Recent progress of chiral three-nucleon forces and applications to nuclei and matter

Kai Hebeler Vancouver, March 3, 2020

arXiv:2002.09548

Progress in Ab Initio Techniques in Nuclear Physics

TECHNISCHE UNIVERSITÄT DARMSTADT

Outline

I. development and implementation of local QMC 3N interactions for harmonic oscillator expansion frameworks

- 2. application of consistently-evolved nonlocal NN+3N interactions to nuclear matter, comparison with 'magic' interactions
- 3. alternative normal-ordering framework for 3N interactions for applications to medium-mass and heavy nuclei

3NF in different regularization schemes

	momentum space	coordinate space
nonlocal regulators:	$\frac{\text{nonlocal MS}}{\left(1 - n\right)} = \exp \left[-\frac{\left((n^2 + 2)/4 n^2\right)}{n} \right]$	
long-range	$\int_{\Lambda} \mathcal{O}(\mathbf{p}, \mathbf{q}) = \exp\left[-((\mathbf{p}^2 + 3/4 \mathbf{q}^2)/\Lambda^2)\right]$	
snort-range regularization:	$\begin{cases} f_{\Lambda}^{\text{short}}(\mathbf{p}, \mathbf{q}) = f_{\Lambda}^{-c}(\mathbf{p}, \mathbf{q}) = f_{R}(\mathbf{p}, \mathbf{q}) \\ \left\langle \mathbf{p}' \mathbf{q}' V_{3N}^{\text{reg}} \mathbf{p} \mathbf{q} \right\rangle = f_{R}(\mathbf{p}', \mathbf{q}') \left\langle \mathbf{p}' \mathbf{q}' V_{3N} \mathbf{p} \mathbf{q} \right\rangle f_{R}(\mathbf{p}, \mathbf{q}) \end{cases}$	
local	local MS	local CS
long-range	$f^{\text{long}}(\mathbf{\Omega}_{1}) = \exp\left[-(\mathbf{\Omega}^{2}/\Lambda^{2})^{2}\right]$	$f^{\text{long}}(\mathbf{r}) = 1 - \exp\left[-(r^2/R^2)^n\right]$
short-range	$\int_{\Lambda} (\mathbf{Q}_i) = \exp\left[(\mathbf{Q}_i / \Lambda) \right]$ $f^{\text{short}}(\mathbf{Q}_i) = f^{\text{long}}(\mathbf{Q}_i) = f_{i}(\mathbf{Q}_i)$	$\int_{R} (\mathbf{r}) = \mathbf{r} \exp\left[-(r^2/R^2)^n\right]$
