Spherical reduction of tensor networks in nuclear many-body theory: Automated symbolic angular-momentum algebra

Julien Ripoche<br>CEA, DAM, DIF, F-91297 Arpajon, France<br>with A. Tichai (ESNT, CEA Saclay) and T. Duguet (CEA Saclay).

Progress in Ab Initio Techniques in Nuclear Physics
TRIUMF Vancouver - February 28th 2019

## Expansion methods



New methods recently proposed and implemented

- BMBPT [Tichai et al. 2018]
- GSCGF, BCC [Somà et al. 2011, Signoracci et al. 2014]
- Sym.-res. BCC \& sym.-res. BMBPT [Duguet 2015, Duguet et al. 2017, Qiu et al. 2017]


## Push ab initio many-body calculations

Many-body calculations employ mode-n tensors and compute tensor networks

## Input: Mode-n tensors

- Mode-2 tensor: $t_{p q}$, kinetic energy (Storage $N^{2}$ )
- Mode-4 tensor: $v_{p q r s}$, two-body force (Storage $N^{4}$ )
- Mode-6 tensor: $w_{p q r s t u}$, three-body force (Storage $N^{6}$ ) where $p q \ldots \in \mathcal{H}^{(1)}$ of dimension $N$.


## Output: Tensor networks

$$
\left.E_{0}=E_{0}^{H F}+\frac{1}{2} \sum_{i j a b} \bar{v}_{i j a b} t_{i}^{a} t_{j}^{b}+\frac{1}{4} \sum_{i j a b} \bar{v}_{i j a b} t_{i j}^{a b} \text { (Evaluation } N^{4}\right)
$$

## Example from BCC at second order

## Second-order triple amplitude in BCC theory

State-of-the-art calculations!
$\diamond$ Storage/handling of full mode-6 tensors impossible in $\mathcal{H}^{(1)}\left(N^{6}\right)$
$\diamond$ Evaluation of tensor networks CPU intensive ( $N^{7}$ )

Need to reduce the dimensionality of the problem!
$\diamond$ Use of symmetry in spherical basis

## From MScheme to JScheme

MScheme: Indices of tensors from spherical basis, $k=\left(n_{k} l_{k} j_{k} t_{k} m_{k}\right)$ ( $\ln e_{\max }=12$, dimension $N=1820$ )

JScheme: Indices of tensors from coupled basis, $\tilde{k}=\left(n_{k} I_{k} j_{k} t_{k}\right)$
$\left(\ln e_{\max }=12\right.$, effective dimension $\tilde{N}=182 \ll N$ )

MScheme tensors are expressed as a function of their JScheme equivalent:

