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Table 4: Regularization schemes for 3N interactions. We have suppressed all spin and isospin indices for the sake of simple notation. In general
only spin-independent regulator functions have been applied so far. For the local and semilocal regularization the factorization V3N = V⇡3NV�3N has
been employed.
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• First, we can categorize the regularization in a momentum space or coordinate space formulation. In the first
case the regulator function is a general function of all Jacobi momenta in some chosen basis representation {ab}:

f⇤ = f⇤(p,q,p0,q0). (77)

This regulator function is then applied as a multiplicative factor to 3N contributions without loop contributions
(see, e.g. Eq. (52)):

V reg
3N = V reg

3N (p,q,p0,q0) f⇤(p,q,p0,q0). (78)

For 3N contributions involving loop structures the regulator functions can in principle also be applied to internal
loop momenta. We will discuss this in more detail further below.
Accordingly, in coordinate space the regulator function depends in general on all relative coordinates

fR = fR(r, s, r0, s0). (79)

In the present work we will not discuss methods to apply directly regulator functions in coordinate space since
the calculation and decomposition of the 3N interactions is performed in momentum space. Instead we Fourier-
transform coordinate-space regulators of the form (79) to momentum space and apply them in the basis dis-
cussed in Section 3.4 via convolution integrals. We discuss the regularization in detail below.

• Second, the regulator function can be categorized into local and nonlocal regulator functions. According to the
discussion in Section 3.3 in momentum space local regulator functions are functions of momentum transfers
only, i.e. di↵erences of Jacobi momenta:

f local
⇤ = f⇤(p0 � p,q0 � q) = f⇤(p̃, q̃) (80)
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Table VII. Ground-state energies and charge radii for A = 3, 4 employing local chiral potentials at N2LO. The Eτ parametriza-
tion of the 3N force is used. Errors are statistical. GFMC results are from Refs. [23, 27].

Nucleus Cutoff Potential AFDMC GFMC
AZ (Jπ, T ) R0 (fm) E (MeV) rch (fm) E (MeV) rch (fm)
3H( 12

+
, 1
2 ) 1.0 NN −7.54(4) 1.75(2) −7.55(1) 1.78(2)

3N Eτ −8.33(7) 1.72(2) −8.34(1) 1.72(3)

1.2 NN −7.76(3) 1.74(2) −7.74(1) 1.75(2)

3N Eτ −8.27(5) 1.73(2) −8.35(4) 1.72(4)
3He ( 12

+
, 1
2 ) 1.0 NN −6.89(5) 2.02(2) −6.78(1) 2.06(2)

3N Eτ −7.55(8) 1.96(2) −7.65(2) 1.97(2)

1.2 NN −7.12(3) 1.98(2) −7.01(1) 2.01(1)

3N Eτ −7.64(4) 1.95(5) −7.63(4) 1.97(1)
4He (0+, 0) 1.0 NN −23.96(8) 1.72(2) −23.72(1) 1.73(1)

3N Eτ −27.64(13) 1.68(2) −28.30(1) 1.65(2)

1.2 NN −25.17(5) 1.69(1) −24.86(1) 1.69(1)

3N Eτ −28.37(8) 1.65(1) −28.30(1) 1.64(1)
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Figure 5. Ground-state energies per nucleon for 3 ≤ A ≤ 16 with local chiral potentials: (a) R0 = 1.0 fm cutoff (left panel), (b)
R0 = 1.2 fm cutoff (right panel). Results at different orders of the chiral expansion and for different 3N parametrizations are
shown. Smaller error bars (indistinguishable from the symbols up to A = 6) indicate the statistical Monte Carlo uncertainty,
while larger error bars are the uncertainties from the truncation of the chiral expansion. LO and N2LO Eτ results for 16O with
R0 = 1.2 fm are outside the displayed energy region. Updated from Ref. [33].

For A = 6 the wave function is constructed using up
to sd-shell single-particle orbitals. For 12C instead, cou-
pling p-shell orbitals only already results in a sum of 119
Slater determinants. Including orbitals in the sd-shell
could in principle result in a better wave function for
this open-shell system, but it will sizably increase the
number of determinants to consider, making the calcu-
lation prohibitively time consuming. Another possible
improvement would be to include quadratic terms in the
pair correlations, as shown in Eq. (64). However, first
attempts in 16O lead to just a ≈ 6(2)MeV reduction of
the total energy in a simplified scenario (see Table III),
with a noticeably increased computational cost.

For the softer interaction (R0 = 1.2 fm), NLO and in

particular LO results are typically more bound compared
to the R0 = 1.0 fm case. Both parametrizations of the
3N force bring the N2LO energies compatible with the
experimental values up to A = 6, and consistent with
those obtained with the hard potential.