short-range	$\int_{\Lambda} (\mathbf{Q}_i) - \int_{\Lambda} (\mathbf{Q}_i) - \int_{\Lambda} (\mathbf{Q}_i)$	$\int_{R} (\mathbf{I}) = \exp\left[-(\mathbf{I} / \mathbf{K})\right]$
regularization:	$\left\langle \mathbf{p}'\mathbf{q}' V_{3N}^{\text{reg}} \mathbf{p}\mathbf{q}\right\rangle = \left\langle \mathbf{p}'\mathbf{q}' V_{3N} \mathbf{p}\mathbf{q}\right\rangle \prod_{i} f_{R}(\mathbf{Q}_{i})$	$V_{3N}^{\pi,\text{reg}}(\mathbf{r}_{ij}) = f_R^{\text{long}}(\mathbf{r}_{ij})V_{3N}^{\pi}(\mathbf{r}_{ij})$ $\delta^{\text{reg}}(\mathbf{r}_{ij}) = \alpha_n f_R^{\text{short}}(\mathbf{r}_{ij})$
semilocal	semilocal MS	semilocal CS
regulators:		
long-range	$\int_{\Lambda}^{\text{long}}(\mathbf{Q}_i) = \exp\left[-(\mathbf{Q}_i^2 + m_{\pi}^2)/\Lambda^2\right]$	$\int_{R}^{\text{long}}(\mathbf{r}) = \left(1 - \exp\left[-\frac{r^2}{R^2}\right]\right)^n$
short-range	$\int_{\Lambda}^{\text{short}}(\mathbf{p}) = \exp\left[-\mathbf{p}^2/\Lambda^2\right]$	$\int_{\Lambda}^{\text{short}}(\mathbf{p}) = \exp\left[-\mathbf{p}^2/\Lambda^2\right]$
regularization:	$ \left\langle \mathbf{p}'\mathbf{q}' V_{3N}^{\text{reg},\pi} \mathbf{p}\mathbf{q}\right\rangle = f_R^{\text{long}}(\mathbf{Q}_i) \left\langle \mathbf{p}'\mathbf{q}' V_{3N} \mathbf{p}\mathbf{q}\right\rangle \left\langle \mathbf{p}'\mathbf{q}' V_{3N}^{\text{reg},\delta} \mathbf{p}\mathbf{q}\right\rangle = f_\Lambda^{\text{short}}(\mathbf{p}'_\delta) \left\langle \mathbf{p}'\mathbf{q}' V_{3N}^{\delta} \mathbf{p}\mathbf{q}\right\rangle f_\Lambda^{\text{short}}(\mathbf{p}_\delta) $	$V_{3N}^{\pi,\text{reg}}(\mathbf{r}_{ij}) = f_R^{\text{long}}(\mathbf{r}_{ij}) V_{3N}^{\pi}(\mathbf{r}_{ij})$ $\delta(\mathbf{r}_{ij}) \xrightarrow{FT} V_{3N}^{\delta}$ $\left\langle \mathbf{p'q'} V_{3N}^{\text{reg},\delta} \mathbf{pq} \right\rangle = f_{\Lambda}^{\text{short}}(\mathbf{p}_{\delta}') \left\langle \mathbf{p'q'} V_{3N}^{\delta} \mathbf{pq} \right\rangle f_{\Lambda}^{\text{short}}(\mathbf{p}_{\delta})$

