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Introduction

Self-consistent Multiparticle-Multihole Configuration Mixing Method (SCMPMH):

                    ➡ fully self-consistent approach

‣ explicit symmetry preservations  
(particle number, spherical symmetry, Pauli principle),  

‣ indiscriminate treatment of long-range correlations,  
‣ treatment of ground and excited states in even-even, odd-even & 

odd-odd nuclei on the same footing.

★ Method already applied in atomic physics and quantum chemistry:  
 ↠ Multi-Configuration Hartree-Fock (MCHF), Multi-Configuration Self-Consistent Field (MCSCF)

★ Based on the determination of a Configuration Interaction (CI) wave function ➡ allows: 

★ The underlying mean-field and the single-particle 
states evolve with the correlations of the system 



✦  Formalism of the SCMPMH method  

→ role and interpretation of the orbital optimization 

✦  Numerical algorithm 

✦  Previous applications with the Gogny force 

→ brief review 

✦  Applications with interactions derived from chiral effective field theory 

→  preliminary study of 4He 
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 Variational principle applied to the energy of the system:

Two coupled equations to solve:

�E [ ]/{'⇤
i } = 0

�E [ ]/{A⇤
↵} = 0{

Note: formalism shown here for a 2-body Hamiltonian 

derivations for 2-body density-dependent or 3-body interaction available 
in C.R., N. Pillet, D. Peña Arteaga & J.-F. Berger, PRC 93, 024302 (2016). 

E [ ] = h |Ĥ| i = 0
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★ 1st variational equation: The mixing coefficients
Usual 

CI diagonalization

➡ introduces explicit correlations in restricted configuration space      P P Q
All types of long-range correlations are treated at the same time: 

Interaction vertex           h�↵|V̂ |��i

RPA, pairing

Particle-vibration coupling 

RPA 

Pairing 
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★ 2nd variational equation: The single-particle states

✦ variation of the single-particle states:

T = hermitian 1-body operator

✦ 1st order variation of the many-body wave function:

h
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i
= Ĝ(�)

Generalized  
mean-field 
equation
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i } =h |

h
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i
| i = 0

“Generalized Brillouin equation”

= |� iP + |� iQ

P Q

↠ Note:

the orbital optimization takes into account the coupling HPQ/HQP between P and Q spaces (however not HQQ)↠
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= centroid of one-nucleon separation 
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= Ĝ(�)

Generalized  
mean-field 
equation

general mean field

correlated  
one-body density

➡  single-particle  
energies

⇢ki = h |a†iak| i

➡  “natural” basis 

➡occupation  
numbers

= centroid of one-nucleon separation 
energies 
= “most unambiguous definition of  
single-particle energies“ 

(Baranger (1970), Duguet & Hagen (2012)…)

"a =
X

N

|h A+1
N |a†a| i|2(EA+1

N � E)

+
X

M

|h A�1
M |aa| i|2(E � EA�1

M )

➡  “canonical basis”

contribution from  
particles & holes

hij(⇢) = Kij +
X

kl

hik|eV |jli⇢lk

source term

σ = two-body correlation matrix

Gij(�) =
1

2

X

klm

⇣
eVkmjl�kiml � eVkiml�jlkm

⌘

�kiml = h |a†ka
†
malai| i

�(⇢ik⇢lm � ⇢im⇢lk)

SCMPMH method: Formalism



h
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MPMH method: Formalism

General equation in physics:

Equation of motion for the one-body  
Green’s function (at equal times) ⇒

⇥
h(⇢), ⇢

⇤
= G(�) ⇒ Dressing of the 

one-body propagator 
— 

equivalent to solving  
a Dyson equation

1-body GF G(1) Connected 2-body GF G(2)
C

⌃(t1 � t2) = ⌃(0)�(t1 � t2) + ⌃(dyn)(t1 � t2)Self-energy:

Static part Dynamical part

�ij(⇢) =
X

kl

hik|eV |jli⇢kl = ⌃(0)
ij

G(�) = lim
t2!t+1

Z
dt

h
G(1)(t� t2),⌃

(dyn)(t1 � t)
i

           full consistency between mean-field and correlations,  

which is important to have a fully variational theory  

(see e.g. “Quantum Theory of Finite systems” by Blaizot and Ripka)

★ Role of the orbital equation:  
I) Consistency between correlations and single-particle picture



★ Role of the orbital equation:  
II) Partial compensation of the truncation P/Q

• Ex: truncation core/valence space
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Calculation of the densities 
and source term 
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The full solution requires a doubly-iterative algorithm:

C.R., N. Pillet, D. Peña Arteaga & J.-F. Berger, PRC 93, 024302 (2016). 

