

Ab initio calculations for low and intermediate energies nuclear reactions

Progress in *Ab Initio* Techniques in Nuclear Physics Feb 27, 2019

Matteo Vorabbi | TRIUMF

Collaborators: **Petr Navratil** (TRIUMF) Michael Gennari (Waterloo University) Sofia Quaglioni (LLNL) Guillaume Hupin (CNRS) Paolo Finelli (Bologna University) Carlotta Giusti (Pavia University)

Outline

 Study of A=7 systems within the No-Core Shell Model with Continuum (NCSMC)

- 2. Microscopic optical potentials for intermediate energies with nonlocal *ab initio* densities
 - New chiral $\overline{N}N$ interaction at N³LO
 - Application to antiproton elastic scattering

Study of A=7 systems

1.

From QCD to nuclei

No-core shell model

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic oscillator (HO) basis
 - Short- and medium-range correlations
 - Bound-states, narrow resonances

No-core shell model with RGM

- NCSM with Resonating Group Method (NCSM/RGM)
 - Cluster expansion, clusters described by NCSM
 - Proper asymptotic behavior
 - Long-range correlations

Unified approach to bound & continuum states; to nuclear structure and reactions

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic oscillator (HO) basis
 - Short- and medium-range correlations
 - Bound-states, narrow resonances
- NCSM with Resonating Group Method (NCSM/RGM)
 - Cluster expansion, clusters described by NCSM
 - Proper asymptotic behavior
 - Long-range correlations
- Most efficient: *ab initio* no-core shell model with continuum (NCSMC)

S. Baroni, P. Navratil, and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

 $\langle \mathfrak{S}, \lambda \rangle + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu}(\vec{r}) \, \hat{A}_{\nu} \left| \mathfrak{S}_{(A-a)}^{\mathbf{r}} (a) , \nu \right\rangle$ $\Psi^{(A)} = \sum_{\lambda} C_{\lambda} \Big|$ Unknowns

NCSMC

Primordial ⁷Li abundance in the early universe

PLB 757 (2016) 430

Fraction of pp-chain branches resulting in ⁷Be versus ⁸B neutrinos

Nuclear Astrophysics

³He(⁴He,γ)⁷Be ³H(⁴He,γ)⁷Li

> A=7 systems (⁷Be and ⁷Li)

Primordial ⁷Li abundance in the early universe

PLB 757 (2016) 430

Fraction of pp-chain branches resulting in ⁷Be versus ⁸B neutrinos

Nuclear Astrophysics

³He(⁴He,γ)⁷Be ³H(⁴He,γ)⁷Li New experiment in progress at LUNA

Lanzhou Experiment ⁶Li(p,γ)⁷Be

Possible resonant enhancement near the threshold

A=7 systems (⁷Be and ⁷Li)

Primordial ⁷Li abundance in the early universe

PLB 757 (2016) 430

Fraction of pp-chain branches resulting in ⁷Be versus ⁸B neutrinos Nuclear Astrophysics

³He(⁴He,γ)⁷Be ³H(⁴He,γ)⁷Li New experiment in progress at LUNA

Lanzhou Experiment ⁶Li(p,γ)⁷Be

Possible resonant enhancement near the threshold

A=7 systems (⁷Be and ⁷Li)

Tritium breeding ⁶Li(n,³H)⁴He Fusion energy generation (ITER)

NCSMC calculations of A=7 systems

- NN SRG-N³LO [Entem, Machleidt, Phys. Rev. C, 68 041001 (2003)]
- Calculations with NN SRG-N³LO
 - ⁷Be ~ (⁷Be)_{NCSM} + (³He + ⁴He)_{NCSM/RGM}
 ~ (⁷Be)_{NCSM} + (p + ⁶Li)_{NCSM/RGM}
 ⁷Li ~ (⁷Li)_{NCSM} + (³H + ⁴He)_{NCSM/RGM}
 ~ (⁷Li)_{NCSM} + (n + ⁶Li)_{NCSM/RGM}
 ~ (⁷Li)_{NCSM} + (p + ⁶He)_{NCSM/RGM}

