Non-parametric Bayesian approach to the extrapolation in configuration interaction methods

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 25 - Mar.1, 2019, TRIUMF Vancouver BC Canada

Sota Yoshida

Extrapolations in NCFC(NCSM)/MCSM

No-Core Full Configuration (NCFC)

$\mathrm{N}_{\text {max }}$: maximum excitation from lowest config. exact results $\sim N_{\text {max }} \rightarrow \infty$

P. Maris et al., PRC 79, 014308 (2009).

Monte Carlo Shell Model (MCSM)

\# of MCSM basis \rightarrow original dim. $\sim \infty$
or Energy variance $<\Delta \mathrm{H}^{2}>\rightarrow 0$

N. Shimizu et al., PRC 82, 061305(R) (2010).

parametric vs non-parametric

parametric (conventional)
exponential or (low-rank) polynomial

risk of overfitting

(exception: there is "underlying mechanism")
区 not robust to outliers
(need to get rid of outliers)
区 point estimation of "parameter" for
exponential/polynomial
\rightarrow difficult to see uncertainty coming from "fit"

non-parametric (proposed)

Gaussian Processes(GPs)

 resolve these problems
Bayes GP model

\square "Regularization term" is naturally introduced
\rightarrow avoid overfitting
(GP is mathematically equivalent to ANN with 1 hidden layer \& \# of node $\rightarrow \infty$)

Robust against outliers
It says "I'm not quite sure"
in the region very far from data
proper UQ
predictions are given as prob. distribution
\checkmark weak(=safer) conclusions under data+ physical principle

What are GPs?

Toy Problem

10 data points
$\mathrm{D}=\left\{\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right) \mid \mathrm{i}=1,2, \cdots, 10\right\}$
y^{*} at unobserved points x^{*}

polynomial? Artificial Neural Network?

red: prediction, blue: data, green: true function
Figs. from PRML (Springer, 2006)

What are GPs?

Toy Problem

10 data points
$D=\left\{\left(x_{i}, y_{i}\right) \mid i=1,2, \cdots, 10\right\}$
y^{*} at unobserved points x^{*}

polynomial? Artificial Neural Network?

red: prediction, blue: data, green: true function
 Figs. from PRML (Springer, 2006)

Essential idea of GPs:

1.
2.
3.

What are GPs?

Essential idea of GPs:

1. two target values y_{i}, y_{j} at near two points x_{i}, x_{j} must be "similar"
2.
3.

What are GPs?

Essential idea of GPs:

1. two target values y_{i}, y_{j} at near two points x_{i}, x_{j} must be "similar"
2. This "similarity" is defined by Kernel, a function of distance $\left|\mathbf{x}_{\mathrm{i}}-\mathbf{x}_{\mathrm{j}}\right|$

$$
\text { e.g. RBF Kernel } \quad k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\tau \exp \left(-\frac{\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)
$$

τ, σ : hyperparameters
3.

Essential idea of GPs:

1. two target values y_{i}, y_{j} at near two points x_{i}, x_{j} must be "similar"
2. This "similarity" is defined by Kernel, a function of distance $\left|\mathbf{x}_{i}-\mathbf{x}_{\mathrm{j}}\right|$

$$
\text { e.g. RBF Kernel } \quad k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\tau \exp \left(-\frac{\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}}{2 \sigma^{2}}\right)
$$

τ, σ : hyperparameters
3. Assume that \mathbf{y} and \mathbf{y}^{*} are obeying Multi-dimensional Gaussian whose covariance matrix is defined by Kernel function

$$
\begin{aligned}
& \text { correlation among data points }(\mathrm{N} \times \mathrm{N}) \\
& \text { corr. } \mathrm{b} / \mathrm{w} \text { data \& prediction points }(\mathrm{N} \times \mathrm{M}) \\
& P\left(\boldsymbol{y}, \boldsymbol{y}^{*}\right) \sim \mathcal{N}\left(\left[\begin{array}{c}
\boldsymbol{\mu} \\
\boldsymbol{\mu}^{*}
\end{array}\right],\left[\begin{array}{cc}
K_{X X} & K_{X X}{ }^{*} \\
K_{X X^{*}}^{T} & K_{X^{*} X^{*}}
\end{array}\right]\right) \\
& X=\left\{x_{i} \mid i=1, \ldots, N\right\} \\
& X^{*}=\left\{\mathrm{X}_{\mathrm{j}}{ }^{*} \mid \mathrm{j}=1, \ldots, \mathrm{M}\right\} \quad * \text { Usually, data points are normalized, i.e. } \mu=0, \mu^{*}=0
\end{aligned}
$$

NCFC results of ${ }^{6}$ Li g.s. energy

\times : N3LO ($\mathrm{N}_{\max }=6-14$)
M. Kruse et al., PRC 87, 044301(2013).

- : JISP16 ($\left.\mathrm{N}_{\max }=2-18\right)$
- : NNLOopt $\left(N_{\max }=2-18\right)$
I.J.Shin et al., J. Phys. G: Nucl. Part. Phys. 44, 075103 (2017).

Lines: exponential fit using

- All data (dashed)
- Best 5 data (dotted)
- Best 3 data (solid)

NCFC results of ${ }^{6}$ Li g.s. energy

\times : N3LO $\left(N_{\max }=6-14\right)$
M. Kruse et al., PRC 87, 044301(2013).

- : JISP16 $\left(\mathrm{N}_{\max }=2-18\right)$
- : NNLOopt $\left(N_{\text {max }}=2-18\right)$
I.J.Shin et al., J. Phys. G: Nucl. Part. Phys. 44, 075103 (2017).

Lines: exponential fit using

- All data (dashed)
- Best 5 data (dotted)
- Best 3 data (solid)

Bayes GP (with monotonicity)

+convexity

consistent with "Extrap B"

MCSM extrapolation: ${ }^{76} \mathrm{Sr}$ g.s.

MCSM extrapolation: ${ }^{76} \mathrm{Sr}$ g.s.

MCSM extrapolation: ${ }^{76} \mathrm{Sr}$ g.s.

\leftarrow Scattered predictions due to the limited expression power of each polynomial

MCSM extrapolation: ${ }^{76} \mathrm{Sr}$ g.s.

\leftarrow Scattered predictions due to the limited expression power of each polynomial

Bayes GP model may tell safer and reasonable predictions

More validity checks are needed!!

Summary

Bayes GP model
\square Flexible non-parametric extrapolation method applicable to weird shape function
\square Easy to incorporate "physics" (monotonicity, etc.)
\square Proper uncertainty quantification

Future perspectives

- Open the core part of code
- Application to NCMCSM, IT-(NC)SM, other observables, strongly correlated electrons system, etc.

More details

- Poster
- Upcoming paper
- (free) Gaussian Process for Machine Learning by Carl Edward Rasmussen and Christopher K. I. Williams