Solve the 2nd equation 

… until convergence

SCMPMH method: Numerical algorithm

{'i}⇒ single-particle orbitals  

{A↵}    ⇒ Mixing coefficients  

Solve the 1st equation 
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Solve the 2nd equation:

In the natural basis ⇢̂|µi = nµ|µi
Qµ⌫(⇢,�) =

Gµ⌫(�)

nµ � n⌫
, if nµ 6= n⌫

Qµ⌫(⇢,�) = 0 , otherwise.

{
⇒ non-linear problem ⇒ iterative solution: 

⇒ self-consistent single-particle states       =  eigenfunctions of h-Q and  ⇢{'i}

orbitals {'(0)}
density ⇢(0)

orbitals {'(1)}
density ⇢(1)
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(from 1st eq.)

…
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✴ Excitation energies
T=0 component of the Gogny force 

(lack of tensor term)

Orbital 
optimization

h�E⇤i = 226 keV

�(�E⇤) = 214 keV �(�E⇤) = 122 keV
h�E⇤i = 142 keV30S & 30Si  

excluded {}

• Even-even sd-shell nuclei 

• truncation scheme:  
core of 16O + valence space

10 6 (Z,N) 6 18

Previous applications with the Gogny force

Calculation of many observables 
→ How are they impacted by the 

optimization of orbitals?

C.R. et al. Phys. Rev. C, 93, 024302 (2016)  
and Phys. Rev. C 95, 044315 (2017)

Ne S

Si

Mg Ar

Hartree-Fock orbitals

variational  
natural orbitals

✴ Charge radii



 Encouraging results… but:  

✦ The D1S Gogny interaction is in principle not  
adapted (double counting of correlations…), and 

✦ can lead to divergent behaviors when enlarging  
the valence space due to the zero-range spin-orbit 
and ρ-dependent terms.

(W
.u

.)collectivity     ,excitation energies     , overbinding ~ 6 MeV

collectivity     , excitation energies      , overbinding ~ 60 MeV!

(no core, up to 4p-4h)

Previous applications with the Gogny force

C.R. et al. Phys. Rev. C, 93, 024302 (2016) 

See e.g. study of 12C:
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Need a better suited interaction

‣ Generalized Gogny interaction: fully finite-range, with tensor, better constrained 
(see e.g. Chappert, Pillet, Girod, Berger PRC 91, 034312 (2015)  
for D2 interaction with finite-range density dependence) 

or 

‣ interaction derived from chiral EFT (here)
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Test application to 4He with a chiral interaction

N2LOOPT interaction (2-body only) 

Interaction matrix elements  
and NCSM results :  

courtesy of Petr Navrátil

very preliminary 

2-body Hamiltonian  
matrix dimensions 

(m-scheme)

0:               1 

1:             75 

2:        2 068 

3:      25 257 

4:    191 301 

5: 1 026 664 

6: 4 555 918

single-particle basis expanded on 7 HO shells [Ntot =6]

✴ much faster convergence with variational natural orbitals 
(gain of ~ 2 shells compared to HO basis ➡ large gain in dimensionality) 

✴ Hartree-Fock orbitals are not a good basis in this case                    
(also seen in Tichai et al. PRC 99, 034021, (2019).)

no  
correlations 
beyond HF

exact solution

full diagonalization in active space with N ≤ Ntot

~⌦ = 20 MeV

 Binding energy: convergence with respect to the model space

=emax
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 Binding energy: convergence with respect to the oscillator frequency

✴ The variational natural orbitals are less dependent on ħΩ

Test application to 4He with a chiral interaction



Test application to 4He with a chiral interaction
…

…

 One-body density matrix (neutrons):

emax =2

Representation of in the HO basis:�⇢ij = |⇢ij � ⇢0p0hij |

Equation 1 - iteration 1

⇢ij 2 [0, 1] if i, j 2 valence
0 otherwise{
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Test application to 4He with a chiral interaction
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 One-body density matrix (neutrons):

Equation 1 - iteration 1

⇢ij 2 [0, 1] if i, j 2 valence
0 otherwise{ [h(⇢), ⇢] = G(�) ) ⇢ij =

Gij(�)

"i � "j
single-particle  

energies

Eqs 1&2 - after convergence  

Gij(�) =
1

2

X

klm

eVkmjl�kiml �
1

2

X

klm

eVkiml�jlkm

2 valence space2 whole basis

 Source term of the orbital equation:

➡ Couples the active space to the 
rest of the single-particle basis.

