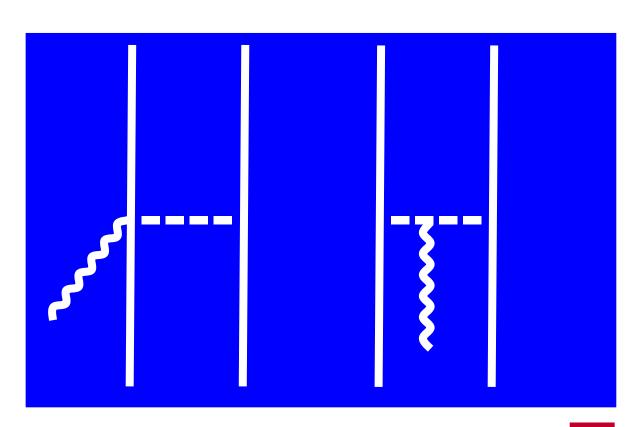
The Two-Body M1 operator in Light Nuclei:



Oscar Javier Hernandez

Sonia Bacca
Kai Hebeler
Thomas Hüther
Robert Roth
Achim Schwenk
Rodric Seutin
Johannes Simonis
Kyle Wendt

$$abla \cdot J(x) + i \left[H,
ho(x)
ight] = 0$$

$$abla \cdot J(x) + i \left[H,
ho(x)
ight] = 0$$

in general,

$$[V_{
m NN},
ho(x)]
eq 0$$

$$abla \cdot J(x) + i \left[H,
ho(x)
ight] = 0$$

in general,

$$[V_{
m NN},
ho(x)]
eq 0$$

Two-body currents = Meson exchange currents

$$\exists \, J^{[2]}(x) \, ext{ such that } \, \,
abla \cdot J^{[2]}(x) + i \left[V_{ ext{NN}},
ho(x)
ight] = 0$$

$$abla \cdot J(x) + i \left[H,
ho(x)
ight] = 0$$

in general,

$$[V_{ ext{NN}},
ho(x)]
eq 0$$

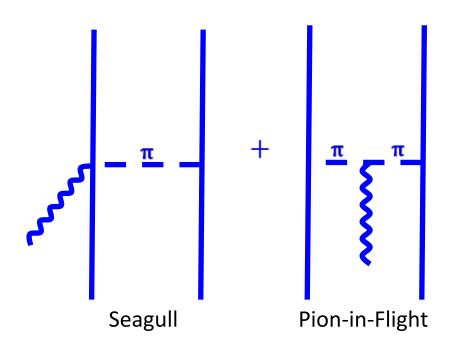
Two-body currents = Meson exchange currents

$$\exists \, J^{[2]}(x) \, ext{ such that } \, \,
abla \cdot J^{[2]}(x) + i \left[V_{ ext{NN}},
ho(x)
ight] = 0$$

