Applying new power counting of chiral EFT in ab-initio calculations

Chieh-Jen (Jerry) Yang

Triumf workshop: Progress in Ab-initio Techniques in

Nuclear Physics

Feb/27/2019

Collaborators: A. Ekström, C. Forssén, G. Hagen, T. Papenbrock

EFT-like approaches

Select a model space

(since we cannot do calculations in (or even actually know the structure of) the entire Hilbert space)

Build/Derive the interactions in that model space

Solve for any observable desired

Compare to data (check your assumptions)

Conventional power counting

Epelbaum, Entem, Machleidt, Kaiser, Meissner, ... etc., ~90% of the people

Problems in RG

- Singular attractive potentials demand contact terms. (Nogga, Timmermans, van Kolck (2005))
- Beyond LO: Has RG problem at $\Lambda > 1 \text{ GeV}$ (due to iterate to all order)

Renormalization group (RG)

Select a model space

(since we cannot do calculations in (or even actually know the structure of) the entire Hilbert space)

Build/Derive the interactions in that model space

Solve for any observable desired

Vary your model space (mostly enlarge \rightarrow more shouldn't hurt)

Compare to data (check your assumptions)

Minimum requirement of EFT[©]

Select a model space

(since we cannot do calculations in (or even actually know the structure of) the entire Hilbert space)

Renormalize the interactions in that model space

Solve for any observable desired

Vary your model space (mostly enlarge \rightarrow more shouldn't hurt)

Compare to data (check your assumptions)

New power counting Long & Yang, (2010-2012)

LO: Still iterate to all order (at least for most l < 2).

Start at NLO, do perturbation. $(T = T^{(0)} + T^{(1)} + T^{(2)} + T^{(3)} + ...)$

If V⁽¹⁾ is absent: $T^{(2)} = V^{(2)} + 2V^{(2)}GT^{(0)} + T^{(0)}GV^{(2)}GT^{(0)}.$ One insertion of V⁽²⁾ in T⁽⁰⁾ V⁽²⁾ V⁽²⁾ T⁽⁰⁾ V⁽²⁾ T⁽⁰⁾ V⁽²⁾ T⁽⁰⁾ $V^{(2)}$ $T^{(0)}$ $G = \frac{2M_N}{\pi} \int_0^{\Lambda} \frac{p^2 dp}{p_0^2 - p^2 + i\varepsilon}$

 $T^{(3)} = V^{(3)} + 2V^{(3)}GT^{(0)} + T^{(0)}GV^{(3)}GT^{(0)}.$

RG-invariant power counting (call it: MWPC)

• Only LO (contain: S-waves & some P-waves) interaction is treated non-perturbatively.

Same as WPC, except ${}^{3}P_{0}$ and ${}^{3}P_{2}$ - ${}^{3}F_{2} \rightarrow$ has 1 contact term to achieve RG.

• All other corrections need to be treated in perturbation theory.

To avoid the Wigner-bound-like effect (which destroy RG).

• Observables at LO need to be not "crazily far" from data. Otherwise it would be difficult to correct it.

However, this applies generally for any EFT.

Ab-initio calculations

- For ³H, ³He, ⁴He, use NCSM.
- For ¹⁶O, use CC.

$$V_{ll'}(p,k;\Lambda) = [V_{short} + V_{long}] \cdot exp(-\frac{p^4 + k^4}{\Lambda^4}),$$
 regulator

$$\langle V_{ll'} \rangle_{nm} = \frac{2}{\pi} \int p^2 dp \int k^2 dk \ \phi_{nl}(p) V_{ll'}(p,k;\Lambda) \phi_{ml'}(k).$$

$$\downarrow$$
Input for NCSM & CC

• Deep bound states (${}^{3}P_{0}$ from $\Lambda \ge 750$ MeV and ${}^{3}S_{1} - {}^{3}D_{1}$ from $\Lambda \ge 1050$ MeV) are removed.

Input & fitting

Channel	LEC fit up to
${}^{1}S_{0}$	a ₀ =-23.7 fm
${}^{3}S_{1} - {}^{3}D_{1}$	E _b =-2.225 MeV
${}^{1}P_{1}$	N/A
$^{3}P_{0}$	k _{cm} =140 MeV
${}^{3}P_{1}$	N/A
${}^{3}P_{2} - {}^{3}F_{2}$	Set I: T _{lab} =40 MeV
	Set II: T _{lab} =200 MeV

All other channels set to zero.

${}^{3}P_{2}-{}^{3}F_{2}$ (fit up to m_{π} or higher?)

Fit up to $k=m_{\pi}$

Fit up to T_{lab}=200 MeV

Set I

Set II

NCSM results: LO light nuclei

Relative difference between reuslts from $N_{\text{max}(A)}$ and $N_{\text{max}(A)}-2$

Relative difference between input Set I and Set II.

NLO

Just ¹S₀ channel enters (perturbatively) $V_{nlo}(p,k) = [C + D(p^2 + k^2)] \exp(-\frac{p^4 + k^4}{\Lambda^4})$

NLO for light nuclei

So far so good, but...

¹⁶O results (depend a lot on fitting details)

Cutoff (MeV)	¹⁶ O (MeV)		4*4He (MeV)	
	Fit m_{π}	Fit 200	Fit m _π	Fit 200
450	-269 Uuco	-152	-159	-159
500	-225	-74.9	-133	-132

Higher cutoffs require more computational efforts. Almost no Effect on ⁴He

¹⁶O v.s. $4 \cdot {}^{4}$ He

• Subleading corrections (enter perturbatively) can modify existing poles position, but cannot generate new pole.