$$
\begin{aligned}
& t_{k_{1} k_{2} k_{3} k_{4}}^{40(1)}=(-1)^{j_{k_{3}}+m_{k_{3}}+j_{k_{4}}+m_{k_{4}}} \sum_{J M}{ }^{\tilde{t}_{\tilde{k}_{1}}^{40(1)} \tilde{k}_{2} \tilde{z}_{3} \tilde{k}_{4}}\left(\begin{array}{cc|c}
j_{k_{1}} & j_{k_{2}} & J \\
m_{k_{1}} & m_{k_{2}} & M
\end{array}\right)\left(\begin{array}{cc|c}
j_{k_{3}} & j_{k_{4}} & J \\
-m_{k_{3}} & -m_{k_{4}} & M
\end{array}\right) \\
& \Omega_{k_{1} k_{2} k_{3} k_{4}}^{31}=(-1)^{j_{k_{3}}+m_{k_{3}}} \sum_{J M}{ }^{J_{\tilde{\Omega}^{2}}^{31} \tilde{k}_{1} \tilde{k}_{2} \tilde{k}_{3} \tilde{k}_{4}}\left(\begin{array}{cc|c}
j_{k_{1}} & j_{k_{2}} & m_{k_{1}} \\
m_{k_{1}} & m_{k_{2}} & M
\end{array}\right)\left(\begin{array}{cc|c}
j_{k_{3}} & j_{k_{4}} & J \\
-m_{k_{3}} & m_{k_{4}} & M
\end{array}\right) \\
& j_{\tilde{t}_{\tilde{k}_{1}} \tilde{K}_{2} J_{12} 0(2)}^{\tilde{k}_{3} ; \tilde{k}_{4} \tilde{k}_{5} J_{45} \tilde{k}_{6}}=\sum_{m_{k_{1}} \ldots m_{k_{6}} m M_{12} M_{45}}(-1)^{j_{k_{4}}+m_{k_{4}}+j_{k_{5}}+m_{k_{5}}+j_{k_{6}}+m_{k_{6}} t_{k_{1} k_{2} k_{3} k_{4} k_{5} k_{6}}^{60(2)} .} \\
& \times\left(\begin{array}{cc|c}
j_{k_{1}} & j_{k_{2}} & J_{12} \\
m_{k_{1}} & m_{k_{2}} & M_{12}
\end{array}\right)\left(\begin{array}{cc|c}
J_{12} & j_{k_{3}} & j \\
M_{12} & m_{k_{3}} & m
\end{array}\right)\left(\begin{array}{cc|c}
j_{k_{4}} & j_{k_{5}} & J_{45} \\
-m_{k_{4}} & -m_{k_{5}} & M_{45}
\end{array}\right)\left(\begin{array}{cc|c}
J_{45} & j_{k_{6}} & j \\
M_{45} & -m_{k_{6}} & m
\end{array}\right)
\end{aligned}
$$

## Example from BCC at second order

## Second-order triple amplitude in BCC theory (Third term)

$$
\left(t_{k_{1} k_{2} k_{3} k_{4} k_{5} k_{6}}^{60(2)}\right)_{3}=-\sum_{k_{7}} \frac{\Omega_{k_{3} k_{1} k_{4} k_{7}}^{3 \tau_{k_{1} k_{7}}^{40(1)} k_{5} k_{5}}}{E_{k_{1} k_{2} k_{3} k_{4} k_{5} k_{6}}^{40}}
$$

Resulting summation over magnetic quantum numbers:

$$
\sum \quad \hat{J}_{12} \hat{J}_{45} \hat{j}^{2} \hat{J}^{(1)^{2}} \hat{J}(2)^{2}
$$

$m_{1} m_{2} m_{3} m_{4} m_{5} m_{6} m_{7} m M_{12} M_{45} M^{(1)} M^{(2)}$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
j_{1} & j_{2} & J_{12} \\
m_{1} & m_{2}-M_{12}
\end{array}\right)\left(\begin{array}{ccc}
J_{12} & j_{3} & j \\
M_{12} & m_{3} & -m
\end{array}\right)\left(\begin{array}{ccc}
j_{4} & j_{5} & J_{45} \\
m_{4} & m_{5} & M_{45}
\end{array}\right)\left(\begin{array}{ccc}
J_{45} & j_{6} & j \\
-M_{45} & m_{6} & m
\end{array}\right) \\
& \left(\begin{array}{ccc}
j_{3} & j_{1} & J^{(1)} \\
-m_{3}-m_{1} & M^{(1)}
\end{array}\right)\left(\begin{array}{ccc}
j_{4} & j_{7} & J^{(1)} \\
-m_{4} & m_{7}-M^{(1)}
\end{array}\right)\left(\begin{array}{ccc}
j_{2} & j_{7} & J^{(2)} \\
-m_{2}-m_{7} & M^{(2)}
\end{array}\right)\left(\begin{array}{ccc}
j_{6} & j_{5} & J^{(2)} \\
-m_{6} & -m_{5} & -M^{(2)}
\end{array}\right)
\end{aligned}
$$