Two-body currents can be ordered via Chiral EFT expansion,

$$J^{[2]}(x) \, = J_{
m NLO}(x) + J_{
m N^2LO}(x) + J_{
m N^3LO}(x)$$

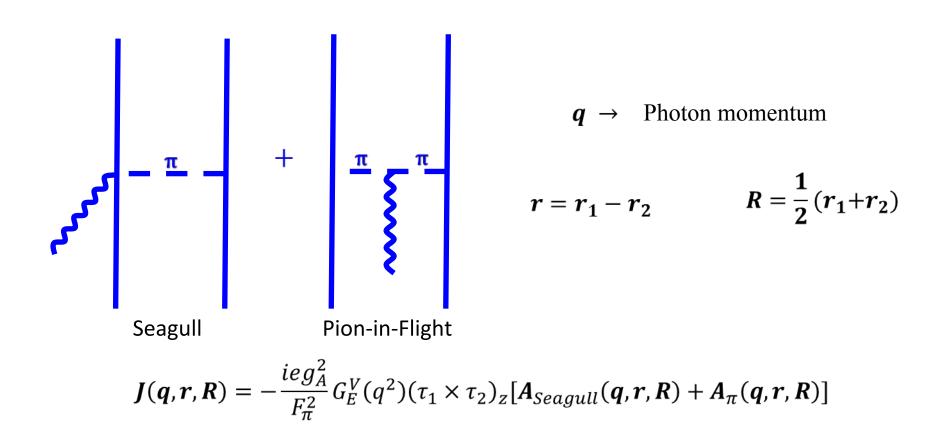
There are two contributions at NLO



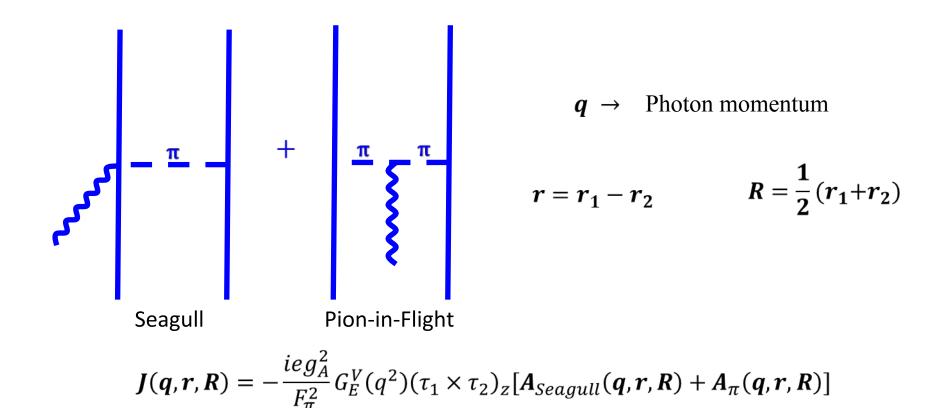
 $q \rightarrow$ Photon momentum

$$r = r_1 - r_2$$
 $R = \frac{1}{2}(r_1 + r_2)$

The NLO currents have been multipole decomposed



The NLO currents have been multipole decomposed



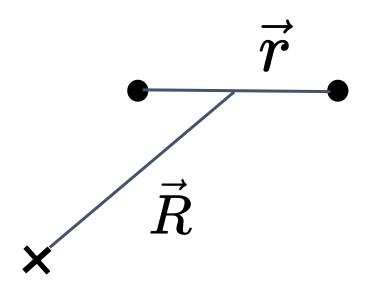
$$J(\boldsymbol{q},\boldsymbol{r},\boldsymbol{R}) = \sum_{I\mu\ell} J^{\mu}_{J\ell}(\boldsymbol{q},\boldsymbol{r},\boldsymbol{R}) \boldsymbol{Y}^{\mu*}_{J\ell}(\hat{\boldsymbol{q}}) \qquad J^{\mu}_{J\ell}(\boldsymbol{q},\boldsymbol{r},\boldsymbol{R}) = \int d\hat{\boldsymbol{q}} \, J(\boldsymbol{q},\boldsymbol{r},\boldsymbol{R}) \cdot \boldsymbol{Y}^{\mu}_{J\ell}(\hat{\boldsymbol{q}})$$

$$J_{JJ}^{\mu}(q, \boldsymbol{r}, \boldsymbol{R}) = 4\pi i^{J} T_{J\mu}^{mag}(q, \boldsymbol{r}, \boldsymbol{R}) \qquad \qquad \mu_{NLO}^{[2]}(\boldsymbol{r}, \boldsymbol{R}) \propto \lim_{q \to 0} \left(\frac{J_{11}^{\mu}(q, \boldsymbol{r}, \boldsymbol{R})}{q} \right)$$

$$J_{JJ}^{\mu}(q, \boldsymbol{r}, \boldsymbol{R}) = 4\pi i^{J} T_{J\mu}^{mag}(q, \boldsymbol{r}, \boldsymbol{R}) \qquad \qquad \mu_{NLO}^{[2]}(\boldsymbol{r}, \boldsymbol{R}) \propto \lim_{q \to 0} \left(\frac{J_{11}^{\mu}(q, \boldsymbol{r}, \boldsymbol{R})}{q} \right)$$

