## **Eigenvector continuation in nuclear physics**

### Sebastian König, TU Darmstadt

#### TRIUMF Nuclear Theory Workshop, Vancouver, BC

#### March 1, 2019

SK, A. Ekström, K. Hebeler, A. Sarkar, D. Lee, A. Schwenk, in preparation



## Motivation

### Many physics problems are tremendously difficult...

- huge matrices, possibly too large to store
  - ever more so given the evolution of typical HPC clusters
- most exact methods suffer from exponential scaling
- interest only in a few (lowest) eigenvalues





## Motivation

### Many physics problems are tremendously difficult...

- huge matrices, possibly too large to store
  - ever more so given the evolution of typical HPC clusters
- most exact methods suffer from exponential scaling
- interest only in a few (lowest) eigenvalues



Martin Grandjean, via Wikimedia Commons (CC-AS 3.0)

#### Introducing eigenvector continuation

D. Lee, TRIUMF Ab Initio Workshop 2018; Frame et al., PRL 121 032501 (2018)



KDE Oxygen Theme

- novel numerical technique
- can solve otherwise untractable problems
- amazingly simple in practice
- broadly applicable
- this talk: look for nuclear nails

# Hubbard model

- three-dimensional Bose-Hubbard model (4 bosons on  $4 \times 4 \times 4$  lattice)
- hopping parameter t, on-site interaction  $U \rightsquigarrow H = H(c = U/t)$



- Bose gas for c > 0, weak binding for -3.8 < c < 0, tight cluster for c < -3.8
- eigenvector continuation can extrapolate across regimes



# General idea

### Scenario

Frame et al., PRL 121 032501 (2018)

- consider physical state (eigenvector) in a large space
- parametric dependence of Hamiltonian H(c) traces only small subspace

### Procedure

- calculate  $|\psi(c_i)
  angle$ ,  $i=1,\ldots N_{
  m EC}$  in "easy" regime
- solve generalized eigenvalue problem  $H|\psi
  angle=\lambda N|\psi
  angle$  with
  - $H_{ij} = \langle \psi_i | H(c_{ ext{target}}) | \psi_j 
    angle$
  - $N_{ij}=\langle\psi_i|\psi_j
    angle$

### Prerequisite

- smooth dependence of H(c) on c
- enables analytic continuation of  $|\psi(c)
  angle$  from  $c_{\mathrm{easy}}$  to  $c_{\mathrm{target}}$

# SRG evolution

- unitary transformation of Hamiltonian:  $H o H_\lambda = U_\lambda H U_\lambda^\dagger \rightsquigarrow V_\lambda$
- decouple low and high momenta at scale  $\lambda$



R. Furnstahl, HUGS 2014 lecture slides

- interaction becomes more amenable to numerical methods...
- ...at the cost of induced many-body forces!





## SRG evolution = ODE solving

$$rac{\mathrm{d} H_s}{\mathrm{d} s} = rac{\mathrm{d} V_s}{\mathrm{d} s} = [[G,H_s],H_s]$$
 ,  $\lambda = 1/s^{1/4}$ 

ordinary differential equation ensures smooth parametric dependence

#### $\hookrightarrow$ SRG evolution satisfies EC prerequisites!

## **Reverse SRG**

### Consider A = 3,4 test cases

• EMN N3LO(500) interaction, Jacobi NCSM calculation

Entem et al., PRC 96 024004 (2017); A. Ekström implementation of Navratil et al., PRC 61 044001 (2000)

## **Reverse SRG**

#### Consider A = 3,4 test cases

• EMN N3LO(500) interaction, Jacobi NCSM calculation

Entem et al., PRC 96 024004 (2017); A. Ekström implementation of Navratil et al., PRC 61 044001 (2000)



- possible to extrapolate back from small  $\lambda$  to bare interaction
- information about missing many-body forces in wavefunctions
  - not in any single wavefunction, but in how they change

# Mind the gap

### Still no free lunch, however...

- EC is a variational method
- cannot go beyond what bare interaction gives in same model space!