## Representation of CG networks as Yutsis Graph

## Definition of a Yutsis Graph

$\diamond \mathrm{It}$ is a cubic graph, i.e. each node has three edges.
$\diamond$ Each node representes a 3-j symbol.
$\diamond$ Each edge representes angular-momentum indices (j,m).
$\diamond$ Node sign is + if indices are in trigonometric order else - .
$\diamond$ Edge orientation goes from positive projection to negative one.
$\Sigma$
$m_{1} m_{2} m_{3} m_{4} m_{5} m_{6} m_{7} m M_{12} M_{45} M^{(1)} M^{(2)}$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
j_{1} & j_{2} & J_{12} \\
m_{1} & m_{2}-M_{12}
\end{array}\right)\left(\begin{array}{ccc}
J_{12} & j_{3} & j \\
M_{12} & m_{3}-m
\end{array}\right)\left(\begin{array}{ccc}
j_{4} & j_{5} & J_{45} \\
m_{4} & m_{5} & M_{45}
\end{array}\right) \\
& \left(\begin{array}{ccc}
J_{45} & j_{6} & j \\
-M_{45} & m_{6} & m
\end{array}\right)\left(\begin{array}{ccc}
j_{3} & j_{1} & J^{(1)} \\
-m_{3}-m_{1} & M^{(1)}
\end{array}\right)\left(\begin{array}{ccc}
j_{4} & j_{7} & J^{(1)} \\
-m_{4} & m_{7}-M^{(1)}
\end{array}\right) \\
& \left(\begin{array}{ccc}
j_{2} & j_{7} & J^{(2)} \\
-m_{2}-m_{7} & M^{(2)}
\end{array}\right)\left(\begin{array}{ccc}
j_{6} & j_{5} & J^{(2)} \\
-m_{6}-m_{5}-M^{(2)}
\end{array}\right)
\end{aligned}
$$


[JR, A. Tichai, in prep.]

## Reduction rules



## Reduction of a 3-cycle



## Reduction of a 4-cycle


[D. Van Dyck, V. Fack, Discrete Mathematics]

## Additional rules

Line reversal of internal line


## Direct change of Node Sign



Phase associated to Line reversal of an internal line:

- $\phi_{l r}=(-1)^{2 j}$

Phase associated to direct change of Node Sign:

- $\phi_{n s}=(-1)^{j_{1}+j_{2}+j_{3}}$


## Algorithm for Yutsis Graph reduction

Reduce YutsisGraph(YutsisGraph Y)
1: while Y != triangular delta do
2: if Y has bubble then
3: Format and remove arbitrary bubble
4: else if Y has triangle then
5: Format and remove arbitrary triangle
6: else if Y has square then
7: Format and remove arbitrary square
8: else
9: //Implement higher-order rules
10: end if
11: end while
12: return formula

## Reduction of a Yutsis Graph



All in all this gives the $\mathbf{J}$-coupled version of second-order triple amplitude:

$$
\begin{aligned}
\left({ }^{j \tilde{t}_{\tilde{k}_{1}}^{60(2)} \tilde{k}_{2} J_{12} \tilde{k}_{3} ; \tilde{k}_{4} \tilde{k}_{5} J_{45} \tilde{k}_{6}}\right)_{3}= & (-1)^{j_{1}+j_{2}+J_{12}} \hat{J}_{12} \hat{J}_{45} \sum_{\tilde{k}_{7} J^{(1)} J^{(2)}} \frac{J^{(1)} \tilde{\Omega}_{\tilde{k}_{3} \tilde{k}_{1} \tilde{k}_{4} \tilde{k}_{7}}^{J^{(2)} \tilde{t}_{\tilde{k}_{2}}^{40(1)} \tilde{k}_{7} \tilde{k}_{6} \tilde{k}_{5}}}{E_{\tilde{k}_{1} \tilde{k}_{2} \tilde{k}_{3} \tilde{k}_{4} \tilde{k}_{5} \tilde{k}_{6}}} \\
& \times \hat{J(1)}^{2} \hat{J}^{(2)}{ }^{2}\left\{\begin{array}{lll}
j & J^{(1)} & j_{2} \\
j_{1} & J_{12} & j_{3}
\end{array}\right\}\left\{\begin{array}{lll}
j & j_{4} & J^{(2)} \\
j_{7} & j_{2} & J^{(1)}
\end{array}\right\}\left\{\begin{array}{lll}
j & J_{45} & j_{6} \\
j_{5} & J^{(2)} & j_{4}
\end{array}\right\}
\end{aligned}
$$

## Python implementation of the full process

The full process has been implemented in Python!

