 1⇡-exchange and contact interactions are given respectively by

V1⇡
3N = �

gA

8 f 2
⇡

cD

f 2
⇡⇤�

X

i, j,k

� j ·Q j

Q2
j + m2

⇡

(⌧i · ⌧ j) (�i ·Q j) , Vcont
3N =

cE

2 f 4
⇡⇤�

X

j,k

(⌧ j · ⌧k) , (3)

with gA = 1.29, f⇡ = 92.4 MeV, m⇡ = 138 MeV and ⇤� = 700 MeV. Similarly to the LO one-pion exchange interac-
tions the long-range two-pion exchange contribution V2⇡

3N resemble features of previously devoloed phenomenological
3N forces [135–137]. However, we stress that in contrast to these interactions the interactions V2⇡

3N formally do not
contain any new parameters since the subleading pion-nucleon couplings c1, c3 and c4 also appear in the NN in-
teraction at N2LO (see Fig. 4) and play also a key role in ⇡-nucleon scattering. In fact, currently the most robust
extraction of the values of these long-range couplings was achieved based on the Roy-Steiner-equation analysis of ⇡N
scattering [138, 139]. This demonstrates that contributions to NN and 3N interactions as well as terms determining
the pion-nucleon scattering dynamics are treated on equal footing in chiral EFT, in contrast to most phenomenological
approaches. The 3N interactions V1⇡

3N and Vcont
3N on the other hand depend on two low-energy couplings cD and cE

that encode pion interactions with short-range NN pairs and short-range three-body physics, respectively [131, 134].
These genuine three-body couplings do not appear in NN interactions and hence need to be fixed in few- or many-body
systems (see Section 2.3).

Even though 3N forces are not observable, there are natural sizes of two- and many-body-force contributions
that are made manifest in the EFT power counting (see Fig. 4) and which explain the phenomenological hierarchy
of contributions from NN and many-body forces to observables, i.e. schematically VNN > V3N > V4N [114, 116].
Although it might be tempting to neglect contributions from 3N interactions in cases when calculations based on only
NN forces already provide a good description of experimental data (see, e.g., Ref. [105]), EFT power counting dictates
the inclusion of all many-body forces up to a given order. In fact, explicit calculations show that 3N forces typically
provide important contributions in nuclei and matter [141].

The evaluation of the contributions to NN interactions at next-to-next-to-next-to-leading-order (N3LO) is quite
involved as they include two-loop pion contributions, three-pion exchange contributions as well as relativistic cor-
rections [142–145]. The 3N interactions at this order also include many new structures as shown in Fig. 6, but are
predicted in a parameter-free way since they only depend on the leading NN contact interactions CS ,CT [146, 147]
(see the 2⇡-contact contributions (f) and the relativistic corrections (g) in Fig. 6). In addition the first nonvanishing
contributions to 4N interactions appear at this order [148], which are also predicted in a parameter-free way. Re-
markably, for systems consisting of only neutrons, the N2LO 3N interactions V1⇡

3N and Vcont
3N do not contribute for

1/m

(a) (b) (c) (d) (e) (f) (g)

Figure 6: (color online) Di↵erent topologies that contribute to the chiral 3NF up to N3LO (and N4LO). Nucleons and pions are represented by solid
and dashed lines, respectively. The shaded vertices denote the amplitudes of the corresponding interaction. Specifically, the individual diagrams
are: (a) 2⇡ exchange, (b) 1⇡-contact, (c) pure contact, (d) 2⇡-1⇡ exchange, (e) ring contributions, (f) 2⇡-contact and (g) relativistic corrections. See
main text for details. Figure taken from Ref. [140].

7

only configurations with L=L’=0 contribute:

perfect agreement between results from both 
approaches up to given model space 



Novel normal ordering framework for 3N interactions: 
Long-range 2pi interaction (c3)
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Figure 5: 3N interactions at N2LO in the chiral interactions. The long-range pion-nucleon couplings ci (blue circle) also enter the NN interactions
at this and higher orders and can hence be constrained by NN data and ⇡-N scattering data. The short-range couplings cD (green square) and cE
(red pentagon) need to be fixed in three- or higher-body systems.

The 1⇡-exchange and contact interactions are given respectively by

V1⇡
3N = �

gA

8 f 2
⇡

cD

f 2
⇡⇤�

X

i, j,k

� j ·Q j

Q2
j + m2

⇡

(⌧i · ⌧ j) (�i ·Q j) , Vcont
3N =

cE

2 f 4
⇡⇤�

X

j,k

(⌧ j · ⌧k) , (3)

with gA = 1.29, f⇡ = 92.4 MeV, m⇡ = 138 MeV and ⇤� = 700 MeV. Similarly to the LO one-pion exchange interac-
tions the long-range two-pion exchange contribution V2⇡

3N resemble features of previously devoloed phenomenological
3N forces [135–137]. However, we stress that in contrast to these interactions the interactions V2⇡

