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FIG. 4. (Color online) Second-order extrapolations of the ground-
state and 2+ energies of 64Ge in the pf +g9/2-shell. The blue dashed
line shows the first-order extrapolation of the ground-state energy of
the PHT calculation. The notation is the same as that of Fig. 2.

quite well not only for energy eigenvalues, but also for other
physical quantities of some low-lying states. By adopting the

extrapolation method with the energy variance, we obtain
a self-contained framework that removes the ambiguity of
the energy convergence in the MCSM. We applied this
framework also to large-scale shell-model problems, like the
case of 64Ge, that cannot be solved by existing conventional
solvers. These results look quite promising and encourage
us to apply the present method to larger-scale problems. In
such cases, the error estimation of the extrapolation method
itself becomes important and will be discussed in a future
publication.
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Nmax: maximum excitation from lowest config.
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FIG. 3. (Color online) Calculated ground-state energy of 4He as
a function of Nmax at various values of the oscillator energy, h̄!, as
indicated in the legend. The results are connected by straight-line
segments to guide the eye. The results with chiral N3LO are from
Ref. [9]. The results for JISP16 are closer to convergence even in
rather modest basis spaces. No extrapolations are needed in these
cases as converged results are obtained directly.

data. The interaction is nonlocal but this is no limitation
for NCFC, which also preserves all the symmetries of the
underlying NN interaction.

With JISP16 for our NN interaction, we perform ab initio
calculations of the ground-state energies of 2H, 3H, 4He,
6He, 6Li, 8He, 12C, and 16O. The three lightest nuclei serve
as test cases to demonstrate that the extrapolation methods,
using results in limited basis spaces, are able to predict the
fully converged results and to demonstrate that our assessed
uncertainties are realistic. We limit ourselves to examples for
which a sufficient set of results could be achieved within our
current computational resource limits.

III. FINITE BASIS SPACE EXPANSIONS

Our results in finite basis spaces satisfy the variational
principle and show uniform and monotonic convergence from
above to the exact eigenenergy with increasing Nmax. That is,
the results for the energy of the lowest state of each spin and
parity, at any Nmax truncation, are upper bounds on the exact
converged answers and the convergence is monotonic with
increasing Nmax. This guarantee of monotonic convergence
from above to the exact energy facilitates our choice of
extrapolating function.

We carefully investigate the dependence of the results on
the basis space parameters, Nmax and h̄!. Our goal is to achieve
independence of both of these parameters as that is a signal for
convergence—the result that would be obtained from solving
the same problem in a complete basis.

Before proceeding, let us explain some additional features
of the many-body regulator, Nmax. As introduced above, Nmax
is the maximum number of oscillator quanta shared by all
nucleons above the lowest HO configuration for the chosen
nucleus. Its use allows us to factorize eigenfunctions into

intrinsic and center-of-mass (c.m.) components for ease of
eliminating spurious center-of-mass motion effects on all
observables. One unit of oscillator quanta is one unit of the
quantity (2n + l), where n is the principle quantum number
and l is the angular quantum number. If the highest HO
single-particle state of this lowest HO configuration has N0
HO quanta, then Nmax + N0 identifies the highest HO single-
particle states that can be occupied within this many-body
basis. Note that because Nmax is the maximum of the total
HO quanta above the minimal HO configuration, we can have
at most one nucleon in such a highest HO single-particle state.

The precise method of achieving the factorization of
the center-of-mass and intrinsic components of the many-
body wave function follows a standard approach, sometimes
referred to as the Lawson method [12]. In this method, one
selects the many-body basis space in the manner described
above and adds a Lagrange multiplier term to the many-body
Hamiltonian λ(Hc.m. − 3

2h̄!), where Hc.m. is the harmonic
oscillator Hamiltonian for the center-of-mass motion. With
λ chosen positive (10 is a typical value), one separates the
states of lowest center-of-mass motion (0S 1

2
) from the states

with excited center-of-mass motion by a scale of order λh̄!.
The resulting low-lying states have wave functions that are
assured to have the desired factorized form.