Firsts results for second-order triple amplitude:

Spherical reduction of tensor networks:
$\diamond$ Dimensionality reduction going from MScheme to JScheme
$\diamond$ By hand derivation tidious in advanced formalisms
$\diamond$ Need for an automatic tool

Python implementation has already been used for:
$\diamond$ Normal ordering
$\diamond(\mathrm{P})$ BMBPT
$\diamond(P) B C C$

Ongoing projects:
$\diamond$ Particle-number conserving normal ordering
$\diamond$ Shift invariance for PBMBPT
$\diamond$ ODE version of PBMBPT

## My poster



| Purpose of thes work |  |
| :---: | :---: |
| - Push at intio many-body calculations hased on expansion methods: <br> - densloging nos formalures (PBMBPT,PBCC). <br> - incladieg mary-body forcas. <br> - airing for a highar accuracy | the spharial reduetion of temer netwaks <br>  <br> San sur Clumer-Gadat (CC) cofficierta <br>  |
| Tensexs and tensor netwaks |  |
|  <br> $\mathrm{Er}: E_{0}=E^{\prime}$ <br> - Storige/ <br> - Evaluatio <br> - Mesed to | andling of full mode-6 tensors imposibile in $7^{17}\left(\mathrm{~N}^{6}\right)$ of tertior netwoeks CPU intersive ( $N^{7}$ ) <br> duce the dimensionality of the proliem ! |
| Symmetry redaction from MSchene to JScheme |  |
| - MScheme: Indices of tensoris from spherical basia, $k=\left(\sigma_{2} 6 j, r_{i} m_{i}\right)$ ( $\ln \mathrm{c}_{\text {mose }}=12$, dimertión $N=1820$ ) <br> - JScheme: Indices of tersions from coupled basis, $\bar{k}=\left\{\left(\mathrm{S} / \mathrm{h} \mathrm{L}_{2}\right\}\right.$ ( In csen - 12, effective dimension $\bar{N}-182 \times W$ ) <br> Ex: Second-arder treple amplitude in BCC theory $\rightarrow\left(\begin{array}{c} \substack{h_{1} \\ m_{7} \\ m_{7} \\ h \\ h \\ -m_{i} \\ -m_{1} \\ -m_{l}} \end{array},\right.$ | invors are expressed as a function of their JScheme equivalants. <br>  <br> $\mathrm{H}_{4} \mathrm{Ma}_{2}$ MF: $12 \boldsymbol{2}$ <br>  <br>  |
| Representation of CG networts as a Yutss Graph |  |
| Definition of a Yutsis Graplt <br> - It à a cubic graph, i.e each mode has there edges. <br> - Each node representes 43 -j symbal. <br> - Each edge representes angular-momentum indices (j,m). <br> - Node sign is + of indices are in trigonsmetric arder alse - <br> - Edge ocientation goes from positive projection to magative ont. |  |
| Algashm for Yutss Graph reduction |  |
| ReduceYutsisGraph(YutsisGraph Y) <br> 1. while Y I- triangular delta do <br> if $Y$ has bubble then <br> Format and remove arbitrary bubble <br> else if $Y$ has triangle then <br> Format and remowe arbitrary triangle else if Y has square then <br> Fonthat and remove arbitrary square else <br> 10: end if <br> //Implement highter-arder rules <br> 11. end while <br> 12. return formula | J-coupled wersion of second-arder triple amplitude <br> - Reduce the Yufsia Graph associated to the expresion <br> - Put back resulting factors ista IScheme expression |
| Summary <br> - Stuteod-the-at many-body methods require large stoage capwaties and are CPU intenives. <br> - Symmerry eeduction: Reduction of the dimensisoality going from MSchene to JScheme. <br> - Python code mititen for automated symbaic manipolatise of Yutsis Graph. <br> - Appicition to more and more complex tensor setwasks. <br> - The cooke hias already been used for: Normal ocdering. (P) PMePT, (P)BCC. |  |