3N formally do not
contain any new parameters since the subleading pion-nucleon couplings c1, c3 and c4 also appear in the NN in-
teraction at N2LO (see Fig. 4) and play also a key role in ⇡-nucleon scattering. In fact, currently the most robust
extraction of the values of these long-range couplings was achieved based on the Roy-Steiner-equation analysis of ⇡N
scattering [138, 139]. This demonstrates that contributions to NN and 3N interactions as well as terms determining
the pion-nucleon scattering dynamics are treated on equal footing in chiral EFT, in contrast to most phenomenological
approaches. The 3N interactions V1⇡

3N and Vcont
3N on the other hand depend on two low-energy couplings cD and cE

that encode pion interactions with short-range NN pairs and short-range three-body physics, respectively [131, 134].
These genuine three-body couplings do not appear in NN interactions and hence need to be fixed in few- or many-body
systems (see Section 2.3).

Even though 3N forces are not observable, there are natural sizes of two- and many-body-force contributions
that are made manifest in the EFT power counting (see Fig. 4) and which explain the phenomenological hierarchy
of contributions from NN and many-body forces to observables, i.e. schematically VNN > V3N > V4N [114, 116].
Although it might be tempting to neglect contributions from 3N interactions in cases when calculations based on only
NN forces already provide a good description of experimental data (see, e.g., Ref. [105]), EFT power counting dictates
the inclusion of all many-body forces up to a given order. In fact, explicit calculations show that 3N forces typically
provide important contributions in nuclei and matter [141].

The evaluation of the contributions to NN interactions at next-to-next-to-next-to-leading-order (N3LO) is quite
involved as they include two-loop pion contributions, three-pion exchange contributions as well as relativistic cor-
rections [142–145]. The 3N interactions at this order also include many new structures as shown in Fig. 6, but are
predicted in a parameter-free way since they only depend on the leading NN contact interactions CS ,CT [146, 147]
(see the 2⇡-contact contributions (f) and the relativistic corrections (g) in Fig. 6). In addition the first nonvanishing
contributions to 4N interactions appear at this order [148], which are also predicted in a parameter-free way. Re-
markably, for systems consisting of only neutrons, the N2LO 3N interactions V1⇡

3N and Vcont
3N do not contribute for

1/m

(a) (b) (c) (d) (e) (f) (g)

Figure 6: (color online) Di↵erent topologies that contribute to the chiral 3NF up to N3LO (and N4LO). Nucleons and pions are represented by solid
and dashed lines, respectively. The shaded vertices denote the amplitudes of the corresponding interaction. Specifically, the individual diagrams
are: (a) 2⇡ exchange, (b) 1⇡-contact, (c) pure contact, (d) 2⇡-1⇡ exchange, (e) ring contributions, (f) 2⇡-contact and (g) relativistic corrections. See
main text for details. Figure taken from Ref. [140].
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Novel normal ordering framework for 3N interactions
First benchmark calculations for 16O

16
O (2.0/2.0 EM)

L/L
cm

=3/3 3/4 4/3 4/4
42

43

44

45

E
g
s [

M
eV

]

Jacobi NO
reference

16
O (2.0/2.0 EM)

L/L
cm

=3/3 3/4 4/3 4/4
0.37

0.38

0.39

0.4

0.41

R
ch

 [
fm

]

Jacobi NO
reference

comparison of 3N contributions to the energy (left) and charge radius (left):

systematic convergence towards results based on 
traditional normal ordering approach with increasing L/Lcm 



Summary and Outlook

Development and calculation of 3N matrix elements in progress,  size 
and structure of matrix elements sensitive to regularization                                                      
n                                                                  next talk by Hermann

First calculations of nuclei and matter based on nonlocal interactions 
up to N3LO                  talks by Achim, Robert, Thomas (plus poster)

Novel normal ordering framework for 3NF that avoids the need to 
represent 3NF in single-particle coordinates, first benchmarks 
promising - further tests and optimizations in progress 



Thank you!



Backup slides



Representation of 3N interactions in momentum space

|pq�⇥ i � |piqi; [(LS)J(lsi)j]JJz(Tti)T Tz⇥

p
q

p

q
p

q

|pq��1 |pq��2 |pq��3

1

2

3

22

11

33

Due to the large number of matrix elements, the traditional way of 

computing matrix elements requires extreme amounts of computer resources.

Np ' Nq ' 15

N↵ ' 30� 180
dim[hpq↵|V123|p0q0↵0i] ' 107 � 1010

A ‘new’ algorithm allows efficient calculation.
KH, Krebs, Epelbaum, Golak, Skibinski, PRC 91, 044001(2015)



Novel efficient many-body framework  
for nuclear matter (and other problems?)

Status:
Implementation of nonlocal NN plus 3N forces up to N3LO complete. 

Implemented MBPT diagrams up to 4th order for state-of-the-art interactions.