KH, arXiv: 2002.09548 (2020)

3NF in different regularization schemes

	momentum space	coordinate space
nonlocal regulators:	nonlocal MS N ² LO N ³ LO	
long-range	$f_{\Lambda}^{\text{long}}(\mathbf{p},\mathbf{q}) = \exp\left[-((\mathbf{p}^2 + 3/4 \mathbf{q}^2)/\Lambda^2)^n\right]$	
short-range	$f_{\Lambda}^{\text{short}}(\mathbf{p},\mathbf{q}) = f_{\Lambda}^{\text{long}}(\mathbf{p},\mathbf{q}) = f_R(\mathbf{p},\mathbf{q})$	
regularization:	$\left\langle \mathbf{p}'\mathbf{q}' V_{3N}^{\text{reg}} \mathbf{p}\mathbf{q}\right\rangle = f_R(\mathbf{p}',\mathbf{q}')\left\langle \mathbf{p}'\mathbf{q}' V_{3N} \mathbf{p}\mathbf{q}\right\rangle f_R(\mathbf{p},\mathbf{q})$	
local regulators:	local MS N ² LO N ³ LO	local CS N ² LO N ³ LO
long-range	$f_{\Lambda}^{\text{long}}(\mathbf{Q}_i) = \exp\left[-(\mathbf{Q}_i^2/\Lambda^2)^2\right]$	$f_{R}^{\text{long}}(\mathbf{r}) = 1 - \exp\left[-(r^{2}/R^{2})^{n}\right]$
short-range	$f_{\Lambda}^{\text{short}}(\mathbf{Q}_i) = f_{\Lambda}^{\text{long}}(\mathbf{Q}_i) = f_{\Lambda}(\mathbf{Q}_i)$	$f_R^{\text{short}}(\mathbf{r}) = \exp\left[-(r^2/R^2)^n\right]$
regularization:	$\left\langle \mathbf{p}'\mathbf{q}' V_{3N}^{\mathrm{reg}} \mathbf{pq}\right\rangle = \left\langle \mathbf{p}'\mathbf{q}' V_{3N} \mathbf{pq}\right\rangle \prod_{i} f_{R}(\mathbf{Q}_{i})$	$V_{3N}^{\pi,\text{reg}}(\mathbf{r}_{ij}) = f_R^{\text{long}}(\mathbf{r}_{ij})V_{3N}^{\pi}(\mathbf{r}_{ij})$ $\delta^{\text{reg}}(\mathbf{r}_{ij}) = \alpha_n f_R^{\text{short}}(\mathbf{r}_{ij})$
semilocal	semilocal MS N ² LO N ³ LO	semilocal CS N ² LO N ³ LO
long-range	$f^{\text{long}}(\mathbf{\Omega}) = \exp\left[-(\mathbf{\Omega}^2 + m^2)/\Lambda^2\right]$	$f^{\text{long}}(\mathbf{r}) = (1 - \exp\left[-r^2/R^2\right])^n$
short-range	$f_{\Lambda}^{\text{short}}(\mathbf{p}) = \exp\left[-\mathbf{p}^2/\Lambda^2\right]$	$f_{\Lambda}^{\text{short}}(\mathbf{p}) = \exp\left[-\mathbf{p}^2/\Lambda^2\right]$
regularization:	$ \left\langle \mathbf{p}'\mathbf{q}' V_{3N}^{\text{reg},\pi} \mathbf{p}\mathbf{q}\right\rangle = f_R^{\text{long}}(\mathbf{Q}_i) \left\langle \mathbf{p}'\mathbf{q}' V_{3N} \mathbf{p}\mathbf{q}\right\rangle \left\langle \mathbf{p}'\mathbf{q}' V_{3N}^{\text{reg},\delta} \mathbf{p}\mathbf{q}\right\rangle = f_\Lambda^{\text{short}}(\mathbf{p}'_\delta) \left\langle \mathbf{p}'\mathbf{q}' V_{3N}^\delta \mathbf{p}\mathbf{q}\right\rangle f_\Lambda^{\text{short}}(\mathbf{p}_\delta) $	$V_{3N}^{\pi, \text{reg}}(\mathbf{r}_{ij}) = f_R^{\text{long}}(\mathbf{r}_{ij}) V_{3N}^{\pi}(\mathbf{r}_{ij})$ $\delta(\mathbf{r}_{ij}) \xrightarrow{FT} V_{3N}^{\delta}$ $\left\langle \mathbf{p'q'} V_{3N}^{\text{reg},\delta} \mathbf{pq} \right\rangle = f_{\Lambda}^{\text{short}}(\mathbf{p}_{\delta}') \left\langle \mathbf{p'q'} V_{3N}^{\delta} \mathbf{pq} \right\rangle f_{\Lambda}^{\text{short}}(\mathbf{p}_{\delta})$
I	1	KH, arXiv: 2002.09548 (2020)