NCSM eigenstates

³He and ³H : (J^π, T) = (1/2⁺, 1/2) eigenstate
⁴He: (J^π, T) = (0⁺, 0) eigenstate
⁶Li: (J^π, T) = (1⁺, 0), (3⁺, 0), (0⁺, 1), (2⁺, 1) eigenstates
⁶He: (J^π, T) = (0⁺, 1), (2⁺, 1) eigenstates
⁷Be and ⁷Li: 8 negative- and 6 positive-parity eigenstates

⁷Be system

Analyzed mass partitions

- ³He + ⁴He
- p + ⁶Li

Exp.	$J^{\pi} = 3/2^{-1}$
E [MeV]	-37.60

³ He + ⁴ He	$J^{\pi} = 3/2^{-1}$	$J^{\pi} = 1/2^{-}$
E _{bound}	-1.519	-1.256
E [MeV]	-36.98	-36.71

p + ⁶ Li	$J^{\pi} = 3/2^{-1}$	J ^π = 1/2 ⁻
E_{bound}	-5.729	-5.389
E [MeV]	-36.47	-36.13

6.0

⁷Li system

Analyzed mass partitions

• ³H + ⁴He

• n + ⁶Li

• p + ⁶He

Exp.J^π = 3/2⁻E [MeV]-39.245

³ H + ⁴ He	$J^{\pi} = 3/2^{-1}$	$J^{\pi} = 1/2^{-1}$	9.9754
E_{bound}	-2.432	-2.153	⁶ He+p
E [MeV]	-38.65	-38.37	

n + ⁶ Li	$J^{\pi} = 3/2^{-1}$	$J^{\pi} = 1/2^{-1}$
E _{bound}	-7.381	-7.048
E [MeV]	-38.13	-37.79

р + ⁶ Не	$J^{\pi} = 3/2^{-1}$	J ^π = 1/2⁻
E_{bound}	-10.40	-10.06
E [MeV]	-38.06	-37.73

⁷Li – New negative-parity states

⁷Li – New negative-parity states

⁷Li – New negative-parity states

⁷Li – New positive-parity states

⁷Li – New positive-parity states

S-factors

Cross section and S-factor $\sigma(E) = S(E)E^{-1} \exp[-2\pi\eta(E)]$

Sommerfeld parameter

 $\eta(E) = \frac{Z_1 Z_2 e^2}{\hbar v}$

S-factor [arbitrary units]

2.

Microscopic optical potentials for intermediate energies

- 1. Facility for Antiprotons and Ion Research (FAIR) is currently under construction and experiments on antiproton scattering off nuclear targets will probably experience a renaissance
- A new N
 N chiral interaction has been recently derived up to N³LO in the chiral expansion scheme

 Dai, Haidenbauer, Meißner, JHEP **2017**, 78 (2017)

Purpose: Construction of a microscopic Optical Potential (OP) for antiproton elastic scattering off nuclei

- No fitting to $N(\overline{N})$ nucleus elastic scattering data
 - More predictive power where experimental data do not exist

Method: Extension of the Watson multiple scattering theory to antiproton-nucleus scattering

Lippmann-Schwinger (LS) equation for the projectile-nucleus transition amplitude

$$T = V + VG_0(E)T$$

$$Green function propagator$$

$$G_0(E) = (E - H_0 + i\epsilon)^{-1}$$

$$W = \sum_{i=1}^{A} v_{0i}$$

$$W = h_0 + H_A$$

$$h_0$$
kinetic term of the projectile

 $H_A \left| \Phi_A \right\rangle = E_A \left| \Phi_A \right\rangle$ target Hamiltonian

Lippmann-Schwinger (LS) equation for the projectile-nucleus transition amplitude

$$T = V + VG_0(E)T$$

Let's introduce the optical potential U

Projection operators

$$P + Q = 1$$
$$[G_0, P] = 0$$

In the case of elastic scattering, *P* projects onto the elastic channel

$$P = \frac{|\Phi_A\rangle \langle \Phi_A|}{\langle \Phi_A | \Phi_A \rangle}$$

 $T = U + UG_0(E)PT$ $U = V + VG_0(E)QU$

Lippmann-Schwinger (LS) equation for the projectile-nucleus transition amplitude

$$T = V + VG_0(E)T$$
Transition amplitude *T* for elastic scattering

$$T_{\rm el} \equiv PTP = PUP + PUPG_0(E)T_{\rm el}$$
we need to calculate *PUP*

Lippmann-Schwinger (LS) equation for the projectile-nucleus elastic transition amplitude

$$T_{el} = PUP + PUPG_{0}(E)T_{el}$$
Spectator expansion for U
Chinn, Elster, Thaler, Weppner, PRC 52, 1992 (1995)
$$\int_{Triple}^{Single} S_{cattering} + S_{catt$$