Main code developer:

Christian Drischler

Strategy:
Implementation of NN and 3N forces without partial wave decomposition. 

Calculate MBPT diagrams in vector basis

 

using Monte-Carlo techniques. Implementation efficient and very transparent.

Problem: 
Evaluation of MBPT diagrams beyond second order in perturbation theory

becomes complicated and tedious in partial wave representation.

Present frameworks too inefficient for including matter properties in force fits.

Entem et al. PRC 96, 024004 (2017)
 

Drischler et al.  arXiv:1710.08220 (2017)

|12...ni = |k1ms1mt1i ⌦ |k2ms2mt2i ⌦ ...⌦ |knmsnmtni

http://arxiv.org/abs/arXiv:1710.08220
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TABLE I. Contributions to the neutron matter energy due to the diagrams of Fig. 4. Results are given for Fermi momenta kF = 1.3, 1.5,
and 1.7 fm−1 and for different !/!3NF combinations. All energies are in MeV and kF, !/!3NF are in fm−1.

kF !/!3NF Ekin E
(1)
NN E

(1)
3N,full E

(1)
3N,eff E

(2)
1 E

(2)
2 + E

(2)
3 E

(2)
4

1.3 1.8/2.0 21.01 −12.86 0.95 0.94 −0.59 0.01 −0.02
1.3 2.0/2.0 21.01 −12.58 0.95 0.94 −0.78 0.00 −0.02
1.3 2.0/2.5 21.01 −12.58 1.05 1.00 −0.77 −0.01 −0.05
1.3 2.4/2.0 21.01 −12.11 0.95 0.94 −1.10 −0.02 −0.02
1.3 2.8/2.0 21.01 −11.75 0.95 0.94 −1.46 −0.03 −0.02
1.5 1.8/2.0 27.97 −18.62 2.18 2.24 −0.39 0.01 −0.05
1.5 2.0/2.0 27.97 −18.14 2.18 2.24 −0.64 −0.01 −0.05
1.5 2.0/2.5 27.97 −18.14 2.56 2.51 −0.63 −0.04 −0.14
1.5 2.4/2.0 27.97 −17.44 2.18 2.24 −1.16 −0.05 −0.05
1.5 2.8/2.0 27.97 −16.77 2.18 2.24 −1.78 −0.08 −0.05
1.7 1.8/2.0 35.93 −25.50 4.20 4.54 −0.22 0.01 −0.07
1.7 2.0/2.0 35.93 −24.93 4.20 4.54 −0.45 −0.02 −0.08
1.7 2.0/2.5 35.93 −24.93 5.36 5.40 −0.46 −0.06 −0.31
1.7 2.4/2.0 35.93 −23.64 4.20 4.54 −1.11 −0.07 −0.08
1.7 2.8/2.0 35.93 −22.51 4.20 4.54 −2.08 −0.12 −0.09

k = k1 − P/2 determines the argument k̂. As discussed
in Sec. II B, the antisymmetrized two-body interactions in
the first- and second-order terms are given by V (1)

as = (1 −
P12)Vlow k + V 3N/2 and V (2)

as = (1 − P12)Vlow k + V 3N, with
partial waves V

(1)
Sll′J = Vlow k,Sll′J + V 3N,Sll′J /4 and V

(2)
Sll′J =

Vlow k,Sll′J + V 3N,Sll′J /2.
We solve the Dyson equation, Eq. (28), self-consistently by

using the self-energies given by Eqs. (30) and (31). In Fig. 6,
we show the resulting effective mass at the Fermi surface,

m∗(kF)
m

=
(

m

k

dεk

dk

)−1 ∣∣∣∣
k=kF

. (32)

At the Hartree-Fock level, 3N contributions only change the
effective mass marginally. Including second-order contribu-

0.5 1.0 1.5

F [fm-1]

0.8

0.9

1.0

1.1

1.2

* (
F
)/

HF, NN only
HF+2nd order, NN only
HF, NN+3N
HF+2nd order, NN+3N

FIG. 6. (Color online) Effective mass m∗(kF)/m at the Fermi
surface as a function of Fermi momentum kF in neutron matter.
Results for !/!3NF = 2.0 fm−1 are shown at the Hartree-Fock level,
plus second-order contributions, and based only on NN interactions
for comparison. At second order, the effective mass includes k-mass
and e-mass effects.

tions leads to the typical enhancement of the effective mass at
the Fermi surface, and we find a larger impact of 3N forces for
kF > 1.3 fm−1.