Illustration of 3NF in different regularization schemes

3NF in different regularization schemes

	momentum space	coordinate space
nonlocal regulators: long-range short-range regularization:	$\frac{\text{nonlocal MS}}{f_{\Lambda}^{\text{long}}(\mathbf{p}, \mathbf{q}) = \exp\left[-((\mathbf{p}^2 + 3/4 \mathbf{q}^2)/\Lambda^2)^n\right]}$ $f_{\Lambda}^{\text{short}}(\mathbf{p}, \mathbf{q}) = f_{\Lambda}^{\text{long}}(\mathbf{p}, \mathbf{q}) = f_R(\mathbf{p}, \mathbf{q})$ $\left\langle \mathbf{p}' \mathbf{q}' V_{3N}^{\text{reg}} \mathbf{p} \mathbf{q} \right\rangle = f_R(\mathbf{p}', \mathbf{q}') \left\langle \mathbf{p}' \mathbf{q}' V_{3N} \mathbf{p} \mathbf{q} \right\rangle f_R(\mathbf{p}, \mathbf{q})$	
local	local MS	local CS
regulators:	Inne France 21	
long-range	$f_{\Lambda}^{\text{long}}(\mathbf{Q}_i) = \exp\left[-(\mathbf{Q}_i^2/\Lambda^2)^2\right]$	$f_R^{\text{long}}(\mathbf{r}) = 1 - \exp\left[-(r^2/R^2)^n\right]$
short-range	$f_{\Lambda}^{\text{short}}(\mathbf{Q}_i) = f_{\Lambda}^{\text{long}}(\mathbf{Q}_i) = f_{\Lambda}(\mathbf{Q}_i)$	$f_R^{\text{short}}(\mathbf{r}) = \exp\left[-\left(r^2/R^2\right)^n\right]$
regularization:	$\left\langle \mathbf{p'q'} V_{3N}^{\text{reg}} \mathbf{pq}\right\rangle = \left\langle \mathbf{p'q'} V_{3N} \mathbf{pq}\right\rangle \prod_{i} f_{R}(\mathbf{Q}_{i})$	$V_{3N}^{\pi,\text{reg}}(\mathbf{r}_{ij}) = f_R^{\text{long}}(\mathbf{r}_{ij})V_{3N}^{\pi}(\mathbf{r}_{ij})$ $\delta^{\text{reg}}(\mathbf{r}_{ij}) = \alpha_n f_R^{\text{short}}(\mathbf{r}_{ij})$
semilocal	semilocal MS	semilocal CS
regulators:		$\log \left[2 + 2 \right] n$
long-range	$f_{\Lambda}^{\text{nong}}(\mathbf{Q}_i) = \exp\left[-(\mathbf{Q}_i^2 + m_{\pi}^2)/\Lambda^2\right]$	$f_R^{\text{iong}}(\mathbf{r}) = (1 - \exp\left[-r^2/R^2\right])^n$
short-range	$f_{\Lambda}^{\text{short}}(\mathbf{p}) = \exp\left[-\mathbf{p}^2/\Lambda^2\right]$	$f_{\Lambda}^{\text{short}}(\mathbf{p}) = \exp\left[-\mathbf{p}^2/\Lambda^2\right]$
regularization:	$ \left\langle \mathbf{p'q'} V_{3N}^{\text{reg},\pi} \mathbf{pq} \right\rangle = f_R^{\text{long}}(\mathbf{Q}_i) \left\langle \mathbf{p'q'} V_{3N} \mathbf{pq} \right\rangle $ $ \left\langle \mathbf{p'q'} V_{3N}^{\text{reg},\delta} \mathbf{pq} \right\rangle = f_\Lambda^{\text{short}}(\mathbf{p}'_\delta) \left\langle \mathbf{p'q'} V_{3N}^{\delta} \mathbf{pq} \right\rangle f_\Lambda^{\text{short}}(\mathbf{p}_\delta) $	$V_{3N}^{\pi,\text{reg}}(\mathbf{r}_{ij}) = f_R^{\text{long}}(\mathbf{r}_{ij}) V_{3N}^{\pi}(\mathbf{r}_{ij})$ $\delta(\mathbf{r}_{ij}) \xrightarrow{FT} V_{3N}^{\delta}$ $\left\langle \mathbf{p'q'} V_{3N}^{\text{reg},\delta} \mathbf{pq} \right\rangle = f_{\Lambda}^{\text{short}}(\mathbf{p}_{\delta}') \left\langle \mathbf{p'q'} V_{3N}^{\delta} \mathbf{pq} \right\rangle f_{\Lambda}^{\text{short}}(\mathbf{p}_{\delta})$
	IMSRG,CC,SCGF,MBPT,	KH, arXiv: 2002.09548 (2020)

New chiral 3N interactions for QMC frameworks

ApJ 860, 149 (2018)

Development of novel local CS NN+3N interactions (Tews, Londardoni)

- wider range of cutoff values, reduced cutoff artifacts
- cutoff form that allows easier generalization to N³LO

In progress (virtually finished): Calculation of momentum space and HO matrix elements for applications to HO-based many-body frameworks

