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nuclear scattering and reactions 
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• Ab initio structure 
calculations have made 
amazing progress, while 
scattering/reactions are 
limited

• Can we take advantage of 
this bound-state-
calculation’s progress  and 
compute  
scattering/reactions?

• Drip-line nuclei needs 
consistent treatment of 
structure and 
scattering/reactions

The question



Key idea 

• Eigen-energies of trapped projectile-target system computed by ab 
initio energy calculation à scattering info (phase-shift) at those 
energies
• Interpolating between eigen-energies gives the scattering phase-

shift as function of scattering energy 
• The method should work with nuclear systems (e.g., 

neutron-nucleus) that can be computed by the ab initio 
structure methods. 

3/4/20 3

!"($) =
4(
)* × 2- + 1 sin* 3"($)



Outline

• Our method generalizes the Luscher method used in Lattice QCD
• Perfect computer experiment 
• Imperfect computer experiment 

• Benchmark our scattering calculations against the existing ab initio 
calculation (n − #)
• Show it also works for heavier system (n −$% &, as recently measured)
• Modeling of errors in the imperfect computer experiment 
• Comparison to other methods 
• Summary and Outlook: inelastic reactions, and role of R-matrix/potential 

model
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Luscher’s method 
in Lattice QCD

Discrete eigen-
energies for pi-pi in a 
finite volume gives 
the phase shift at 
those energies 
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!, #$%&&'() à *+(!)
Briceno et.al., RMP.90.025002 (2018)



However trapping nucleons in harmonic potential 
well is better suited for harmonic-oscillator-basis 
calculations

•Reduces degrees of freedom (DOF) à make ab initio 
calculations feasible
•The center of mass (CM) and internal DOF are decoupled
• Lattice regulator breaks rotational invariance
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There is a “universal” formula for two-cluster system 
at low energyà BERW (Busch) formula !,#$ à %&(!)
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BERW formula: intuition

Scattering wave function 
(WF) in free space at E

Suppose we know the eigen-energy (E) 
of the system in a trap for s-wave.

Scattering WF in free space at 
E with strong-int.  

Eigen-state WF with E in a trap 
(!"# $ = &

'
()*+'$') with strong int. 

Pseudo-free-space (PFS)

• The full WF dies off in a gaussian form. 
We can integrate Schrodinger equation 
from large distance inward, and get WF
at PSF (i.e, WF determined by E and 

*+): − -.
/

'0.
+ !"# $ 2 $ = 32($)

• At PFS, at lowest order (or shallow 
trap limit, *+ → 0), the full WF is close 
to the scattering WF with strong 
interaction: cos ; j= + sin ; n=

• Matching them gives BERW formula
• BERW: left side à strong int.; 

right sideà (bound. cond.)                   
long-dis. physics
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Busch, et.al., (1998); Blume & Greene (2002); Block & Holthaus (2002); 
Bolda, et.al., (2002); Stetcu, et.al., (2007, 2010); Luu, et.al., (2010).



BERW formula: the UV-defect
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• However, PFS is not real free space. 
• And how to separate the IR-physics 

(boundary condition) and the strong-
interaction physics?

• Effective field theory (EFT) separates IR 
and UV in scattering amplitude 

! − # two-body 
potential model 

XZ, 1905.05275. 



• T-matrix in free space 

• Non-analyticity from IR physics: ! " = $%&'() (note $% = −") 
• Analytical expansion from UV physics, i.e., effective range expansion 

(ERE):

%&'()+,-.' =/0123,5%&5

• EFT derivation :

Cure the BERW formula with the UV-defect

+ +⋯
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• In a harmonic trap: ! " = $%&'()
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Cure the BERW formula with the UV-defect

• Generalized ERE and quantization 
conditions 

;
<,>?@

(A
B<,> -./0 &<%&> = ! "

%&'()BCDE' =;
>?@

(A
B<?@,>%&>

XZ, 1905.05275. 