C. Second order: Energy per particle

We include the second-order contributions E
(2)
1 to E

(2)
4 of

Fig. 4, which are given by

E
(2)
NN+3N,eff = 1

4

[
4∏

i=1

Trσi

∫
dki

(2π )3

]
∣∣⟨12|V (2)

as |34⟩
∣∣2

× nk1nk2 (1 − nk3 )(1 − nk4 )
εk1 + εk2 − εk3 − εk4

(2π )3

× δ(k1 + k2 − k3 − k4). (33)

As in the second-order self-energy, the antisymmetrized two-
body interactions, when evaluating contributions beyond the
Hartree-Fock level, are given by V (2)

as = (1 − P12)Vlow k +
V 3N. The second-order calculations are carried out by using the
self-consistent single-particle energies determined by solving
the Dyson equation, Eq. (28), as discussed in Sec. III B, and
the intermediate-state phase-space integrations are performed
fully. By summing over the spins and by expanding in partial
waves, we have [25]

∑

S,MS,M ′
S

∣∣⟨kSMS |V (2)
as |k′SM ′

S⟩
∣∣2

=
∑

L

PL(cos θk,k′)
∑

J,l,l′,S

∑

J̃ ,̃l,̃l′

(4π )2i(l−l′+̃l−l̃′)(−1)l̃+l′+L

× CL0
l0̃l′0C

L0
l′0̃l0

√
(2l + 1)(2l′ + 1)(2̃l + 1)(2̃l′ + 1)

× (2J + 1)(2J̃ + 1)
{

l S J

J̃ L l̃′

} {
J S l′

l̃ L J̃

}

×⟨k|V (2)
Sl′lJ |k′⟩⟨k′|V (2)

Sl̃ ′̃lJ̃
|k⟩[1 − (−1)l+S+1]

× [1 − (−1)l̃+S+1], (34)
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Example: Second order diagram in MBPT

Partial wave representation:
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3N
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) 
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0.2 3P2

3N
(

,
) 
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]

FIG. 3. (Color online) Diagonal momentum-space matrix ele-
ments of the density-dependent two-body interaction V 3N for P = 0
in the spin-triplet P -wave channels. Results with !3NF = 2.0 fm−1

are shown versus relative momentum k for different Fermi momenta
kF = 1.0, 1.2, 1.4, and 1.6 fm−1 (which increase in strength). For
kF = 1.6 fm−1, the dotted lines represent the central parts (degenerate
in J ) of V 3N, whereas the dashed lines include the central plus tensor
interactions [without the cn

a terms in Eqs. (16) and (17)].

spin operators with more complex integral functions that can
depend on P but also on the angle of P with respect to k
and k′. Since V 3N has been derived by using MATHEMATICA
for general particle momenta ki , this is directly possible.
One could then explore angle averaging over P̂ or averaging
over the magnitude of P. However, as will be shown in
Sec. III, the P = 0 approximation is reliable for bulk
properties and neutron matter based on chiral low-momentum
interactions is sufficiently perturbative, which justifies using
the noninteracting density to sum over the third particle.

III. RESULTS

We apply the developed density-dependent two-body inter-
action V 3N to calculate the properties of neutron matter in a
loop expansion around the Hartree-Fock energy. These are the
first results for neutron matter based on chiral EFT interac-
tions including N2LO 3N forces. The many-body calculation
follows the strategy of Refs. [7,8,25], but with significant
improvements for the second-order contributions involving
V 3N and with fully self-consistent single-particle energies.

Ekin

VNN

E (1)
NN

V3N

E (1)
3N

VNN

VNN

E (2)
1

VNN

V3N

E (2)
2

V3N

VNN

E (2)
3

V3N

V3N

E (2)
4

V3N

V3N

E (2)
5

FIG. 4. Top row: Diagrams contributing to the Hartree-Fock
energy. These include the kinetic energy Ekin and the first-order NN
and 3N interaction energies E

(1)
NN and E

(1)
3N. Middle and bottom rows:

Second-order contributions to the energy due to NN-NN interactions
E

(2)
1 , NN-3N and 3N-3N interactions, where 3N forces enter as

density-dependent two-body interactions E
(2)
2,3 and E

(2)
4 , respectively,

and the remaining 3N-3N diagram E
(2)
5 .

A. Hartree-Fock and P dependence of V 3N

The contributions to the Hartree-Fock energy are shown
diagrammatically in Fig. 4, and the first-order NN and 3N
interaction energies are given by

E
(1)
NN

V
= 1

2
Trσ1 Trσ2

∫
dk1

(2π )3

∫
dk2

(2π )3

× nk1nk2⟨12|(1 − P12)Vlow k|nn|12⟩, (24)

E
(1)
3N

V
= 1

6
Trσ1 Trσ2 Trσ3

∫
dk1

(2π )3

∫
dk2

(2π )3

∫
dk3

(2π )3

× nk1nk2nk3f
2
R(p, q)⟨123|A123V3N|nnn|123⟩, (25)

where V is the volume and we use the shorthand notation i ≡
kiσi in the bra and ket states. The momentum-conserving delta
functions are not included in the NN and 3N matrix elements.
It is evident from Eq. (25) that the correct 3N symmetry factor
is obtained when the antisymmetrized two-body interaction
V (0)

as = (1 − P12)Vlow k + V 3N/3 is used at the Hartree-Fock
level. With the expansion in two-body partial waves, we have

E
(1)
NN + E

(1)
3N

V
= 1

π3

∫
k2dk

∫
P 2dP

∫
d cos θk,P nP/2+k nP/2−k

×
∑

S,l,J

(2J + 1)⟨k|V (0)
SllJ |k⟩[1 − (−1)l+S+1].