Scattering

$$U = \sum_{i=1}^{A} \tau_i + \sum_{i,j\neq i}^{A} \tau_{ij} + \sum_{i,j\neq i,k\neq i,j}^{A} \tau_{ijk} + \cdots$$

Single scattering approximation

Lippmann-Schwinger (LS) equation for the projectile-nucleus elastic transition amplitude

Impulse approximation

Lippmann-Schwinger (LS) equation for the projectile-nucleus elastic transition amplitude

$$T_{\rm el} = PUP + PUPG_0(E)T_{\rm el}$$

Spectator expansion for U

Chinn, Elster, Thaler, Weppner, PRC 52, 1992 (1995)

Impulse approximation

$$U = \sum_{i=1}^{A} t_{0i} \qquad \begin{cases} t_{0i} = v_{0i} + v_{0i}g_i t_{0i} \\ g_i = \frac{1}{E - h_0 - h_i + i\epsilon} \end{cases}$$

The interaction between the projectile and the target nucleon is considered as free

The first-order optical potential

$$U(\alpha, \boldsymbol{q}, \boldsymbol{K}; E) = \sum_{N=n,p} \int d^{3}\boldsymbol{P} \ \eta(\boldsymbol{P}, \boldsymbol{q}, \boldsymbol{K}) \ t_{\alpha N} \left[\boldsymbol{q}, \frac{1}{2} \left(\frac{A+1}{A} \boldsymbol{K} - \boldsymbol{P} \right); E \right]$$
$$\times \rho_{N} \left(\boldsymbol{P} - \frac{A-1}{2A} \boldsymbol{q}, \boldsymbol{P} + \frac{A-1}{2A} \boldsymbol{q} \right) \qquad \boldsymbol{q} = \boldsymbol{k}' - \boldsymbol{k}$$
$$\boldsymbol{K} = \frac{1}{2} (\boldsymbol{k}' + \boldsymbol{k})$$

Basic ingredients

- (Anti)nucleon-nucleon scattering matrix $t_{\alpha N}$
- Non-local nuclear densities

$$\rho_{\rm op} = \sum_{i=1}^{A} \delta(\boldsymbol{r} - \boldsymbol{r}_i) \delta(\boldsymbol{r}' - \boldsymbol{r}'_i)$$

The matrix elements between a general initial and final state are obtained from the NCSM PRC **97**, 034619 (2018)

 $N = N_{\max} + 1$ N = 1 N = 0 N = 0 N = 0

Projectiles

 $\alpha = (p, n, \bar{p})$

Chiral interaction

- Target density

 NN N⁴LO500
 Entem, Machleidt, Nosyk, PRC 96 024004 (2017)
 + 3N N²LO
 Navratil, Few-Body Syst. 41 117 (2007)
- Scattering matrix

 $\overline{N}N - N^{3}LO$ Dai, Haidenbauer, Meißner, JHEP **2017**, 78 (2017)

- > Local regulator for the long range part: R = 0.9 fm
- > Non-local regulator for the contact terms: $\Lambda = 2 R^{-1}$
- The N
 N interaction is connected to the NN one through the G-parity in an unambiguous way

Scattering observables

Scattering observables

Scattering observables

Summary & Outlook

- Reproduction of the experimental spectrum of ⁷Be and ⁷Li
- Predictions for possible new resonant states (π =+,-)

Coupling between different mass partitions

- Inclusion of the 3N force
- Good description of the data with the microscopic OP
 Inclusion of the 3N force in NA scattering
 Inclusion of medium effects
- Importance of $\overline{N}NN$ force