

Probing chiral interactions to N³LO in medium-mass nuclei

J. Hoppe, C. Drischler, K. Hebeler, A. Schwenk, and J. Simonis

TRIUMF ab initio workshop, March 5, 2020

European Research Council Established by the European Commission

Motivation

Connection between nuclear matter and finite nuclei

IM-SRG calculations of closed-shell nuclei indicate connection to nuclear matter

Simonis et al., PRC 96 (2017)

NN evolved + 3N Hamiltonians fit to only few-body data reasonably describe saturation point

Hebeler et al., PRC 83 (2011)

1.8/2.0 (EM) reproduces ground-state energies for closed-shell nuclei

Motivation

NN+3N Hamiltonians fit to ³H and the saturation point

novel 3N fits to empirical saturation point and ³H binding energy Drischler *et al.*, PRL **122** (2019) NN forces by Entem, Machleidt, Nosyk (EMN)

Entem et al., PRC 96 (2017)

 \rightarrow NN+3N Hamiltonians at N³LO

fit to saturation point

-2.5

-10Entem et al., PRC 96 (2017) → NN+3N Hamiltonians at N³LO E/A [MeV] fit to saturation point 0.5 -15 EMN N³LO (2017 0.0 $\Lambda = 500 \text{ MeV}$ -0.5 range of 3N couplings ्व **-1.0** c_D and c_F in ³H fit $\Lambda = 450 \text{ MeV}$ -1.5 $\Lambda = 500 \text{ MeV}$ -2.0

Motivation

NN+3N Hamiltonians fit to ³H and the saturation point

Motivation NN+3N Hamiltonians

Impact and predictions of novel 3N forces for finite nuclei in the IM-SRG?

NN+3N Hamiltonians fit to ³H and the saturation point

TECHNISCHE UNIVERSITÄT DARMSTADT

Application to closed-shell medium-mass nuclei

NLO, N²LO, and N³LO interactions (EMN) with EFT uncertainty estimates

Application to closed-shell medium-mass nuclei

NLO, N²LO, and N³LO interactions (EMN) with EFT uncertainty estimates

Comparing trends for nuclear matter and finite nuclei

study c_D/c_F variations constrained by ³H independent of saturation point

only small changes of energies and radii for unevolved potentials

stronger energy dependence for consistently SRG-evolved potentials

 \rightarrow explore sensitivity to **3N** couplings independently of ³H fit

PRC 100, 024318 (2019)

Conclusion

- chiral NN+3N Hamiltonians at N³LO fit to ³H and the saturation point
- underbinding for closed-shell medium-mass nuclei
- somewhat too large charge radii
- exploratory study for 3N low-energy constant variations

Conclusion

- chiral NN+3N Hamiltonians at N³LO fit to ³H and the saturation point
- underbinding for closed-shell medium-mass nuclei
- somewhat too large charge radii
- exploratory study for 3N low-energy constant variations

Thank you for your attention. See you at the poster!

Impact of N²LO LEC variations on ground-state energies and charge radii

variations of long-range LECs c_1 , c_3 , c_4 by ± 1 GeV⁻¹

variations of 3N couplings c_D and c_E by ± 1

largest sensitivity to cE

two modified interactions with c_E + 0.7 and c_E + 0.4