(26)
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TABLE I. Contributions to the neutron matter energy due to the diagrams of Fig. 4. Results are given for Fermi momenta kF = 1.3, 1.5,
and 1.7 fm−1 and for different !/!3NF combinations. All energies are in MeV and kF, !/!3NF are in fm−1.

kF !/!3NF Ekin E
(1)
NN E

(1)
3N,full E

(1)
3N,eff E

(2)
1 E

(2)
2 + E

(2)
3 E

(2)
4

1.3 1.8/2.0 21.01 −12.86 0.95 0.94 −0.59 0.01 −0.02
1.3 2.0/2.0 21.01 −12.58 0.95 0.94 −0.78 0.00 −0.02
1.3 2.0/2.5 21.01 −12.58 1.05 1.00 −0.77 −0.01 −0.05
1.3 2.4/2.0 21.01 −12.11 0.95 0.94 −1.10 −0.02 −0.02
1.3 2.8/2.0 21.01 −11.75 0.95 0.94 −1.46 −0.03 −0.02
1.5 1.8/2.0 27.97 −18.62 2.18 2.24 −0.39 0.01 −0.05
1.5 2.0/2.0 27.97 −18.14 2.18 2.24 −0.64 −0.01 −0.05
1.5 2.0/2.5 27.97 −18.14 2.56 2.51 −0.63 −0.04 −0.14
1.5 2.4/2.0 27.97 −17.44 2.18 2.24 −1.16 −0.05 −0.05
1.5 2.8/2.0 27.97 −16.77 2.18 2.24 −1.78 −0.08 −0.05
1.7 1.8/2.0 35.93 −25.50 4.20 4.54 −0.22 0.01 −0.07
1.7 2.0/2.0 35.93 −24.93 4.20 4.54 −0.45 −0.02 −0.08
1.7 2.0/2.5 35.93 −24.93 5.36 5.40 −0.46 −0.06 −0.31
1.7 2.4/2.0 35.93 −23.64 4.20 4.54 −1.11 −0.07 −0.08
1.7 2.8/2.0 35.93 −22.51 4.20 4.54 −2.08 −0.12 −0.09

k = k1 − P/2 determines the argument k̂. As discussed
in Sec. II B, the antisymmetrized two-body interactions in
the first- and second-order terms are given by V (1)

as = (1 −
P12)Vlow k + V 3N/2 and V (2)

as = (1 − P12)Vlow k + V 3N, with
partial waves V

(1)
Sll′J = Vlow k,Sll′J + V 3N,Sll′J /4 and V

(2)
Sll′J =

Vlow k,Sll′J + V 3N,Sll′J /2.
We solve the Dyson equation, Eq. (28), self-consistently by

using the self-energies given by Eqs. (30) and (31). In Fig. 6,
we show the resulting effective mass at the Fermi surface,

m∗(kF)
m

=
(

m

k

dεk

dk

)−1 ∣∣∣∣
k=kF

. (32)

At the Hartree-Fock level, 3N contributions only change the
effective mass marginally. Including second-order contribu-
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F [fm-1]
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HF, NN only
HF+2nd order, NN only
HF, NN+3N
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FIG. 6. (Color online) Effective mass m∗(kF)/m at the Fermi
surface as a function of Fermi momentum kF in neutron matter.
Results for !/!3NF = 2.0 fm−1 are shown at the Hartree-Fock level,
plus second-order contributions, and based only on NN interactions
for comparison. At second order, the effective mass includes k-mass
and e-mass effects.

tions leads to the typical enhancement of the effective mass at
the Fermi surface, and we find a larger impact of 3N forces for
kF > 1.3 fm−1.

C. Second order: Energy per particle

We include the second-order contributions E
(2)
1 to E

(2)
4 of

Fig. 4, which are given by

E
(2)
NN+3N,eff = 1

4

[
4∏

i=1

Trσi

∫
dki

(2π )3

]
∣∣⟨12|V (2)

as |34⟩
∣∣2

× nk1nk2 (1 − nk3 )(1 − nk4 )
εk1 + εk2 − εk3 − εk4

(2π )3

× δ(k1 + k2 − k3 − k4). (33)

As in the second-order self-energy, the antisymmetrized two-
body interactions, when evaluating contributions beyond the
Hartree-Fock level, are given by V (2)

as = (1 − P12)Vlow k +
V 3N. The second-order calculations are carried out by using the
self-consistent single-particle energies determined by solving
the Dyson equation, Eq. (28), as discussed in Sec. III B, and
the intermediate-state phase-space integrations are performed
fully. By summing over the spins and by expanding in partial
waves, we have [25]