## So now what?

## Perturbation theory

• consider a Hamiltonian diagonalized in a (small) subspace

$$H=egin{pmatrix} H_{\phi\phi} & H_{\phi\psi}\ H_{\psi\phi} & H_{\psi\psi} \end{pmatrix}$$

 $N_0 = \dim H_{\phi\phi} \, \ll \, \dim H = N_1$ 

$$H_{\phi\phi}= ext{diag}(\{\lambda_i\}_{i=1, \cdots N_0})$$



- factor out large number X from diagonal entries of  $H_{\psi\psi}$
- perturbative expansion for lowest eigenvalue and vector

$$|\psi_1
angle = \sum_{n=0}^\infty X^{-n} \left(\sum_{i=1}^{N_0} x_i^{(n)} |\phi_i
angle + \sum_{j=N_0+1}^{N_1} x_j^{(n)} |\psi_j
angle
ight) \;,\; \lambda_1^{\mathrm{full}} = \sum_{n=0}^\infty X^{-n} \lambda_1^{(n)}$$

▶ matching powers gives coupled recursive expressions for  $x_i^{(n)}$  and  $\lambda_1^{(n)}$ 

# Perturbation theory (continued)

Diagonalizing a small space can still be too expensive...

# Perturbation theory (continued)

### Diagonalizing a small space can still be too expensive...

- actually, a partial diagonalization per se is ok (ightarrow Lanczos)
- but transforming the Hamiltonian is problematic...



- cost for adjusting off-diagonal elements is prohibitive
  - ► scales with size of the full (large) space

# Way out

Start from one-dimensional space ( $N_{\rm max} = 0$ )...



...i.e., directly use the given Hamiltonian

# Failure

## <sup>3</sup>H NCSM calculation, $N_{\rm max} = 12$ model space

• EMN N3LO 500 interaction

Entem et al., PRC 96 024004 (2017)



- perturbation theory does not converge!
  - $\blacktriangleright$  however, interaction clearly "more perturbative" for small SRG  $\lambda$
  - convergence perhaps for very small  $\lambda$

# Saved by EC

- span space by the wavefunction corrections  $|\psi_1^{(n)}
  angle o x_j^{(n)}$ ,  $n=0,\cdots$   $ext{order}$
- evaluate Hamiltonian between these states
- interpretation:  $H = H_{
  m diag} + c \, H_{
  m off-diag}$  , EC-extrapolate to c=1



• same input as PT, but now things converge (to the correct result!)

## Note

expensive part of is setting up the  $x_j^{(n)}$  ,  $j=1,\cdots N_1$ 

essentially an  $N_1$ -dim. matrix-vector multiplication...

 $\hookrightarrow$  compare PT-EC to Lanczos!

## EC vs. Lanczos

- for EC: effective  $N_{mv}=2 imes ({
  m order}-1)$
- comparison: vanilla Lanczos in GNU Octave (i.e., ARPACK)



- EC looks quite competitive in this benchmark!
- but note: only calculating a single eigenvalue here

# Summary and outlook

### This talk

- eigenvector continuation can be used to reverse SRG
  - conceptually interesting: implicit information about induced forces
- convergent perturbative model-space extension
  - effectively tame divergent expansion coefficients
  - interesting as computational method

### **Future directions**

- larger systems, other methods
  - ▶ in particular: m-scheme NCSM
- combined model-space and SRG EC
- other applications



## Thanks...

#### ...to my collaborators:

- A. Schwenk, K. Hebeler (TU Darmstadt)
- D. Lee, A. Sarkar (Michigan State U.)
- A. Ekström (Chalmers U.)

### ... for funding:



## Thanks...

#### ...to my collaborators:

- A. Schwenk, K. Hebeler (TU Darmstadt)
- D. Lee, A. Sarkar (Michigan State U.)
- A. Ekström (Chalmers U.)

### ... for funding:



...and to you, for your attention!