New chiral 3N interactions for QMC frameworks

three-body tests and three-body fits complete:

Work in progress in collaboration with Ingo and Diego:

- exploration of different fitting strategies for 3NF
- \bullet N_{max} convergence in HO basis for heavier systems

Drischler, KH, Schwenk, PRL 122, 042501 (2019)

is versus low-resolution fits

	NN SRG evolution + 3N fits					
$\lambda_{\rm SRG} ({\rm fm}^{-1})$	Λ_{3NF} (fm ⁻¹)	c_D	c_E $r_{^3\mathrm{H}}$ (fm)		$E_{^{4}\mathrm{He}}$ (MeV)	
∞	2.0	+1.5	0.114	1.601	-28.64(4)	Ī
2.8	2.0 [116]	+1.278	-0.078	1.604	-28.75(2)	
2.6	2.0	+1.26	-0.099	1.605	-28.77(2)	
2.4	2.0	+1.265	-0.115	1.606	-28.80(2)	
2.2	2.0 [116]	+1.214	-0.137	1.608	-28.86(2)	
2.0	2.0 [116]	+1.271	-0.131	1.612	-28.95(2)	
1.8	2.0 [116]	+1.264	-0.120	1.617	-29.11(2)	
1.6	2.0	+1.25	-0.075	1.626	-29.42(2)	
00	2.5	-1.45	-0.633	1.604	-28.65(4)	Γ
2.8	2.5	-1.35	-0.735	1.606	-28.84(2)	
2.6	2.6 2.5		-0.75	1.606	-28.85(2)	
2.4	2.4 2.5		-0.725	1.607	-28.89(2)	
2.2	2.5	-0.7	-0.675	1.609	-28.95(2)	
2.0	2.5 [116]	-0.292	-0.592	1.612	-29.05(2)	
1.8	2.5	0.05	-0.503	1.617	-29.21(2)	
1.6	2.5	0.55	-0.353	1.626	-29.48(2)	

KH, Bogner, Furnstahl, Nogga, Schwenk, PRC 83, 031301(2011) KH, arXiv: 2002.09548 (2020)

Consistent NN+3N evolutions versus low-resolution fits

	NN SRG evolution + 3N fits				NN+3N SRG evolution			
$\lambda_{\rm SRG} ({\rm fm}^{-1})$	$\Lambda_{3\rm NF}~({\rm fm}^{-1})$	c_D	c_E	$r_{^{3}\mathrm{H}}(\mathrm{fm})$	$E_{^{4}\mathrm{He}}$ (MeV)	$E_{^{3}\mathrm{H}}$ (MeV)	$r_{^{3}\mathrm{H}}(\mathrm{fm})$	$E_{^{4}\mathrm{He}}$ (MeV)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.0	+1.5	0.114	1.601	-28.64(4)	-8.482	1.601	-28.64(4)
2.8	2.0 [116]	+1.278	-0.078	1.604	-28.75(2)	-8.482	1.605	-28.72(2)
2.6	2.0	+1.26	-0.099	1.605	-28.77(2)	-8.481	1.606	-28.73(2)
2.4	2.0	+1.265	-0.115	1.606	-28.80(2)	-8.481	1.608	-28.73(2)
2.2	2.0 [116]	+1.214	-0.137	1.608	-28.86(2)	-8.480	1.611	-28.74(2)
2.0	2.0 [116]	+1.271	-0.131	1.612	-28.95(2)	-8.479	1.615	-28.75(2)
1.8	2.0 [116]	+1.264	-0.120	1.617	-29.11(2)	-8.478	1.622	-28.76(2)
1.6	2.0	+1.25	-0.075	1.626	-29.42(2)	-8.476	1.635	-28.79(2)
$\infty$	2.5	-1.45	-0.633	1.604	-28.65(4)	-8.482	1.604	-28.65(4)
2.8	2.5	-1.35	-0.735	1.606	-28.84(2)	-8.482	1.608	-28.75(2)
2.6	2.5	-1.2	-0.75	1.606	-28.85(2)	-8.482	1.609	-28.76(2)
2.4	2.5	-1.0	-0.725	1.607	-28.89(2)	-8.482	1.610	-28.77(2)
2.2	2.5	-0.7	-0.675	1.609	-28.95(2)	-8.481	1.613	-28.77(2)
2.0	2.5 [116]	-0.292	-0.592	1.612	-29.05(2)	-8.481	1.617	-28.77(2)
1.8	2.5	0.05	-0.503	1.617	-29.21(2)	-8.480	1.625	-28.77(2)
1.6	2.5	0.55	-0.353	1.626	-29.48(2)	-8.478	1.638	-28.77(2)