The two-body operators are separated into intrinsic and CM dependent terms

$$\mu_{
m NLO}^{[2]}(r,R) = \mu_{
m intrinsic}^{[2]}(r) + \mu_{
m Sachs}^{[2]}(r,R)$$



$$J_{JJ}^{\mu}(q, \boldsymbol{r}, \boldsymbol{R}) = 4\pi i^{J} T_{J\mu}^{mag}(q, \boldsymbol{r}, \boldsymbol{R}) \qquad \qquad \mu_{NLO}^{[2]}(\boldsymbol{r}, \boldsymbol{R}) \propto \lim_{q \to 0} \left(\frac{J_{11}^{\mu}(q, \boldsymbol{r}, \boldsymbol{R})}{q} \right)$$

The two-body operators are separated into intrinsic and CM dependent terms

$$\mu_{ ext{NLO}}^{[2]}(r,R) = \mu_{ ext{intrinsic}}^{[2]}(r) + \mu_{ ext{Sachs}}^{[2]}(r,R)$$

The Sachs term will be tested on A=3 systems

$$J_{JJ}^{\mu}(q, \boldsymbol{r}, \boldsymbol{R}) = 4\pi i^{J} T_{J\mu}^{mag}(q, \boldsymbol{r}, \boldsymbol{R}) \qquad \qquad \mu_{NLO}^{[2]}(\boldsymbol{r}, \boldsymbol{R}) \propto \lim_{q \to 0} \left(\frac{J_{11}^{\mu}(q, \boldsymbol{r}, \boldsymbol{R})}{q} \right)$$

The two-body operators are separated into intrinsic and CM dependent terms

$$\mu_{ ext{NLO}}^{[2]}(r,R) = \overline{\mu_{ ext{intrinsic}}^{[2]}(r)} + \overline{\mu_{ ext{Sachs}}^{[2]}(r,R)}$$

The intrinsic term will be tested on A=2 system

Checks on the Deuteron

$$R_M(\omega) = rac{1}{2J_0+1} \sum_{N
eq N_0} \left| \langle N | \mu | N_0
angle
ight|^2 \delta(E_N-E_0-\omega)$$

$$\mu = \mu_{ ext{LO}}^{[1]} + \mu_{ ext{NLO}}^{[2]} \qquad m_n = \int\limits_0^\infty R_M(\omega) \omega^n d\omega$$

Checks on the Deuteron

$$R_M(\omega) = rac{1}{2J_0+1} \sum_{N
eq N_0} \left| \langle N | \mu | N_0
angle
ight|^2 \delta(E_N-E_0-\omega)$$

$$\mu = \mu_{ ext{LO}}^{[1]} + \mu_{ ext{NLO}}^{[2]} \qquad m_n = \int\limits_0^\infty R_M(\omega) \omega^n d\omega$$

	$m_{-1}[\mathrm{fm}^3]$	$m_0 [{ m fm}^2]$
$\mu_{ ext{LO}}^{[1]}$	14.0	0.245
$\mu_{ ext{LO}}^{[1]} + \mu_{ ext{Intrinsic}}^{[2]}$	15.0	0.273

O. J. Hernandez, S. Bacca and K. A. Wendt, Proc. of Science 041 BORMIO2017 (2017). 4

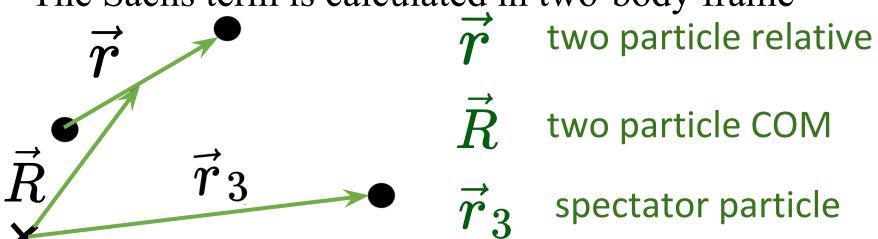
Checks on A=3

	$^3\mathrm{H}$	³ He	%Diff from Exp
$\mu_{ m LC}^{[1]}$	2.622	-1.783	~12-16%
$\mu_{ ext{LO}}^{[1]} + \mu_{ ext{I}}^{[}$	[2] Intrinsic		
$\mu_{ ext{Ex}}$	2.979	-2.128	-