+  loop diags :
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The perfect computer expt. (no errors!)
Quantization conditions:
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Trap them
within ab initio 
calculations

Bound State

U(E) at E

Fit them using 
GERE expansion

)"%&,$ gives phase 
shift as func. of E



Imperfect expts: ab-initio calculations have 
truncations on Hilbert-space (regulator) 

• Working with ab initio groups using harmonic-oscillator-wave-
function as basis: NCSM and IMSRG 

• NCSM requires the total energy below N"#$ % (% as basis 
frequency)

• IMSRG requires single particle energy below e"#$ %
• Regulators modify both IR and UV physicsà systematic errors 

• To model the IR error? à modify U function with truncation on 
relative motion

• To model the UV impactà the extracted GERE parameters '(,*
becomes '(,*(Λ-.). 01,2 ∞ (Cont. limit), predicts reality



Before error analysis, let’s first 
see results 
Two sets of results based on NCSM and IMSRG output
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n-α scatterings in s 
and p waves
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• !",$(Λ'() are the GERE parameters 
(dimensionless). 

• The error band partially comes 
from IR-error, while the UV-error 
(not in the band) approaches zero 
with large *+,

• Different data sets (using different 
Nmax and -) are grouped in different 
Λ./ bins. 

• The parameters are extracted 
independently among these bins. 

• Smooth Λ./-dependence, a signal that 
the IR physics is under control



n-α scatterings in s 
and p waves
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• The NCSM extraction agrees with Petr’s 
direct phase-shift calculation below 5 MeV 
with high Λ"#

• The IMSRG p-3/2 agrees with Petr’s direct 
calculation, but p-1/2 is somewhat different 

• Since we model both UV and IR physics 
components, we can use most (Nmax/emax, 
$) results and extract phase-shifts. This is like 
LQCD producing results at different Lattice 
spacing. 



Analyze O24 and O25 energies from IMSRG and extract n-
O24 scattering in d-3/2 channel 
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• C00 decreases with increasing Λ"#
(smooth evolution: C00~0.1, NOT 10 
or 0.001)

• C01 and C10 have also some UV 
dependence

• Approaching to the continuum limit, no 
resonance behavior in scattering

• If C00 were positive, the resonance 
shows up (NOT the prediction of the 
used nucleon interaction)
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• Studying ERE at E<0 region predicts a low-
energy bound state with 75% prob., the BE is 
-1.4 ± 0.54 MeV (the property of the NN 
force)

• The method should also be used to compute 
BE of shallow bound state (drip-line nuclei), 

• Use the mean value of Cs(900 MeV) and 
increase C00 by about 0.28àa resonance  
(dashed curve) at 0.75 MeV and width of135 
keV (similar to the expt. info): tuning nucleon 
interaction could improve the prediction 

Analyze O24 and O25 energies from IMSRG and extract n-
O24 scattering in d-3/2 channel 



Here comes the messy part
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Imperfect expts: ab-initio calculations have 
truncations on Hilbert-space (regulator) 

•They modify both IR and UV physicsà
systematic errors (tiny stochastic errors)

•To model the IR error? à modify U 
function with truncation on relative motion

•To model the UV impactà the extracted 

GERE parameters !",$ becomes !",$(Λ'()



Model the IR-error
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With !" truncating number of excitation quanta in terms of #:
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• The U depends on truncation parameters. It models the IR-error

• It approaches the U(E) in the continuum limit (zero  IR-error) with 
# → #E or FG → ∞



Access the UV-error (besides series 
truncation error in GERE)
Use the following as interpolator over a small Λ"# bin (less than 100 
MeV). $%,',( $%,',) and * are fitting parameters
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$%,' Λ"# = $%,',( + $%,',)
*
Λ"#

-

Another error

. /012 3, 4, 45 = .673 /012 3, 4, 45 − .679 /012 9, 4, 45

For example, the n-alpha data:
He-5 (He-4) mass tabulated in terms of Nmax5 (Nmax4), 4, and 45

For IR-error: :; = :;(/=>?,3)



A digression to Bayesian inference
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Prior distribution
Posterior 
distribution Likelihood function 

pr(C,d|D,T,I) ∝ pr(D|C,d,T,I)pr(C,d|I)

C are the GERE parameters; d are the 
other parameters describing the IR and 
UV error



A few thoughts on the connection to other approaches and its 
potential application in quantum computing

Generalized Luscher Luscher in Lattice calculations Single-State HORSE
(Harmonic Oscillator 
Representation of Scattering Eqs)

IR regulator Trap Large volume Effective cavity in the Nmax
truncations

UV regulator Nominal Λ"# Lattice spacing Λ"#?