KH, arXiv: 2002.09548 (2020)

### Consistent NN+3N evolutions versus low-resolution fits



### Consistent NN+3N evolutions versus low-resolution fits



#### traditional approach:

I. transformation to Jacobi HO basis plus antisymmetrization

 $\left\langle p'q'\alpha'|V_{3N}^{(i),\mathrm{reg}}|pq\alpha\right\rangle \rightarrow \left\langle N'n'\alpha'|V_{3N}^{(\mathrm{as,reg}}|Nn\alpha\right\rangle$ 

#### traditional approach:

- I. transformation to Jacobi HO basis plus antisymmetrization  $\langle p'q'\alpha'|V_{3N}^{(i),reg}|pq\alpha\rangle \rightarrow \langle N'n'\alpha'|V_{3N}^{(as,reg}|Nn\alpha\rangle$
- 2. transformation to single particle basis

 $\langle N'n'\alpha'|V_{3N}^{as, reg}|Nn\alpha\rangle \rightarrow \langle 1'2'3'|V_{3N}^{as, reg}|123\rangle$ 

#### traditional approach:

- I. transformation to Jacobi HO basis plus antisymmetrization  $\langle p'q'\alpha'|V_{3N}^{(i),reg}|pq\alpha\rangle \rightarrow \langle N'n'\alpha'|V_{3N}^{(as,reg}|Nn\alpha\rangle$
- 2. transformation to single particle basis

 $\left\langle N'n'\alpha'|V_{3\mathrm{N}}^{\mathrm{as, \, reg}}|Nn\alpha\right\rangle \to \left\langle 1'2'3'|V_{3\mathrm{N}}^{\mathrm{as, \, reg}}|123\right\rangle$ 

3. Normal ordering with respect to some reference state

$$\left\langle 1'2'|\overline{V}|12\right\rangle = \sum_{3} \bar{n}_{3}\left\langle 1'2'3|V_{3N}^{as}|123\right\rangle$$

#### traditional approach:

I. transformation to Jacobi HO basis plus antisymmetrization

 $\langle p'q'\alpha'|V_{3N}^{(i),reg}|pq\alpha\rangle \rightarrow \langle N'n'\alpha'|V_{3N}^{(as,reg}|Nn\alpha\rangle$ 

2. transformation to single particle basis

 $\left\langle N'n'\alpha'|V_{3\mathrm{N}}^{\mathrm{as, reg}}|Nn\alpha\right\rangle \rightarrow \left\langle 1'2'3'|V_{3\mathrm{N}}^{\mathrm{as, reg}}|123\right\rangle$ 

3. Normal ordering with respect to some reference state

$$\left\langle 1'2'|\overline{V}|12\right\rangle = \sum_{3} \bar{n}_{3} \left\langle 1'2'3|V_{3N}^{\mathrm{as}}|123\right\rangle$$

- severe memory limitations for handling of single-particle matrix elements with increasing E_{3max}
- convergence in heavier systems?