• Thus, if we fail to get the "4-α"-like pole structure at LO, we are in trouble.

• This is the case if ${}^{3}P_{2}$ - ${}^{3}F_{2}$ is fitted up to T_{lab} =200 MeV to get "good phase shifts".

¹⁶O results

MWPC with low cutoffs works well (if using Λ as a fitting parameter)

⁴He: -29.5 MeV ¹⁶O: -127 MeV

But this is not EFT!

To describe nuclei with an RGinvariant EFT requires more work!

Is the large NLO contribution to the ${}^{1}S_{0}$ phase shift a problem?

Further improvement in ${}^{1}S_{0}$

- At LO, although RG-invariant, the converged phase shift is far from data.
- Worrisome big change (>100%) from LO to NLO.

Re-thinking alternatives: Adopt dibaryon field D.B. Kaplan, Nucl. Phys. B 494 (1997) 471. B. Long, Phys. Rev. C 88 (2013) 014002. *M. S. Sánchez, C.-J. Yang, Bingwei Long, U. van Kolck, Phys.Rev. C97 (2018) no.2, 024001. adopted here

All of them produce RG-invariant ${}^{1}S_{0}$ phase shifts.

Dibaryon and phase equivalent transformation

 $V_{DB}(E) = \frac{1}{\Delta + cE}, (E = \frac{k_0^2}{m_N}) \longrightarrow$ E-dep! Cannot be used in many-body.

Full potential: $V_{DBZ}(p,k,E) = OPE(p,k) + C_0 + V_{DB}(E)$.

Our treatment

 $[H_0 + V(E)]\psi = E\psi$. Solve iteratively to get for E_i . $1 = \sum_{E} |\psi_{E_i}\rangle \langle \psi_{E_i} |, \text{ (if } |\psi_{E_i}\rangle \text{ are orthgonal)}.$

In fact it's not for E-dep V => re-orthgonalize them by Gram-Schmidt.

Then,
$$\langle \mathbf{p}|\mathbf{H}|\mathbf{p}'\rangle = \sum_{E_i} \sum_{E'_i} \langle \mathbf{p}|\psi_{E_i}\rangle \langle \psi_{E_i}|H|\psi_{E'_i}\rangle \langle \psi_{E'_i}|p'\rangle \approx \sum_{E_i} \langle \mathbf{p}|\psi_{E_i}\rangle E_i \langle \psi_{E_i}|p'\rangle$$

Fianly,
$$V(p, p') = \langle p|H|p' \rangle - \frac{p}{m_N} \delta_{pp}$$

Introduce model dep., i.e., ordering of vectors in G.S. create ~15(20)% uncertainty on 3 H (4 He).

B: Separable potential

Shaowei Wu, Bingwei Long, coming soon.

P-dep. version of 1 dibaryon field potential.

$$V_{sep}(p,k) = \frac{ym_N}{\sqrt{p^2 + m_N \Delta}\sqrt{k^2 + m_N \Delta}} + Yukawa$$

¹⁶O with DBZ (still not work)

		¹⁶ 0	4^{*4} He
Set I	DBZ with ${}^{3}P_{2} - {}^{3}F_{2}$ up to $T_{lab} = 40$ MeV, $\Lambda = 450$ MeV	-173	-135
	DBZ with $^{3}P_{2}-^{3}F_{2}$ up to $\mathrm{T}_{lab}=40$ MeV, $\Lambda=500$ MeV	-123	-113
	DBZ with ${}^{3}P_{2} - {}^{3}F_{2}$ up to $T_{lab} = 40$ MeV, $\Lambda = 550$ MeV	-70.5	-91.6
Set II -	DBZ with ${}^{3}P_{2} - {}^{3}F_{2}$ up to $T_{lab} = 200 \text{ MeV}, \Lambda = 450 \text{ MeV}$	-103	-134
	DBZ with ${}^3P_2 - {}^3F_2$ up to ${\rm T}_{lab} = 200$ MeV, $\Lambda = 500$ MeV	-68.9	-112
	DBZ with ${}^{3}P_{2} - {}^{3}F_{2}$ up to $T_{lab} = 200 \text{ MeV}, \Lambda = 550 \text{ MeV}$	-44.7*	-91.2
		$\overline{\mathbf{X}}$	/

 $^{16}O < 4\alpha!$

¹⁶O with SEP (still not work)

 $^{16}O < 4\alpha!$

Conclusion

- To describe nuclei with an RG-invariant EFT requires more work!
- We have performed first ab-initio calculations of many-body systems (A>3) with a modified, RG-invariant power counting in chiral EFT.
- For ³H, ³He and ⁴He, reasonable, RG-invariant results can be obtained.
- For ¹⁶O, we observe:
 - LO results not a good starting point (4 alpha pole)
 - very large NLO contributions
 - results depend sensitively on fitting strategy
- It is quite possible that 3-body force needs to be promoted to LO for systems heavier than ⁴He.

Thank you!

Tjon line

	LO	NLO
${}^{1}S_{0}$ MWPC	Yukawa+1 LEC	2 LECs
1S_0 DBZ	Yukawa+3 LECs	4 LECs
${}^{1}S_{0}$ SEP	Yukawa+2 LECs	3 LECs
${}^{3}S_{1} - {}^{3}D_{1}$	OPE+1 LEC	absent
$^{1}P_{1}$	OPE	absent
${}^{3}P_{0}$	OPE+1 LEC	absent
${}^{3}P_{1}$	OPE	absent
${}^{3}P_{2} - {}^{3}F_{2}$	OPE+ 1 LEC	absent