It is important to note that our NCFC results for the ground-
state energy for A = 2, 3, 4 are obtained directly as we achieve
sufficient independence of Nmax and h̄!. For the other nuclei
studied here, we characterize the approach to convergence by
the dependence of results on both Nmax and h̄! and investigate
the shape of that convergence in detail. The degree of residual
dependence on these two parameters provides a measure of the
difference from the exact result, an estimate of the numerical
uncertainty in the extrapolation.

We employ the parallel-processor code MANY-FERMION
DYNAMICS–NUCLEAR (MFDn) [13] that sets up the many-body
basis space, evaluates the many-body Hamiltonian matrix,
obtains the low-lying eigenvalues and eigenvectors using the
Lanczos algorithm, and evaluates a suite of experimental
observables. Working in the single-particle HO m-scheme,
the lowest 15 states here are usually obtained with 300–600
iterations, depending on Nmax and the nucleus involved. The
required number of iterations grows with Nmax.

The largest matrix we diagonalize for this work corresponds
to 16O in the Nmax = 8 space with a basis dimension about
1 billion. We obtain the lowest 8 eigenstates and a suite
of observables in 4.5 hours on 12,090 processors using the
Franklin supercomputer at the National Energy Research
Supercomputer Center (NERSC). The second largest case
is 12C with a basis dimension of about 600 million for
which we obtain the lowest 15 eigenstates and a suite of
observables in 2.3 hours on 12,720 processors using the Jaguar
supercomputer at Oak Ridge National Laboratory (ORNL).
The above times correspond to calculations at a single value
of h̄!. For calculations as a function of h̄! in the same basis
spaces, we use internally generated and stored index arrays
amounting to many terabytes of data so that the second and
subsequent h̄! values each take about 2/3 the time of the first
case.
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parametric vs non-parametric

exponential or (low-rank) polynomial

risk of overfitting
(exception: there is “underlying mechanism”)

☒ not robust to outliers
(need to get rid of outliers)

☒ point estimation of “parameter” for 
exponential/polynomial

→ difficult to see uncertainty 
coming from “fit”

parametric (conventional) non-parametric  (proposed)

Gaussian Processes(GPs)
resolve these problems

Bayes GP model

☑ “Regularization term” is naturally introduced 

→ avoid overfitting

(GP is mathematically equivalent to 
ANN with 1 hidden layer & # of node →∞)

☑ Robust against outliers

☑ It says “Iʼm not quite sure” 
in the region very far from data

☑ proper UQ
predictions are given as prob. distribution
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quite well not only for energy eigenvalues, but also for other
physical quantities of some low-lying states. By adopting the

extrapolation method with the energy variance, we obtain
a self-contained framework that removes the ambiguity of
the energy convergence in the MCSM. We applied this
framework also to large-scale shell-model problems, like the
case of 64Ge, that cannot be solved by existing conventional
solvers. These results look quite promising and encourage
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such cases, the error estimation of the extrapolation method
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3 , from
Figure 1.4.

What are GPs?

polynomial? Artificial Neural Network?

Figs. from PRML (Springer, 2006)

10 data points 
D ={(xi, yi)|i=1,2,…,10}

y* at unobserved points x* 

M=0 M=1

M=3 M=9

red: prediction, blue: data, green: true function

Toy Problem
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What are GPs?

Essential idea of GPs:

1. two target values yi, yj at near two points xi, xj must be “similar”

2. This “similarity” is defined by Kernel, a function of distance |xi-xj|

3.  

18 Chapter. 2 Basics for uncertainty quantifications in nuclear models

2.3 Gaussian process

In this section, we introduce the basics about Gaussian processes (GPs), which is used in

Chap. 4. The GP is a very popular tool for wide class of problems due to its flexibility. We

note that the book, Gaussian Processes for Machine Learning (GPML) by C.E. Rasmussen and

C.K.I. Williams [6], is one of the most outstanding textbook for gaussian process.