For the heaviest system considered here, 16O, the pic-
ture is quite different. At LO, the system is dramatically
overbound (≈ −1GeV), which would imply very large
theoretical uncertainties at NLO and N2LO coming from
the prescription of Eq. (65). Within these uncertainties,
NLO and N2LO two-body energies are compatible with
the corresponding results for the hard interaction (see Ta-
bles VIII and IX). However, the contribution of the 3N
force at N2LO largely depends upon the employed oper-
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Figure 6. Charge radii for 3 ≤ A ≤ 16 with local chiral potentials: (a) R0 = 1.0 fm cutoff (left panel), (b) R0 = 1.2 fm cutoff
(right panel). The legend and error bars are as in Fig. 5. Updated from Ref. [33].

ator structure. The Eτ parametrization for the soft po-
tential is very attractive, adding almost 10MeV per nu-
cleon to the total energy, and thus predicting a significant
overbinding with a ground-state energy of ≈ −260MeV.
The E parametrization is instead less attractive, result-
ing in ≈ 0.30MeV per nucleon more binding with respect
to the two-body case, compatible with the energy expec-
tation values for the hard potential.

Figure 6 shows the charge radii at different orders
of the chiral expansion and for different cutoffs and
parametrizations of the 3N force. The agreement with
experimental data for the hard interaction at N2LO is re-
markably good all the way up to oxygen. One exception
is 6Li, for which the charge radius is somewhat underpre-
dicted. However, a similar conclusion is found in GFMC
calculations employing the AV18+IL7 potential, where
charge radii of lithium isotopes are underestimated [1].

For the soft interaction, the description of charge radii
resembles order by order that for the hard potential up to
A = 6, with the N2LO results in agreement with exper-
imental data, except for 6Li (also shown in Table VII).
The picture changes again for A = 16. The charge ra-
dius of 16O turns out to be close to 2.2 fm with the Eτ
parametrization of the 3N force, smaller than that of 6Li
for the same potential, but consistent with the significant
overbinding predicted for A = 16. The oxygen charge ra-
dius for the E parametrization is instead closer to the
experimental value.

The details of LO, NLO, and N2LO calculations for
A ≥ 6 are reported in Tables VIII and IX for R0 = 1.0 fm
and R0 = 1.2 fm, respectively. Results for the con-
strained and unconstrained evolution energies are both
shown, together with the charge radii. Both Monte Carlo
uncertainties and theoretical errors coming from the
truncation of the chiral expansion are reported (where
available). At N2LO the two-body energy is shown to-
gether with that of the two different parametrizations of

the 3N force (Eτ and E ).
The full calculation of 12C at N2LO required on the

order of 106 CPU hours (on Intel Broadwell cores @
2.1GHz) for a single cutoff (1.0 fm) and 3N parametriza-
tion (Eτ). Due to the high computational cost, no at-
tempts were made for the E parametrization of the 3N
force or for the 1.2 fm cutoff.

As shown in Tables VIII and IX, the overbinding in
16O happens only when the 3N force is included with
the Eτ parametrization for R0 = 1.2 fm. The alternative
combinations of three-body operators and cutoffs consid-
ered in this work predict instead binding energies com-
patible with the experimental value. A close look at the
energy contributions coming from the 3N force in 6Li
and 16O (Table X) clearly shows the issue. A large neg-
ative VD contribution in 16O for the soft Eτ potential
drives the system to a strongly bound state. In fact,
even though the total energy at the two-body level is
similar to that of the other soft potentials for A = 16,
the individual expectation values for the kinetic energy
and the two-body potential are severely larger, consis-
tent with a very compact system. The 3N force adds
then ≈ 13MeV per nucleon, roughly half coming from
the also increased TPE contribution, and half from VD.
In the case of the R0 = 1.0 fm cutoff instead, the 3N force
in both parametrizations adds only < 3MeV per nucleon
to the total two-body energy, with similar TPE contri-
butions and a balance between ⟨VD⟩ and ⟨VE⟩. This is
still true in 6Li also for R0 = 1.2 fm, but the balance is
broken for the soft Eτ potential in 16O. The main reason
for such behavior can be attributed to the large value of
cD for this potential (see Table IV), particularly effective
for A > 6.

As has been discussed briefly above and in more detail
in Refs. [23, 46], locally regulated chiral interactions spoil
the Fierz rearrangement freedom used to select one of the
six possible operators that are consistent with the sym-

New chiral 3N interactions for QMC frameworks

Lonardoni et al., PRC 97, 044381 (2018)
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Figure 6

The AFDMC EOS of PNM calculated from chiral Hamiltonians at N2LO up to 2n0. The different
bands correspond to different choices of the 3N short-range operator structure and highlight the
impact of regulator artifacts. Each band depicts an uncertainty estimate for the EFT truncation
uncertainty. We also show results at LO and NLO as well as results using the phenomenological
AV8′ interaction only or also including UIX 3N forces. Figure taken from Reference (8)

T is the total isospin) while the presence of protons also permits contributions from the

T = 1/2 channel. Nevertheless, the T = 3/2 isospin channel is only weakly accessible by

studying properties of nuclei.

While a complete calculation of nuclear matter with arbitrary proton fractions up to

x = 0.5 is still not possible with QMC methods, the AFDMC method has been widely used

to calculate the EOS of PNM for many different nuclear interactions in the past years. In

practice, in QMC methods the infinite system is simulated by a fixed number of neutrons in

a periodic box at a given baryon density. In particular, simulations using 66 neutrons (33

spin up and 33 spin down) give results very close to the thermodynamic limit (103, 104).