‣ the source term introduces couplings outside of the active space  
‣ states outside of the initial active become occupied } extra features compared to 

regular “natural orbitals”

emax =2emax =2

Representation of in the HO basis:�⇢ij = |⇢ij � ⇢0p0hij |



iteration #1

 Convergence of the one-body density matrix (neutrons):

Test application to 4He with a chiral interaction
emax =2



iteration #2

 Convergence of the one-body density matrix (neutrons):

Test application to 4He with a chiral interaction
emax =2



iteration #3

 Convergence of the one-body density matrix (neutrons):

Test application to 4He with a chiral interaction
emax =2



iteration #4

 Convergence of the one-body density matrix (neutrons):

Test application to 4He with a chiral interaction
emax =2



iteration #5

 Convergence of the one-body density matrix (neutrons):

Test application to 4He with a chiral interaction
emax =2



iteration #5

 Convergence of the one-body density matrix (neutrons):

convergence reached: 1.0⇥ 10�3

Test application to 4He with a chiral interaction
emax =2



 Single-particle orbitals (radial part):

Test application to 4He with a chiral interaction
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emax =2

‣ dependence on HO frequency reduced with VNAT orbitals 
‣ weird behavior of the HF orbitals above the Fermi level, in accordance with Tichai et al. PRC 99, 034321 (2019) 

1p3/2



 Single-particle orbitals (radial part):

Test application to 4He with a chiral interaction
|'

i(
r)
|2

1s1/2 |'
i(
r)
|2 2s1/2

|'
i(
r)
|2

1p1/2

|'
i(
r)
|2

Occupation numbers:
~0.90 with HO → 0.96 with VNAT

Occupation numbers:
~0.02 with HO → 0.006 with VNAT

‣ dependence on HO frequency reduced with VNAT orbitals 
‣ weird behavior of the HF orbitals above the Fermi level, in accordance with Tichai et al. PRC 99, 034321 (2019) 
‣ occupation of the 1s1/2 increases ↠ better 0p0h state

emax =2

1p3/2



with HO orbitals with variational natural orbitals

�⌫⌫
neutron-neutron  

correlation matrix 
neutron-neutron  

correlation matrix 
�⌫⌫

�⇡⌫ �⇡⌫proton-neutron  
correlation matrix 

proton-neutron  
correlation matrix 

‣ decrease by factor ~2 in the neutron-neutron sector 
‣ pn correlations remain strong, only little change

Test application to 4He with a chiral interaction
emax =2



  Entanglement of single-particle states

Test application to 4He with a chiral interaction

‣ “one-state” reduced density matrix:

S(1)
(i) = �e⇢(i) ln e⇢(i)‣ Entropy of entanglement of a single-particle state with the rest:

HO states VNAT states

(i) ⌘ {↵i, li, ji,mi, ⌧i}

‣ write the wave function in terms of occupation numbers:

with M. Savage (INT)

⇢ii = h |a†iai| i
one-body densitye⇢(i) =

✓
1� ⇢ii 0

0 ⇢ii

◆

**very preliminary**

✴ The variational natural orbitals appear naturally organized by decreasing entanglement

emax =2



  Entanglement of single-particle states

Test application to 4He with a chiral interaction

‣ “Two-state” reduced density matrix:

HO states VNAT states

with M. Savage (INT)

‣ Entropy of entanglement of two single-particle states with the rest:

‣ Mutual information between two states:

S(2)
(ij) = �e⇢(ij) ln e⇢(ij)

Iij = �
⇣
S(2)
(ij) � S(1)

(i) � S(1)
(j)

⌘
(1� �ij)

e⇢(ij) =

0

BB@

1� ⇢ii � ⇢jj + ⇢ijij 0 0 0
0 ⇢jj � ⇢ijij ⇢ji 0
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0 0 0 ⇢ijij
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**very preliminary**
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  Entanglement of single-particle states

Test application to 4He with a chiral interaction

‣ “Two-state” reduced density matrix:

HO states VNAT states

with M. Savage (INT)

‣ Entropy of entanglement of two single-particle state with the rest:

‣ Mutual information between two states:

S(2)
(ij) = �e⇢(ij) ln e⇢(ij)

Iij = �
⇣
S(2)
(ij) � S(1)

(i) � S(1)
(j)

⌘
(1� �ij)

e⇢(ij) =

0

BB@

1� ⇢ii � ⇢jj + ⇢ijij 0 0 0
0 ⇢jj � ⇢ijij ⇢ji 0
0 ⇢ij ⇢ii � ⇢ijij 0
0 0 0 ⇢ijij
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**very preliminary**
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Conclusion, perspectives

Conclusion

★ calculations of radii and excited states   

★Three-body forces and comparison with other ab-initio methods using the same interactions.  