IR-UV explictly
coupled?

Yes, so we need a model 
to extract them

Decoupled Yes

IR-error Use effective Nmax or 
emax for relative motion 
to access this error

Imbedded in MC sampling: the calculation can not 
handle arbitrarily large volume, i.e., there is error 
related to IR physics in sampling. (what is the 
signal for that error?)

? 

Error types Mostly systematic, 
except the rounding 
errors

Stochastic error in sampling ?

In our approach, if the base frequency approaches trap frequency, the IR-error would disappear. While doing so, 
to reduce the UV error, Nmax/emax has to be increased significantly. So perhaps quantum computer is one way 
to go. 



Summary
• The Luscher method used in LQCD is generalized to work with ab initio 

nuclear structure methods (NCSM and IMSRG)

• The extracted n-α phase-shifts are compatible with the existing ab initio 
results using the same nucleon interaction

• The n- O24 scattering calculation demonstrates the method’s capability to 
study systems heavier (it is based on bound-state spectrum calculation)

• The UV and IR physics are correctly modeled à results from different 
regulators are consistent (smooth UV-scale dependence)

• We now report results as function of UV scale, a practice common in Lattice 
methods (Lattice QCD, NLEFT), but not in other ab intio calculations 
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U(E) in the finite model space (H.O. basis, NCSM)

• In a “cavity” for relative motion with radius L
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• Now with the trapping potential, with HI frequency (“U for the trapped and truncated”)
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• the low−energy pole position of this function is very interesting:

S + ] (ST + 1)
m&'$n5

(@A&')
$ o< , with p < 0, r~ − −2 gtu(1 − M$)

\Z → \ij

Approaches to above when HI → 0 , also to the continuum limit 
properly when H → HI or nT → ∞



The pole structures of the U function converge to 
the continuum limit in terms Exp( - C*Nmax)



Outlook
• Need to understand the origin of the parameters modeling errors in our 

“data” analysis in terms of microscopic picture

• Explore other observables

• To compute reactions, need to study coupled-channel problem within traps. 
EFT provide one way to approach this problem

• From the angle of computer experiment, other existing models used in 
nuclear experiments (potential model and R-matrix), could also be used in 
data analysis. The important steps involve understanding the theory error of 
the model and the computer-experiment’s error (UV and IR modification 
within the ab initio calculation)
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In retrospect

• In the harmonic-oscillator-basis structure calculations, the 
clustering physics already exists, i.e., the basis can handle 
continuum physics with the help of a trap

• The key is to understand properly the IR physics/condition in 
terms of clusters.

• Our IR is dictated by the trap. Truncation leads to IR error and 
approaches to zero in the continuum limit
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Cavity boundary condition (for 
relative motion)
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Discrete eigen-
energies for system in 
a cavity gives the phase 
shift at those energies 

!"#$%×#% '()
++% '() = -

I.e., .,() à $%(.)

Corresponding scattering WF
at E in free space without any 
potential

Scattering wave function 
(WF) at E with strong-
interaction and infinite 
potential wall at r=Rc

()



However trapping nucleons in harmonic potential 
well is better suited for harmonic-oscillator-basis 
calculations
•Reduces degrees of freedom (DOF) à make ab initio 
calculations feasible
•The center of mass (CM) and internal DOF are decoupled
•Cavity boundary condition requires high energy modes 
(CM-internal-decoupling is violated in cavity)
• Lattice regulator breaks rotational invariance
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There is a “universal” formula for two-cluster system 
at low energyà BERW (Busch) formula !,#$ à %&(!)



