Non-parametric Bayesian approach to the extrapolation in configuration interaction methods

Progress in Ab Initio Techniques in Nuclear Physics, Feb.25 - Mar.1, 2019, TRIUMF Vancouver BC Canada

Sota Yoshida

parametric vs non-parametric

parametric (conventional)

risk of overfitting

(exception: there is "underlying mechanism")

- not robust to outliers (need to get rid of outliers)
- ⊠ point estimation of "parameter" for exponential/polynomial
 - → difficult to see uncertainty coming from "fit"

✓ strong conclusions under "assumptions"

non-parametric (proposed)

Gaussian Processes(GPs) resolve these problems

Bayes GP model

- \blacksquare "Regularization term" is naturally introduced
- \rightarrow avoid overfitting
 - (GP is mathematically equivalent to ANN with 1 hidden layer & # of node $\rightarrow \infty$)
- \blacksquare Robust against outliers
- ✓ It says "I'm not quite sure" in the region very far from data
- ✓ proper UQ predictions are given as prob. distribution

 weak(=safer) conclusions under data+ physical principle

What are GPs?

Toy Problem

10 data points D ={ $(x_i, y_i)|i=1,2,\dots,10$ }

y* at unobserved points x*

polynomial? Artificial Neural Network?

red: prediction, blue: data, green: true function Figs. from PRML (Springer, 2006)

What are GPs?

Toy Problem

10 data points D ={ $(x_i, y_i) | i=1,2,\dots,10$ }

y* at unobserved points x*

polynomial? Artificial Neural Network?

red: prediction, blue: data, green: true function Figs. from PRML (Springer, 2006)

What are GPs?

Essential idea of GPs:

1.

2.

3.

Essential idea of GPs:

1. two target values y_i , y_j at near two points x_i , x_j must be "similar"

2.

3.

Essential idea of GPs:

- 1. two target values y_i , y_j at near two points x_i , x_j must be "similar"
- 2. This "similarity" is defined by Kernel, a function of distance $|\mathbf{x}_i \mathbf{x}_i|$

e.g. RBF Kernel
$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \tau \exp\left(-\frac{||\boldsymbol{x}_i - \boldsymbol{x}_j||^2}{2\sigma^2}\right)$$

τ,σ: hyperparameters

3.

Essential idea of GPs:

- 1. two target values y_i , y_j at near two points x_i , x_j must be "similar"
- 2. This "similarity" is defined by Kernel, a function of distance $|\mathbf{x}_i \mathbf{x}_i|$

e.g. RBF Kernel
$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \tau \exp\left(-\frac{||\boldsymbol{x}_i - \boldsymbol{x}_j||^2}{2\sigma^2}\right)$$

τ,σ: hyperparameters

3. Assume that **y** and **y**^{*} are obeying Multi-dimensional Gaussian whose covariance matrix is defined by Kernel function

correlation among data points (N \times N)

<u>corr.</u> b/w data & prediction points (N \times M)

$$P(\boldsymbol{y}, \boldsymbol{y}^*) \sim \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{\mu}^* \end{bmatrix}, \begin{bmatrix} K_{XX} & K_{XX*} \\ K_{XX*}^T & K_{X*X*} \end{bmatrix} \right)$$

 $\begin{array}{ll} X = \{x_i \mid i = 1, ..., N\} \\ X^* = \{x_j^* \mid j = 1, ..., M\} \end{array} \\ \begin{array}{ll} \text{corr. among prediction points } (M \times M) \\ \text{* Usually, data points are normalized, i.e. } \mu = 0, \ \mu^* = 0 \end{array}$

NCFC results of ⁶Li g.s. energy

I.J.Shin et al., J. Phys. G: Nucl. Part. Phys. 44, 075103 (2017).

Lines: exponential fit using

- All data (dashed)
- Best 5 data (dotted)
- Best 3 data (solid)

NCFC results of ⁶Li g.s. energy

I.J.Shin et al., J. Phys. G: Nucl. Part. Phys. 44, 075103 (2017).

Lines: exponential fit using

- All data (dashed)
- Best 5 data (dotted)
- <u>Best 3 data (solid)</u>

←Scattered predictions due to the limited expression power of each polynomial

←Scattered predictions due to the limited expression power of each polynomial

Bayes GP model may tell safer and reasonable predictions

More validity checks are needed!!

Summary

Bayes GP model

 \blacksquare Flexible non-parametric extrapolation method

applicable to weird shape function

☑ Easy to incorporate *"physics"* (monotonicity, etc.)

Proper uncertainty quantification

Future perspectives

- Open the core part of code
- Application to NCMCSM, IT-(NC)SM, other observables,

strongly correlated electrons system, etc.

More details

- Poster
- Upcoming paper
- (free) Gaussian Process for Machine Learning by Carl Edward Rasmussen and Christopher K. I. Williams