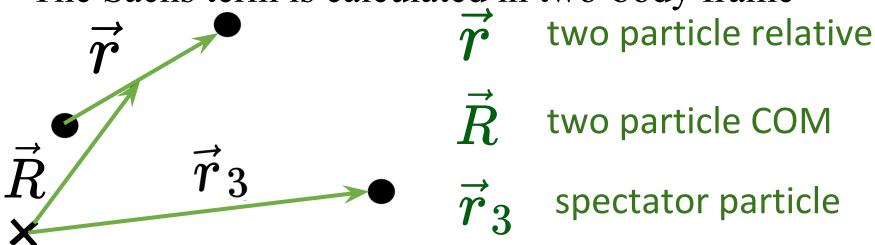
Checks on A=3

	$^3\mathrm{H}$	³ He	%Diff from Exp
$\mu_{ ext{LO}}^{[1]}$	2.622	-1.783	~12-16%
$\mu_{ ext{LO}}^{[1]} + \mu_{ ext{Intrinsi}}^{[2]}$	2.816	-1.973	~5-7%
$\mu_{ ext{Exp}}$	2.979	-2.128	-

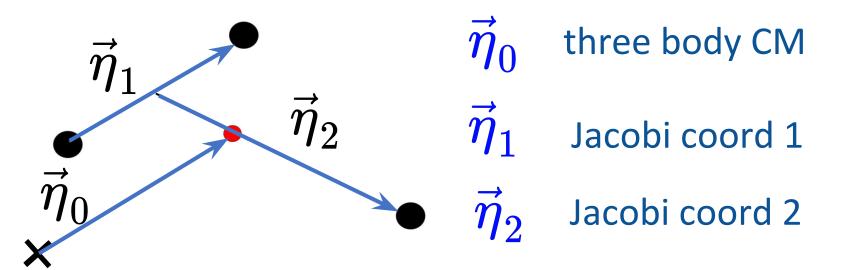
The Sachs term is calculated in two-body frame



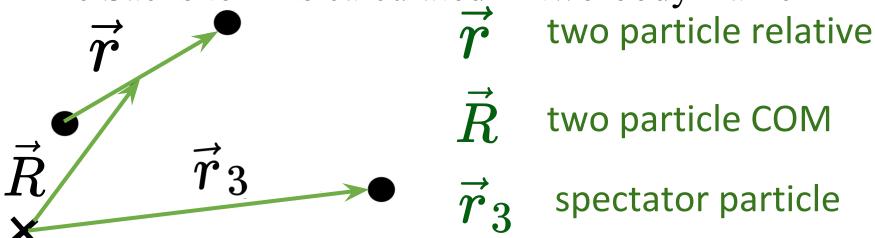
The Sachs term is calculated in two-body frame



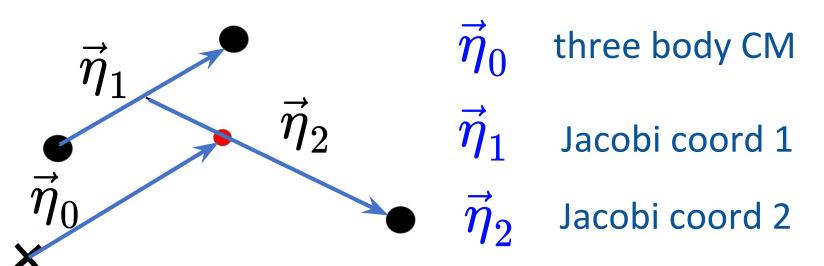
but require matrix elements in the Jacobi Frame



