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Motivation
Many physics problems are tremendously difficult...

huge matrices, possibly too large to store

most exact methods suffer from exponential scaling

interest only in a few (lowest) eigenvalues

  

ever more so given the evolution of typical HPC clusters► 
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D. Lee, TRIUMF Ab Initio Workshop 2018; Frame et al., PRL 121 032501 (2018)
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  novel numerical technique

can solve otherwise untractable problems

amazingly simple in practice

broadly applicable

this talk: look for nuclear nails

Motivation
Many physics problems are tremendously difficult...

huge matrices, possibly too large to store

most exact methods suffer from exponential scaling

interest only in a few (lowest) eigenvalues

  

Introducing eigenvector continuation
  

  

ever more so given the evolution of typical HPC clusters► 
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Frame et al., PRL 121 032501 (2018)
Hubbard model

three-dimensional Bose-Hubbard model (4 bosons on  lattice)

hopping parameter , on-site interaction   

Bose gas for , weak binding for , tight cluster for 

eigenvector continuation can extrapolate across regimes

4 × 4 × 4

t U ⇝ H = H(c = U/t)

c > 0 −3.8 < c < 0 c < −3.8
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Frame et al., PRL 121 032501 (2018)

General idea
Scenario

consider physical state (eigenvector) in a large space

parametric dependence of Hamiltonian  traces only small subspace

Procedure

calculate ,  in "easy" regime

solve generalized eigenvalue problem  with

Prerequisite

smooth dependence of  on 

enables analytic continuation of  from  to 

H(c)

|ψ( )⟩ci i = 1, … NEC

H|ψ⟩ = λN |ψ⟩

► = ⟨ |H( )| ⟩Hij ψi ctarget ψj

► = ⟨ | ⟩Nij ψi ψj

H(c) c

|ψ(c)⟩ ceasy ctarget
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R. Furnstahl, HUGS 2014 lecture slides

Bogner et al., PPNP 65 94 (2010) Hebeler+Furnstahl, RPP 76 126301 (2013)

SRG evolution
unitary transformation of Hamiltonian: 

decouple low and high momenta at scale 

interaction becomes more amenable to numerical methods...

...at the cost of induced many-body forces!

H → = H ⇝H
λ

U
λ

U
†

λ
Vλ

λ
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SRG evolution = ODE solving
 , 

ordinary differential equation ensures smooth parametric dependence

 SRG evolution satisfies EC prerequisites!

= = [[G, ], ]
dHs

ds

dVs

ds
Hs Hs λ = 1/s1/4

↪
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Entem et al., PRC 96 024004 (2017); A. Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Reverse SRG
Consider A = 3,4 test cases

EMN N3LO(500) interaction, Jacobi NCSM calculation
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Not even induced 3N forces kept here!

Entem et al., PRC 96 024004 (2017); A. Ekström implementation of Navratil et al., PRC 61 044001 (2000)

Reverse SRG
Consider A = 3,4 test cases

EMN N3LO(500) interaction, Jacobi NCSM calculation

  

  
possible to extrapolate back from small  to bare interaction

information about missing many-body forces in wavefunctions

λ

not in any single wavefunction, but in how they change► 
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Mind the gap
Still no free lunch, however...

EC is a variational method

cannot go beyond what bare interaction gives in same model space!
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So now what?
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Perturbation theory
consider a Hamiltonian diagonalized in a (small) subspace

  
factor out large number  from diagonal entries of 

perturbative expansion for lowest eigenvalue and vector

H = ( )
Hϕϕ

Hψϕ

Hϕψ

Hψψ

= dimN0 Hϕϕ ≪ dim H = N1

= diag({ )Hϕϕ λi}i=1,⋅⋅N0

X Hψψ

| ⟩ = ( | ⟩ + | ⟩) , =ψ1 ∑
n=0

∞

X−n ∑
i=1

N0

x
(n)
i ϕi ∑

j= +1N0

N1

x
(n)
j ψj λfull

1 ∑
n=0

∞

X−nλ
(n)
1

matching powers gives coupled recursive expressions for  and ► x
(n)
j λ

(n)
1
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Perturbation theory (continued)
Diagonalizing a small space can still be too expensive...
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Perturbation theory (continued)
Diagonalizing a small space can still be too expensive...

actually, a partial diagonalization per se is ok (  Lanczos)

but transforming the Hamiltonian is problematic...

cost for adjusting off-diagonal elements is prohibitive

→

scales with size of the full (large) space► 
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Way out 
Start from one-dimensional space ( )...

...i.e., directly use the given Hamiltonian

= 0Nmax
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Entem et al., PRC 96 024004 (2017)

Failure
3H NCSM calculation,  model space

EMN N3LO 500 interaction 

perturbation theory does not converge!

= 12Nmax

however, interaction clearly "more perturbative" for small SRG ► λ

convergence perhaps for very small ► λ
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Saved by EC
span space by the wavefunction corrections , 

evaluate Hamiltonian between these states

interpretation: , EC-extrapolate to 

same input as PT, but now things converge (to the correct result!)

| ⟩ →ψ
(n)
1 x

(n)
j n = 0, ⋅ ⋅ order

H = + cHdiag Hoff-diag c = 1
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Note
expensive part of is setting up the , 

essentially an -dim. matrix-vector multiplication...

 compare PT-EC to Lanczos!

x
(n)
j

j = 1, ⋅ ⋅ N1

N1

↪
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EC vs. Lanczos
for EC: effective 

comparison: vanilla Lanczos in GNU Octave (i.e., ARPACK)

EC looks quite competitive in this benchmark!

but note: only calculating a single eigenvalue here

= 2 × (order − 1)Nmv
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Summary and outlook
This talk

eigenvector continuation can be used to reverse SRG

convergent perturbative model-space extension

Future directions

larger systems, other methods

combined model-space and SRG EC

other applications

conceptually interesting: implicit information about induced forces► 

effectively tame divergent expansion coefficients► 

interesting as computational method► 

in particular: m-scheme NCSM► 
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