2.3.1 Regression with GPs

In many textbooks or manuscripts, GPs are introduced in the context of linear regression

problems, but we do not follow this and try to explain them by a more intuitive way. This

is because we think that it is not always necessary to learn about the stuff like feature space,

Kernel trick, etc. to use GPs as a black-box function.

Suppose that we have a data set of n observations, D = {(xi, yi)|i = 1, ..., n}, where x

denotes an input and y denotes the corresponding target value. Here we assume that x is an

one-dimensional input, but the extension to multi-dimensional case is straightforward. The

essence of GPs can be expressed as to predict output values y∗ with respect to the un-observed

point x∗ under the observations of D and assuming the two output values yi and yj of two

adjacent points xi and xj should be similar. This similarity is expressed by so-called Kernel

functions introduced later.

2.3.2 GPs with constraints

k(xi,xj) = τ exp

(
− ||xi − xj||2

2σ

)
(2.40)e.g. RBF Kernel

τ,σ: hyperparameters

2
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2

function is the Matérn kernel defined for two data points
xi and xj as

kM(r, ν) = τ
21−ν

Γ(ν)

(√
2νr

σ

)ν

Kν

(√
2νr

σ

)
,

r ≡
√
||xi − xj ||2, (2)

where Γ is the gamma function and Kν is the modified
Bessel function of the second kind. While the Matérn ker-
nel approaches the radial based function kernel by taking
the limit, ν → ∞, ν = 5/2 is typically chosen, and we
also adopt it. In that case, the expression can be simpli-
fied as follows:

kM(r, ν = 5/2) = τ

(
1 +

√
5r

σ
+

5r2

3σ2

)
exp

(
−
√
5r

σ

)

(3)

The elements of KXX∗ and KX∗X∗ are simultaneously
evaluated. Here the global strength τ and correlation
length σ are the hyperparameters, which we will revisit
later.

P (y,y∗) ∼ N
([

µ
µ∗

]
,

[
KXX KXX∗

KT
XX∗ KX∗X∗

])
(4)

The posterior distribution of y∗ for unobserved input
x∗ can be written as

P (y∗|y) =
∫

P (y∗,θ|y)dθ =

∫
P (y∗|y,θ)P (θ|y)dθ,

(5)
P (y∗|y,θ) = N (µy∗|y,Σy∗|y), (6)

µy∗|y(θ) = KT
XX∗KXXµy, (7)

Σy∗|y(θ) = KX∗X∗ −KT
XX∗K−1

XXKXX∗ , (8)

where final expression in Eq. (5) is derived with Bayes’
theorem. We note that the explicit dependence on µ is
omitted in the right hand sides for simplicity.

In addition to this, we introduce another kind of GP
regression model. In some applications, the target func-
tion is known to have some shape constraints (e.g. mono-
tonicity or convexity) or inequality constraints which are
guided by physical principles. That is also the case with
configuration interaction methods. In the case of NCFC,
energy eigenvalues are monotonic with respect to Nmax

truncation. That is also true for MCSM or importance-
truncated shell model (IT-SM), if one sequentially add
physically important basis vectors.

Let us suppose that the target function y increases with
respect to x and only the signs of derivative value at M
derivative points X ′ = {x′

k|k = 1, ...,M} are available in-
stead of concrete values of {y′k}. In that case, predictions

under latent variable y′ in addition to given observations
y is expressed as follows:

P (y∗|my) =

∫
P (y∗,y′,θ|my)dθdy′. (9)

Here we introduced vector m to express monotonicity
information at derivative points. The integrand of Eq. (9)
can be written as

P (y∗,y′,θ|my) ∝ P (y∗,y′|y,θ)P (m|y′)P (θ)P (y|θ).
(10)

It is straightforward to extend the Eq. (6) to the joint
posterior P (y∗,y′|y,θ):

P (y∗,y′|y,θ) = N (µjoint|y,Σjoint|y) (11)

Here, the mean and covariance of this GP are obtained
as follows:

µjoint|y =

[
µy∗

µy′

]
+ CK−1

XX(y − µy), (12)

Σjoint|y =

[
KX∗X∗ KX∗X′

KT
X∗X′ KX′X′

]
− CK−1

XXCT , (13)

C ≡
[
KX∗X

KX′X

]
, (14)

The elements of KXX′ and KX′X′ are obtained as fol-
lows:

k(xi, x
′
j) ≡

∂

∂xj
k(xi, xj), k(x

′
i, x

′
j) ≡

∂2

∂xi∂xj
k(xi, xj).