∑

S,MS,M ′
S

∣∣⟨kSMS |V (2)
as |k′SM ′

S⟩
∣∣2

=
∑

L

PL(cos θk,k′)
∑

J,l,l′,S

∑

J̃ ,̃l,̃l′

(4π )2i(l−l′+̃l−l̃′)(−1)l̃+l′+L

× CL0
l0̃l′0C

L0
l′0̃l0

√
(2l + 1)(2l′ + 1)(2̃l + 1)(2̃l′ + 1)

× (2J + 1)(2J̃ + 1)
{

l S J

J̃ L l̃′

} {
J S l′

l̃ L J̃

}

×⟨k|V (2)
Sl′lJ |k′⟩⟨k′|V (2)

Sl̃ ′̃lJ̃
|k⟩[1 − (−1)l+S+1]

× [1 − (−1)l̃+S+1], (34)
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• hard to automatize and generalize 

to higher order diagrams

• prone to mistakes 

Single-particle vector

representation:

One has for NN interactions 1, 3, 39, . . . Hugenholtz diagram(s) at second, third, fourth order, respectively,
and so on [122, 129]. Figure 6 shows these at second and third order; for the fourth-order diagrams we
refer to Ref. [130]. Below, we summarize the underlying analytic expressions up to fourth order, as this
is the highest order considered in the present thesis. They are expressed in the particle-hole formalism,
where only the particle (hole) states created above (below) the Fermi surface are considered (see, e.g.,
Ref. [118]). For brevity we define E(n)NN := E(n)0 . In the following Sec. 1.3.2, we will discuss normal-ordering
and the inclusion of many-body forces at and beyond the Hartree-Fock level.

Energy relations up to second order

The energy contributions up to second order based on antisymmetrized NN interactionsA12VNN are given
by the following expressions (see also Refs. [43, 118, 119])

T
V
= +
X

i

hi|T |ii , (1.23)

E(1)NN

V
= +

1
2

X

i j

hi j|A12VNN|i ji , (1.24)

E(2)NN

V
= +

1
4

X

i j
ab

hi j|A12VNN|abi hab|A12VNN|i ji
Di jab

. (1.25)

Equation (1.25) is associated with diagram (a) in Fig. 6. We use the short-hand notation for the single-
particle states |ii = |ki�i⌧ii, having the momentum ki, the spin and isospin projections �i = ±1

2 and
⌧i = ±1

2 , respectively. Furthermore, particles are labeled by a, b, . . . and holes by i, j, . . ., so the sums
transform into, e.g.,

X

a

�!X
�a⌧a

Z
dka

(2⇡)3
Ä
1� n⌧a

ka

ä
, and

X

i

�!X
�i⌧i

Z
dki

(2⇡)3
n⌧i

ki
, (1.26)

where n⌧i
ki

is the Heaviside step function. Intermediate states beyond first order are weighted in terms of
the single-particle energies,

Di jk...abc... = "ki + "k j + "kk
+ . . .� "

ka � "kb
� "

kc � . . . . (1.27)

The trivial partition in Eq. (1.15), H0 = T and H1 = V , corresponds to the free spectrum with "
ki =

k

2
i /(2m), whereas H0 = T + VHF and H1 = V � VHF adds first-order self-energy corrections to the kinetic

energy, called Hartree-Fock spectrum. Due to translational invariance, both, the kinetic-energy operator
T and the Hartree-Fock potential VHF are diagonal in the plane-wave basis (see also Ref. [121]). We
have thus the second-quantized Fock operator H0 =

P
i j fi j a†

j ai with fi j = �i j "i and the single-particle
energies

"i =
k

2
i

2m
+
X

j

hi j |A12VNN | i ji . (1.28)

In our calculations, we average Eq. (1.28) over spin as well as isospin quantum numbers. The two
employed spectra lead to the same Hartree-Fock energy, i.e., the sum of all zero- and first-order terms.
Adding 3N contributions to Eq. (1.28) will be addressed in Sec. 1.3.2.
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• each diagram a compact 
single line of code

• straightforward to 
automatize code generation

• adaptive evaluation of 
integrals using Monte-Carlo 
techniques

e.g., KH, Schwenk
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For completeness, we note that there is an additional single-excitation diagram at second order, which is
anomalous due to momentum conservation. It cancels using a Hartree-Fock spectrum [118].