★ Gaussians expansions of local potentials (with Ingo Tews, LANL) 
                        ➡  comparison with quantum Monte Carlo calculations 

★ Implement smarter truncation schemes (excitation energies, weight of the configurations, entanglement-based? ) 

 First application of the fully self-consistent multiparticle-multihole configuration mixing method with a 
chiral interaction (N2LOopt) 

✦ Construction of a general mean-field and variational natural orbitals consistent with the correlation of 
the system (convergence of the iterative procedure  ~ 10-3 on the density matrices). 

✦ Fast convergence of the binding energy in terms of the model space and less dependence on the 
oscillator frequency.  

To do next:
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P. Navrátil (TRIUMF, Canada) 
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Thank you!

Thanks to my collaborators: 

Conclusion, perspectives



★ Role of the orbital equation:  
II) Partial compensation of the truncation P/Q

➡ final reference state = superposition of mpmh excitations on the initial reference state = richer 

P Q

➡ should have a higher weight in the correlated wave function than the initial one

• Ex: truncation in term of the excitation order NpNh

b†i a†ieiT̂ e�iT̂=orbital transformation:

) effect on the reference state:

|�(f)i= eiT̂

+i
X

ph

Tph �1

2

X

php0h0

TphTp0h0|�(i)i a†pah|�(i)i a†paha
†
p0ah0 |�(i)i= +...

|�(i)i

SCMPMH method: Formalism



 Binding energy: convergence with respect to the oscillator frequency

✴ The variational 
natural orbitals are 
less dependent on ħΩ

Test application to 4He with a chiral interaction



 Effect on the many-body wave function:

➡ Pure HF component decreases: self-consistent procedure appears to fragment the wave function

1st equation only 1st+2nd equations 
Starting from HF orbitals

1st+2nd equations 
Starting from HO orbitals

nucleus Weight of P(i) Weight of Q(i) Weight of P(i) Weight of Q(i) Weight of P(i) Weight of Q(i)

20Ne 100% 0% 98% 2% 66% 34%
24Mg 100% 0% 97% 3% 61% 39%
28Si 100% 0% 95% 4% 55% 45%
32S 100% 0% 93% 7% 61% 39%

28Ne 100% 0% 85% 15% 78% 22%

• Main component: Pure Hartree-Fock component in correlated ground state
nucleus 1st equation only 1st + 2nd equations

20Ne 71% 62%
28Si 60% 24%
32S 58% 39%
34S 39% 17%

Application to sd-shell nuclei with the Gogny force



✦Charge radii:

Hartree-Fock orbitals

self-consistent natural orbitals

Ne S Si

Mg Ar

✦ Radial orbitals: 26Mg

p3/2

2s

p1/2

d3/2d5/2

1s

28Ne

Application to sd-shell nuclei with the Gogny force



✦ Excitation energies: 

T=0 component of the Gogny force 
(lack of tensor term, Pillet et al. PRC 85, 044315 (2012))

Orbital 
optimization

{

Application to sd-shell nuclei with the Gogny force



Application to sd-shell nuclei with the Gogny force

➡ Pure HF component decreases: 
self-consistent procedure appears 
to fragment the wave function

Reference state built  
on optimized orbitals

➡ “better” than HF state

 Effect on the many-body wave function:

Pure Hartree-Fock component in correlated ground state
nucleus 1st equation only 1st + 2nd equations

26Ne 71% 62%
28Si 60% 24%
32S 58% 39%
34S 39% 17%

New reference-state componentd state
1st + 2nd equations

69%
26%
47%
18%

 Correlation energies: Ecorr = E( )� E(�(0)
HF )

Correlation energy Ecorr (MeV)

nucleus 1st equation only 1st + 2nd equations ΔEcorr

28Ne 1.17 1.59 0.42
26Ne 7.32 8.46 1.14
24Ne 5.75 6.98 1.23
22Ne 10.48 12.12 1.64
20Ne 10.93 13.30 2.37

Correlation energy Ecorr (MeV)

nucleus 1st equation only 1st + 2nd equations ΔEcorr

28S 8.05 10.05 2.00
30S 0.59 2.06 1.47
32S 2.82 5.22 2.40
34S 4.27 5.62 1.35



Systematic study of sd-shell nuclei



Systematic study of sd-shell nuclei



C.R. et al. PRC 95 044315 (2017). 