(15)

As in Ref. [17, 18], we use the following Probit function
as P (m|y′) that links the monotonicity information m
to the corresponding latent derivative values y′:

d∏

j=1

P (mj |y′j) =
d∏

j=1

Φ(κy′j), (16)

Φ(z) ≡
∫ z

−∞

1√
2π

exp

(
− t2

2

)
dt, (17)

where y′j is the latent value at j-th derivative point
and κ is the parameter which controls the strictness of
monotonicity information. That is gradually increased
to (step)×106 in the code. So far we have assumed that
x and x′ are one-dimensional variable, but the extension
of the these variable and partial derivative to the multi-
dimensional one is straightforward. We also note that
we normalize the target values of data points and, then,
fix µy = 0D, µy∗ = 0P , and µy′ = 0M throughout this
work.

In general, the posteriors Eq. (5) and Eq. (9) cannot
be evaluated analytically. Therefore some approxima-
tion or sampling scheme are required. We employ the

What are GPs?

Essential idea of GPs:

1. two target values yi, yj at near two points xi, xj must be “similar”

2. This “similarity” is defined by Kernel, a function of distance |xi-xj|

3. Assume that y and y* are obeying Multi-dimensional Gaussian 

whose covariance matrix is defined by Kernel function

18 Chapter. 2 Basics for uncertainty quantifications in nuclear models

2.3 Gaussian process

In this section, we introduce the basics about Gaussian processes (GPs), which is used in

Chap. 4. The GP is a very popular tool for wide class of problems due to its flexibility. We

note that the book, Gaussian Processes for Machine Learning (GPML) by C.E. Rasmussen and

C.K.I. Williams [6], is one of the most outstanding textbook for gaussian process.

2.3.1 Regression with GPs

In many textbooks or manuscripts, GPs are introduced in the context of linear regression

problems, but we do not follow this and try to explain them by a more intuitive way. This

is because we think that it is not always necessary to learn about the stuff like feature space,

Kernel trick, etc. to use GPs as a black-box function.

Suppose that we have a data set of n observations, D = {(xi, yi)|i = 1, ..., n}, where x

denotes an input and y denotes the corresponding target value. Here we assume that x is an

one-dimensional input, but the extension to multi-dimensional case is straightforward. The

essence of GPs can be expressed as to predict output values y∗ with respect to the un-observed

point x∗ under the observations of D and assuming the two output values yi and yj of two

adjacent points xi and xj should be similar. This similarity is expressed by so-called Kernel

functions introduced later.

2.3.2 GPs with constraints

k(xi,xj) = τ exp

(
− ||xi − xj||2

2σ

)
(2.40)e.g. RBF Kernel

* Usually, data points are normalized, i.e. μ=0, μ*=0
X ={xi |i=1,...,N}
X*={xj*|j=1,...,M}

correlation among data points(N×N)
corr. b/w data & prediction points (N×M)

corr. among prediction points (M×M)

2

τ,σ: hyperparameters
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MCSM extrapolation: 76Sr g.s.
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Bayes GP model may tell 
safer and reasonable predictions

More validity checks are needed!!
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Summary

- Open the core part of code

- Application to NCMCSM, IT-(NC)SM, other observables,

strongly correlated electrons system, etc.

Future perspectives

7

☑ Flexible non-parametric extrapolation method
applicable to weird shape function

☑ Easy to incorporate “physics” (monotonicity, etc.)

☑ Proper uncertainty quantification

Bayes GP model

More details
- Poster

- Upcoming paper 

- (free) Gaussian Process for Machine Learning 
by Carl Edward Rasmussen and Christopher K. I. Williams