Energy relations at third order

One has in total three diagrams at third order when using a Hartree-Fock spectrum, depicted by (b–d) in
Fig. 6. This results from a fine cancellation of several diagrams driven by the Hartree-Fock Hamiltonian. In
a free spectrum, however, eleven additional (partly anomalous) terms arise [118]. We therefore consider
solely Hartree-Fock single-particle energies beyond second order. Specifically, one has then contributions
from hole-hole, particle-hole, and particle-particle excitations with respect to the Hartree-Fock reference
state. These correspond to the following expressions, respectively, (see also Refs. [112, 118, 119])

E(3)1

V
= +

1
8

X

i jkl
ab

hi j|A12VNN|abi hkl|A12VNN|i ji hab|A12VNN|kli
Di jabDklab

, (1.29a)

E(3)2

V
= +
X

i jk
abc

hi j|A12VNN|abi hak|A12VNN|ici hbc|A12VNN| jki
Di jabDjkbc

, (1.29b)

E(3)3

V
= +

1
8

X

i j
abcd

hi j|A12VNN|abi hab|A12VNN|cdi hcd|A12VNN|i ji
Di jabDi jcd

. (1.29c)

Time reversal (exchanging holes and particles) relates the hole-hole and particle-particle terms, unfortu-
nately, without reducing the number of diagrams to be computed. In total, the third-order contribution is
given by

E(3)NN

V
=

E(3)1

V

����
hh
+

E(3)2

V

����
ph
+

E(3)3

V

����
pp

. (1.30)

Energy relations at fourth order: an overview

The fourth order consists of 39 linked diagrams when using a Hartree-Fock spectrum [118, 122]. They
are categorized according to the level of excitations obtained after the second interaction with respect to
the Fermi sea [131]. One has thus 4 single-, 12 double-, 16 triple-, and 7 quadruple-excitation diagrams,
hence, the total energy of all fourth-order terms is given by

E(4)NN

V
=

4X

i=1

E(4)i

V

����
single

+
16X

i=5

E(4)i

V

����
double

+
32X

i=17

E(4)i

V

����
triple
+

39X

i=33

E(4)i

V

����
quadruple

. (1.31)

The sum of all contributions is order-by-order real in perturbation theory because the nuclear Hamiltonian
is hermitian. This is also the case for each individual term up to third order. However, starting at fourth
order we encounter complex-conjugated pairs of diagrams, which in total are again real [130]. Exploiting
momentum conservation, in addition, reduces the number of diagrams to be computed to effectively 24.
In the following, we carefully provide the complete set of energy expressions (including time-reversed
pairs) as preparation for Sec. 5. These are more familiar in quantum chemistry but have not been studied
to the best of our knowledge in infinite-matter calculations.
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Higher-order contributions

(a) (b) (c) (d)

Figure 6: Hugenholtz diagrams for NN forces at second (a) and third order (b–d). Particles (holes) are
indicated by up (down) arrows. The dots correspond to antisymmetrized interaction vertices.
At third order, one has contributions from particle-particle (b), particle-hole (c), and hole-hole
excitations (d). The figure has been modified from Ref. [122].

which is iterated in Eq. (1.18) to read

| 0i= |�0i+ Q
⇣� H0

(�H1 � E0 + ⇣) | 0i=
1X

n=0

Å
Q

⇣� H0
(�H1 � E0 + ⇣)
ãn
|�0i . (1.20)

We employ Rayleigh-Schrödinger perturbation theory, i.e., ⇣ := E(0)0 , and evaluate Eq. (1.17)

�E = E0 � E(0)0 =
1X

n=0

h�0|�H1 (R0 (�H1 ��E))n |�0i , with R0 =
Q

E(0)0 � H0

=
X

k 6=0

|�ki h�k|
E(0)0 � E(0)k

. (1.21)

Furthermore, we expand in a perturbation series, �E =
P1

n=1�
nE(n)0 . Organizing the terms in powers of

�! 1 determines the desired coefficients of the expansion, here given up to fourth order [118],

E(0)0 = h�0|H0|�0i , E(1)0 = h�0|H1|�0i , (1.22a)

E(2)0 = h�0|H1R0H1|�0i , E(3)0 = h�0|H1R0(H1 � E(1)0 )R0H1|�0i , (1.22b)

E(4)0 = h�0|H1R0(H1 � E(1)0 )R0(H1 � E(1)0 )R0H1|�0i
� E(2)0 h�0|H1R2

0H1|�0i .
(1.22c)

The presented analytic derivation of perturbation theory comes along with an equivalent pictorial ap-
proach, so-called diagrammatic perturbation theory, which is conceptionally similar to Feynman tech-
niques. One draws all possible (e.g., Hugenholtz) diagrams with n vertices (dots) and connects them by
continuous lines, following remarkable simple rules [120, 122]. Because of Goldstone’s linked-diagram
theorem [123] only connected diagrams contribute to the expansion. The explicit cancellation of size-
inconsistent terms (see also Ref. [124]) related to unlinked diagrams transforms Rayleigh-Schrödinger
perturbation theory to MBPT [118, 125]. In practice, the diagrammatic approach is more convienient
and thus typically the method of choice, especially, regarding automation on a computer [122, 126–128].
Rules to translate diagrams to analytic expressions are given in the cited literature.