The Sachs term is calculated in two-body frame



but require matrix elements in the Jacobi Frame



TM transformation is needed for changing frames

Checks on A=3

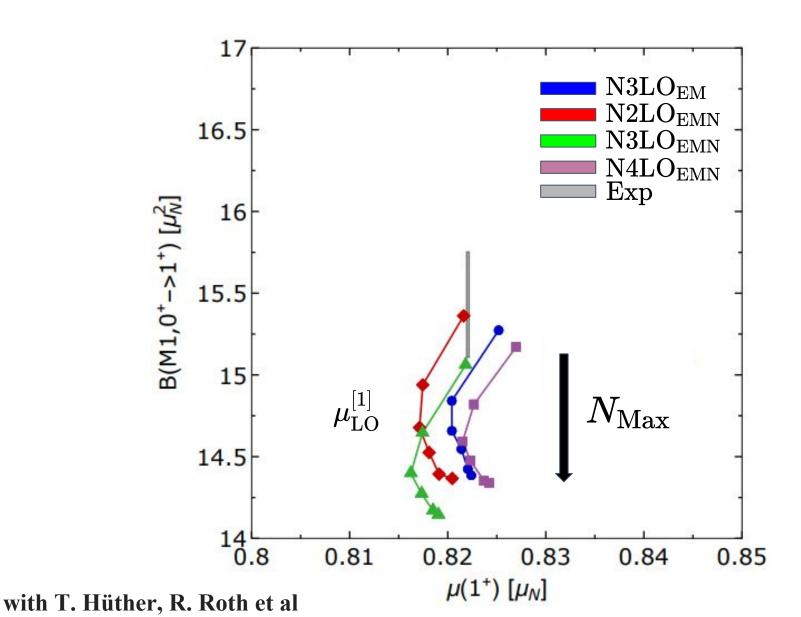
	$^3\mathrm{H}$	³ He	%Diff from Exp
$\mu_{ ext{LO}}^{[1]}$	2.622	-1.783	~12-16%
$\mu_{ ext{LO}}^{[1]} + \mu_{ ext{Intrinsic}}^{[2]}$	2.816	-1.973	~5-7%
$\mu_{ ext{LO}}^{[1]} + \mu_{ ext{NLO}}^{[2]}$			
$\mu_{ ext{Exp}}$	2.979	-2.128	-

with R.Seutin, H. Hebeler, A. Schwenk

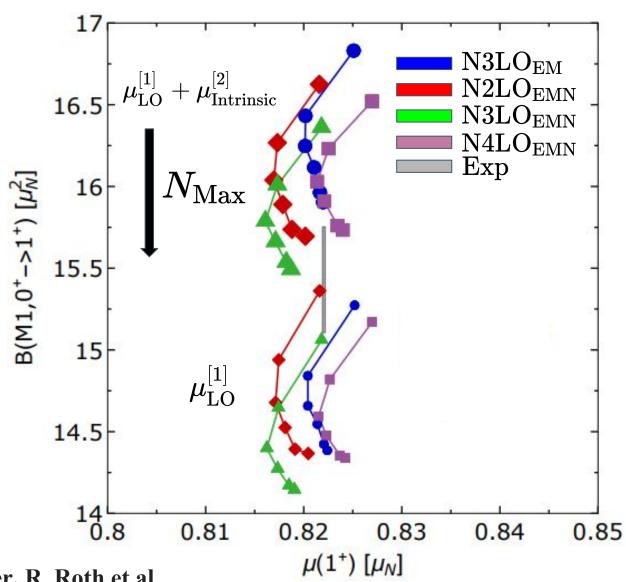
Checks on A=3

	$^3\mathrm{H}$	³ He	%Diff from Exp
$\mu_{ ext{LO}}^{[1]}$	2.622	-1.783	~12-16%
$\mu_{ ext{LO}}^{[1]} + \mu_{ ext{Intrinsic}}^{[2]}$	2.816	-1.973	~5-7%
$\mu_{ ext{LO}}^{[1]} + \mu_{ ext{NLO}}^{[2]}$	2.849(7)	-2.006(6)	~4-6%
$\mu_{ ext{Exp}}$	2.979	-2.128	-

Application to ⁶Li



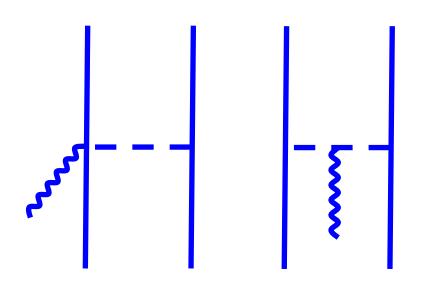
Application to ⁶Li



with T. Hüther, R. Roth et al

Thank you!

Sonia Bacca, Kai Hebeler, Thomas Hüther, Robert Roth Achim Schwenk, Rodric Seutin, Johannes Simonis and Kyle Wendt



[1] H. Arenhovel and M. Sanzone, Few Bod. Sys., Photodisintegration of the Deuteron, (1991).

[2] J. Friar and G.L. Payne, Phys. Rev. C 56 619 (1997)