I. Express effective interaction in momentum space and expand reference state in HO basis:

I. Express effective interaction in momentum space and expand reference state in HO basis:

$$\begin{split} \left\langle \mathbf{k}_{1}'\mathbf{k}_{2}'|\overline{V}|\mathbf{k}_{1}\mathbf{k}_{2}\right\rangle &= \sum_{n_{3}l_{3}m_{3}} \overline{n}_{3}\left\langle \mathbf{k}_{1}'\mathbf{k}_{2}'\gamma_{3}|V_{3\mathrm{N}}^{\mathrm{as}}|\mathbf{k}_{1}\mathbf{k}_{2}\gamma_{3}\right\rangle \\ &= \int d\mathbf{k}_{3}d\mathbf{k}_{3}'\left\langle \mathbf{k}_{1}'\mathbf{k}_{2}'\mathbf{k}_{3}'|V_{3\mathrm{N}}^{\mathrm{as}}|\mathbf{k}_{1}\mathbf{k}_{2}\mathbf{k}_{3}\right\rangle \sum_{n_{3}l_{3}m_{3}} \overline{n}_{3}\left\langle \gamma_{3}|\mathbf{k}_{3}'\right\rangle \left\langle \mathbf{k}_{3}|\gamma_{3}\right\rangle \end{split}$$

2. Rewrite interaction in Jacobi momentum basis:

$$\left\langle \mathbf{p'P'}|\overline{V}|\mathbf{pP}\right\rangle = \int d\mathbf{k}_3 d\mathbf{k}_3' \left\langle \mathbf{p'q'}|V_{3N}^{as}|\mathbf{pq}\right\rangle \delta(\mathbf{P} + \mathbf{k}_3 - \mathbf{P'} - \mathbf{k}_3') \sum_{n_3 l_3 m_3} \bar{n}_3 \left\langle \gamma_3 |\mathbf{k}_3' \right\rangle \left\langle \mathbf{k}_3 |\gamma_3\rangle$$

I. Express effective interaction in momentum space and expand reference state in HO basis:

$$\begin{split} \left\langle \mathbf{k}_{1}'\mathbf{k}_{2}'|\overline{V}|\mathbf{k}_{1}\mathbf{k}_{2}\right\rangle &= \sum_{n_{3}l_{3}m_{3}} \overline{n}_{3}\left\langle \mathbf{k}_{1}'\mathbf{k}_{2}'\gamma_{3}|V_{3\mathrm{N}}^{\mathrm{as}}|\mathbf{k}_{1}\mathbf{k}_{2}\gamma_{3}\right\rangle \\ &= \int d\mathbf{k}_{3}d\mathbf{k}_{3}'\left\langle \mathbf{k}_{1}'\mathbf{k}_{2}'\mathbf{k}_{3}'|V_{3\mathrm{N}}^{\mathrm{as}}|\mathbf{k}_{1}\mathbf{k}_{2}\mathbf{k}_{3}\right\rangle \sum_{n_{3}l_{3}m_{3}} \overline{n}_{3}\left\langle \gamma_{3}|\mathbf{k}_{3}'\right\rangle \left\langle \mathbf{k}_{3}|\gamma_{3}\right\rangle \end{split}$$

2. Rewrite interaction in Jacobi momentum basis:

$$\left\langle \mathbf{p'P'}|\overline{V}|\mathbf{pP}\right\rangle = \int d\mathbf{k}_3 d\mathbf{k}_3' \left\langle \mathbf{p'q'}|V_{3N}^{as}|\mathbf{pq}\right\rangle \delta(\mathbf{P} + \mathbf{k}_3 - \mathbf{P'} - \mathbf{k}_3') \sum_{n_3 l_3 m_3} \bar{n}_3 \left\langle \gamma_3 |\mathbf{k}_3' \right\rangle \left\langle \mathbf{k}_3 |\gamma_3\rangle$$