Systematic study of sd-shell nuclei

★ Excitation energies:



✦ Transition probabilities B(E2)

Improvement  
by a factor up to ~1.7  
but still clear lack of 

collectivity

No effective charges

charge transition density
form factor

Form factor:

With optimized states:  
• Small increase of the 

magnitude 
• Improvement of the 

trend at high q

F�(q) =

p
4⇡

Z

r
2Jf + 1

2Ji + 1

Z 1

0
r2 dr j�(qr)⇢tr(r)

From MPMH:

✦ Electron inelastic scattering on discrete states 

Application to sd-shell nuclei with the Gogny force

with M. Dupuis, CEA,DAM,DIF 

Hartree-Fock orbitals

self-consistent  
natural orbitals



✦ Ingo Tews and collaborators have developed  
local chiral interactions  

with Gaussian regulators  
that can be written in coordinate space 

Application of the MPMH method with a chiral interaction

Chiral expansion:

See e.g. A. Gezerlis, I. Tews, E. Epelbaum et al.,  
Phys. Rev. C 90, 054323 (2014) 

At each order: 

contact terms 
+ 

long-range pion-exchange terms

(II) Chiral interaction with local analytical form

✦ In MPMH, we have to do the calculation of the 
mean field/source term at each iteration  

↠ use matrix elements as only input will become 
inefficient for mid-mass nuclei  

↠ need potential in coordinate space  
and ideally Gaussians 



✦ Ingo Tews and collaborators have developed  
local chiral interactions  

with Gaussian regulators  
that can be written in coordinate space 

Application of the MPMH method with a chiral interaction

Chiral expansion:

See e.g. A. Gezerlis, I. Tews, E. Epelbaum et al.,  
Phys. Rev. C 90, 054323 (2014) 

At each order: 

contact terms 
+ 

long-range pion-exchange terms

1st step: leading order

(II) Chiral interaction with local analytical form

✦ In MPMH, we have to do the calculation of the 
mean field/source term at each iteration  

↠ use matrix elements as only input will become 
inefficient for mid-mass nuclei  

↠ need potential in coordinate space  
and ideally Gaussians 



V LO
OPE(r) =

⇣
W (0)

S (r)~⌧1 · ~⌧2 �1 · �2 +W (0)
T (r)~⌧1 · ~⌧2 S12

⌘
⇥

⇣
1� e�(r/R0)

2
⌘2

V LO
contact(r) = (CS + CT�1 · �2)⇥

⇣
↵ e�(r/R0)

2
⌘

★ Chiral interaction at leading order with Gaussian regulators:

{

regulator

{

regulator

↠ purely gaussian

Application of the MPMH method with a chiral interaction

cut-off R0= 1 fm

✦ contact term:

✦ long-range one-pion exchange:

central spin-isospin term:

tensor isospin term:

↠ Yukawa or Yukawa-like x Gaussians



to use the machinery already developed in the original code for the Gogny interaction 

Application of the MPMH method with a chiral interaction

★ Strategy: fit the regularized Yukawa or Yukawa-like functions to a sum of Gaussians

Note:  
such fits of Yukawa to Gaussians already applied in J. Dobaczewski & J. Engel, Phys. Rev. Lett. 94, 232502 (2005),  

or more recently in e.g. R. Navarro Pérez et al. PRC 97, 054304 (2018).
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r
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exact function

fit to 5 Gaussians

regularized central term

r (fm)

↠ Ex: Central term

Application of the MPMH method with a chiral interaction

Courtesy of I. Tews

Very preliminary!
difference in interaction matrix elements:   

(5 HO shells)

✴ Average difference: 

= 1.20⇥ 10�4 MeVs =
q

h�eV 2i � h�eV i2

✴ standard deviation:

= 2.10⇥ 10�5 MeV

h�eV i = 1

N

NX

{ijkl}=1

|eV exact

ijkl

� eV fit

ijkl

|
[M

eV
]

➡ <4 keV difference on the binding 
energy of 4He (no self-consistency)
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