It is however a nontrivial assumption that the perturbation series convergences at a useful rate. The
efficiency of MBPT clearly depends on the underlying interaction as well as the chosen partition in
Eq. (1.15). To quantify the perturbativeness of recent NN potentials in free space, we make use of Weinberg
eigenvalues in Sec. 3 as a powerful diagnostic tool. Additionally, in Sec. 4.3 we benchmark the neutron-
matter equation of state involving NN plus 3N interactions up to N3LO order-by-order to a nonperturbative
method, where calculations using two partitions serve as a many-body uncertainty.
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Status: 

• implemented all NN diagrams up to fourth order in MBPT, 3N 
interactions up to third order

• implemented all NN and 3N interactions (nonlocal) up to N3LO

• possible to also use NN matrix elements stored in partial wave basis 
by partial wave resummation

• interaction interface suitable for all many-body frameworks that 
require matrix elements in a momentum vector single-particle basis

example: third order (particle-particle, hole-hole, particle-hole)



Proof of principle:
Fits of 3N interactions to saturation properties of nuclear matter

• incorporation of saturation properties in fits was not possible so far 
due to insufficient efficiency of many-body calculations

• performed calculations up to 4th order for set of presently used 
NN interactions, natural convergence pattern
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FIG. 1. (Color online) Energy per particle of neutron mat-
ter (top row) and symmetric nuclear matter (bottom row)
based on the Hebeler+ [16] and NNLOsim [6] NN and 3N
interactions (columns). Results are shown for �/⇤3N for the
interactions of Ref. [16] and ⇤NN = ⇤3N for those of Ref. [6].
For symmetric matter, the gray box denotes the saturation re-
gion, n0 = 0.164± 0.007 fm�3 and E/A = �15.86± 0.57MeV.
We also give the calculated range for the symmetry energy
Esym and its slope parameter L at n0 = 0.16 fm�3 (indicated
by the dashed vertical line).

Specifically, in this first application, we consider all con-
tributions from NN interactions up to fourth order in
MBPT (around the Hartree-Fock reference state). Contri-
butions from 3N interactions are included exactly up to
second order, including residual 3N-3N terms, which have
only been evaluated so far for contact interactions [44].
At third order, we neglect all terms that involve at least
one residual 3N contribution, whereas at fourth order we
neglect all 3N contributions. These contributions turn out
to be smaller (see discussion below). This amounts to 4,
20 = 3 ·23�4, and 24 = 39�15 diagrams at second, third,
and fourth order, respectively, with up to 21-dimensional
momentum integrals per diagram. The number of dia-
grams at third (fourth) order can be reduced by 4 (15) at
zero temperature. In comparison, a full calculation would
involve 39 · 24 = 624 fourth-order diagrams. We also eval-
uate the 4N Hartree-Fock energy, but it is generally small,
in agreement with Ref. [18].
We assess the numerical convergence of the integra-

tion by varying the number of sampling points as well as
employing two di↵erent Monte-Carlo algorithms [28], in

FIG. 2. (Color online) Correlation between the calculated
saturation density n0 and saturation energy E/A for the
Hebeler+ [16] and NNLOsim [6] NN and 3N interactions ob-
tained at second, third, and fourth order in MBPT. The values
of �/⇤3N and ⇤NN = ⇤3N, as well as the saturation region are
as in Fig. 1. The diamond refers to the NNLOsat result [1].

addition to the variance as statistical uncertainty. The
framework is remarkably e�cient due to performance opti-
mization and parallelization. Most diagrams up to fourth
order can be evaluated within about 10 minutes to a
precision of . 10 keV. The precise evaluation of a few
specific third-order diagrams involving three 3N interac-
tions requires more time due to the higher dimensionality
of the momentum integrals. However, the strength of the
present Monte-Carlo approach is that the precision can be
controlled in a systematic way using the uncertainty esti-
mates, as short runtimes are important when optimizing
nuclear interactions. For this purpose, one could start con-
straining a fit with lower accuracy around the saturation
point and then successively become more accurate.
Results for nuclear matter.– In Fig. 1 we present re-

sults for the energy per particle in symmetric nuclear
matter and neutron matter based on the Hebeler+ [16]
and NNLOsim [6] NN and 3N interactions up to fourth
order in MBPT. For symmetric matter we show the em-
pirical saturation region by a box with boundaries n0 =
0.164± 0.007 fm�3 and E/A = �15.86± 0.37± 0.2MeV
where the first uncertainties are as in Ref. [22] and we add
an additional 0.2MeV from Ref. [45]. In addition, we give
results for symmetry energy range Esym = E/N � E/A
as well as its slope parameter L = 3n0@nEsym at n0 =
0.16 fm�3. Both are predicted with narrow ranges.
The Hebeler+ interactions were obtained by a simi-

larity renormalization group evolution [46] of the N3LO
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