• NN model:(G)ERE 
extractions for the s-
wave, for both trapped 
and non-trapped system. 

• The markers are ! and 
" as defined before 

• UV error scales as 
1/%Λ' at leading order 

• Different IR 
modification is 
disentangled from UV 
error 

• The UV error can be 
reduced by improving 
potential’s UV behavior

• This also suggests that if 
NN is optimized, adding 
further trap doesn’t 
require further 
optimization



U(E) in the finite model space (H.O. basis, NCSM)

• In a “cavity” for relative motion with radius L
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Approaches to above when HI → 0 , also to the continuum limit 
properly when H → HI or nT → ∞



The pole structures of the U function converge to 
the continuum limit in terms Exp( - C*Nmax)



Useful references:

• Cavity boundary condition: E.g., R. J. Furnstahl, S. N. More, and T. Papenbrock (2014)
• Discrete Variable Representation (DVR): S. Binder, A. Ekstrom, G. Hagen, T. Papenbrock, and 

K. A. Wendt (2016)
• Many-body extrapolation: K. A. Wendt, C. Forssen, T. Papenbrock, and D. Saaf (2015)
• J-matrix derivation (known as HORSE or SS-HORSE in nuclear physics for 

extracting phase-shift from energy spectrum):  A. M. Shirokov, A. I. Mazur, I. A. 
Mazur, and J. P. Vary (2016); A. M. Shirokov, A. I. Mazur, I. A. Mazur, E. A. Mazur, I. J. Shin, Y. Kim, 
L. D. Blokhintsev, and J. P. Vary (2018)
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Ab initio calculations of bound nuclei

• Count degrees of freedom (DOF): nucleons’ space 
locations (& internal DOF). Treating differently:

• Green’s function MC, nuclear lattice effective field theory 
(NLEFT), as well as lattice QCD (LQCD)

• Basis method, e.g. Hamiltonian diagonalization in no-core 
shell model (NCSM) and in-medium similarity 
renormalization group (IMSRG), and coupled-cluster
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Ab initio calculations of scattering/reactions
• For scattering/reactions, all the nucleons must be treated 
in the same wayà too many DOF. Then options are

• NCSM+continuum

• Gamow shell-model

•Ab initio optical potential  

• Compute energies by MC-sampling of important 
configurations at finite volume: NLEFT, GFMC, LQCD
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• Finite volume reduces DOF. So is trapping! 
• And eigen-energies give phase shift. 
• Regulators also in other calculations (e.g., Geant simulation)



Trapping nucleons in ab-initio spectrum 
calculations

!"
Continuum

Trap them in #$%&'()$potential
within ab initio calculations

Constrain EFT (or model on !") and use 
it to compute scattering and reaction

Bound State

There is a “universal” formula for two-cluster system 
at low energyà BERW (Busch) formula 

3/4/20 37*,,- à ./(*)



• !",$(Λ'() are the GERE parameters 
(dimensionless). 

• The error band partially comes 
from IR-error, while the UV-error 
(not in the band) approaches zero 
with large *+,

• Different data sets (using different 
Nmax and -) are grouped in different 
Λ./ bins. 

• The parameters are extracted 
independently among these bins. 

• Smooth Λ./-dependence, a signal that 
the IR physics is under control

Analyze He4 and He5 energies from 
NCSM and extract n-α scattering in P-3/2 
channel 



Analyze He4 and He5 energies from NCSM and extract n-α
scattering in P-3/2 channel 

• Lowering Λ"# has a trend to turn a resonance to bound state (also seen in p-½ channel)
• The extraction agrees with Petr’s direct phase-shift calculation below 5 MeV with high Λ"#
• Since we model both UV and IR physics components, we can use most (Nmax, $) results and 

extract phase-shifts. This is like LQCD producing results at different Lattice spacing. 



Similar conclusions can be drawn as 
in P-3/2

n-α in P-1/2 channel from NCSM



n-α in S-1/2 channel from NCSM

• Less data
• Mean values agree with NCSMC quite well



n-α in P-3/2 channel from IMSRG



n-α in P-1/2 channel from IMSRG