#### 3. Decomposition in Jacobi partial wave momentum states:

$$\begin{split} \left\langle p'P'L'M'L'_{cm}M'_{cm}|\overline{\mathbf{V}}|pPLML_{cm}M_{cm}\right\rangle \\ &= \int d\hat{\mathbf{p}}d\hat{\mathbf{P}}d\hat{\mathbf{p}}'d\hat{\mathbf{P}}'Y^*_{L'_{cm}M'_{cm}}(\hat{\mathbf{P}}')Y^*_{L'M'}(\hat{\mathbf{p}}')\left\langle \mathbf{p'P'}|\overline{\mathbf{V}}|\mathbf{pP}\right\rangle Y_{L_{cm}M_{cm}}(\hat{\mathbf{P}})Y_{LM}(\hat{\mathbf{p}}) \\ &= \int d\hat{\mathbf{P}}d\hat{\mathbf{P}}'Y^*_{L'_{cm}M'_{cm}}(\hat{\mathbf{P}}')Y_{L_{cm}M_{cm}}(\hat{\mathbf{P}})\int d\mathbf{k}_3 d\mathbf{k}'_3\sum_{l,l'}\sum_{m,m'}Y^*_{l'm'}(\hat{\mathbf{q}}')Y_{lm}(\hat{\mathbf{q}}) \\ &\times \delta(\mathbf{P}+\mathbf{k}_3-\mathbf{P}'-\mathbf{k}'_3)\sum_{n_3,l_3}\overline{n}_3R_{n_3l_3}(k_3)R_{n_3l_3}(k'_3)\frac{2l_3+1}{4\pi}P_{l_3}(\hat{\mathbf{k}}_3\cdot\hat{\mathbf{k}}'_3)\left\langle p'q'L'M'l'm'|V^{\mathrm{as}}_{3\mathrm{N}}|pqLMlm|\right\rangle \end{split}$$

4. transform matrix elements to Jacobi HO basis

 $\langle p'P'L'M'L'_{cm}M'_{cm}|\overline{V}|pPLML_{cm}M_{cm}\rangle$  $\rightarrow \langle n'_pN'_PL'M'L'_{cm}M'_{cm}|\overline{V}|n_pN_PLML_{cm}M_{cm}\rangle$ 

5. transformation to single-particle HO basis via generalized Talmi transformation (taking into account  $L_{cm}$  dependence)

4. transform matrix elements to Jacobi HO basis

 $\left\langle p'P'L'M'L'_{cm}M'_{cm}|\overline{V}|pPLML_{cm}M_{cm}\right\rangle$  $\rightarrow \left\langle n'_pN'_PL'M'L'_{cm}M'_{cm}|\overline{V}|n_pN_PLML_{cm}M_{cm}\right\rangle$ 

5. transformation to single-particle HO basis via generalized Talmi transformation (taking into account  $L_{cm}$  dependence)

- at no stage single-particle 3N HO matrix elements needed
- straightforward generalization to spin-dependent 3N interactions (already implemented)
- significant recent improvements and optimizations (thanks Alex! :) )
- N_{max} can be increased straightforwardly
- number of partial waves grows quickly with increasing L and L_{cm}, further optimizations and benchmarks needed
- currently implemented for HO reference state, generalization work in progress

# Novel normal ordering framework for 3N interactions: Pure contact 3N interaction



only configurations with L=L'=0 contribute:



perfect agreement between results from both approaches up to given model space



### Novel normal ordering framework for 3N interactions First benchmark calculations for ¹⁶O

comparison of 3N contributions to the energy (left) and charge radius (right):



systematic convergence towards results based on traditional normal ordering approach with increasing L/L_{cm}

### Summary and Outlook

Development and calculation of 3N matrix elements used in QMC frameworks, new cross-benchmarks and extended applications?

First calculations of nuclear matter based on consistently SRGevolved NN+3N interactions, comparison with 'magic' interactions

Novel normal ordering framework for 3NF that avoids the need to represent 3NF in single-particle coordinates, first benchmarks promising, further optimizations and benchmarks in progress

### Summary and Outlook

Development and calculation of 3N matrix elements used in QMC frameworks, new cross-benchmarks and extended applications?

First calculations of nuclear matter based on consistently SRGevolved NN+3N interactions, comparison with 'magic' interactions

Novel normal ordering framework for 3NF that avoids the need to represent 3NF in single-particle coordinates, first benchmarks promising, further optimizations and benchmarks in progress

Thank you!