In Figure 6 we present results for PNM using the AFDMC method with local chiral

interactions up to N2LO. The three different bands correspond to using different short-range

operator structures for the 3N contact interaction VE at N2LO as described in Reference (47)

and discussed in Section 2; the differences are due to finite-cutoff effects and vanish in

the limit of large (momentum-space) cutoffs. Each band depicts a truncation uncertainty

estimate based on the order-by-order results at LO, NLO (both also shown in the figure),

and N2LO. The results are compared to calculations for the phenomenological AV8′ NN

interactions and when additionally including the UIX 3N forces. Note, that the blue (lower)

band produces an EOS that is very soft and leads to negative pressure at ≈ 1.5n0, which

is unphysical. The other two bands, instead, lead to an EOS that is compatible with

calculations using phenomenological Hamiltonians, but provide uncertainty estimates.

To describe NS, PNM calculations have to be extended to both β equilibrium as well

as to higher densities. While nuclear Hamiltonians have been used in QMC calculations at

all densities encountered in NSs (106), it is not clear if a description in terms of nucleonic

degrees of freedom remains valid at high densities. Therefore, a more conservative approach

is to use results based on realistic Hamiltonians at small densities, where uncertainties are
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Development of novel local CS NN+3N interactions (Tews, Londardoni)
• wider range of cutoff values, reduced cutoff artifacts
• cutoff form that allows easier generalization to N3LO

In progress (virtually finished):
Calculation of momentum space and HO matrix elements for 
applications to HO-based many-body frameworks
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5. Applications to nuclei and matter

In this chapter we present recent results of ab intio calculations of light nuclei, medium-mass nuclei as well as
dense matter based on state-of-the-art chiral NN and 3N interactions. The selection is not intended to be exhaustive,
but is rather supposed to illustrate the current status and open issues in nuclear structure theory. The discussed
results cover various observables of nuclei in di↵erent regimes of the nuclear chart and highlight the capabilities as
well as limitations of presently used interactions and many-body frameworks. The employed interactions include
di↵erent regularization schemes (see Section 3.7) and fitting strategies for the LECs of the NN and 3N interactions
(see Section 2.3).

5.1. SRG evolution of 3N interactions versus low-resolution fits
Many of the studies discussed in the following sections are based on the NN plus 3N interactions derived in

Ref. [116]. As already discussed in Section 2.3.1, these interactions consist of NN interactions evolved to di↵erent
SRG resolution scales �SRG plus 3N interactions fitted to the binding energy of 3H and the point-proton radius of
4He at each scale (see also Table 7). Even though the interactions are only fitted to NN and few-body observables,
the interactions exhibit realistic saturation properties of symmetric matter (see Figure 49). Furthermore, calculations
based on the interaction with �SRG/⇤3N = 1.8/2.0 (“1.8/2.0 (EM)”) show a remarkable agreement with experimental
binding energies for medium-mass nuclei (see also Figure 13). In Table 7 we give the specific values of the 3N
couplings cD and cE for the di↵erent values of the SRG resolution scale �SRG and the 3N cuto↵ scale ⇤3N. The listed
values include the results published in Ref. [116] as well as results for additional resolution scales. The fits at di↵erent
scales map out a continuous trajectory for the couplings cD and cE . We also provide results for the point charge radius
of 3H and the binding energy of 4He at the di↵erent scales. Given that there exists a correlation between the ground-
state energies of three- and four-body systems (“Tjon line”) [193, 194] we expect that the ground state energies for
4He should not change too much when varying �SRG, given that the binding energy of 3H is fixed by construction in
the fit. Still, the observed variation is about 800 keV over the the full range of scales, while all energies are slightly

NN SRG evolution + 3N fits NN+3N SRG evolution
�SRG (fm�1) ⇤3NF (fm�1) cD cE r3H (fm) E4He (MeV) E3H (MeV) r3H (fm) E4He (MeV)
1 2.0 +1.5 0.114 1.601 �28.64(4) �8.482 1.601 �28.64(4)
2.8 2.0 [116] +1.278 �0.078 1.604 �28.75(2) �8.482 1.605 �28.72(2)
2.6 2.0 +1.26 �0.099 1.605 �28.77(2) �8.481 1.606 �28.73(2)
2.4 2.0 +1.265 �0.115 1.606 �28.80(2) �8.481 1.608 �28.73(2)
2.2 2.0 [116] +1.214 �0.137 1.608 �28.86(2) �8.480 1.611 �28.74(2)
2.0 2.0 [116] +1.271 �0.131 1.612 �28.95(2) �8.479 1.615 �28.75(2)
1.8 2.0 [116] +1.264 �0.120 1.617 �29.11(2) �8.478 1.622 �28.76(2)
1.6 2.0 +1.25 �0.075 1.626 �29.42(2) �8.476 1.635 �28.79(2)
1 2.5 �1.45 �0.633 1.604 �28.65(4) �8.482 1.604 �28.65(4)
2.8 2.5 �1.35 �0.735 1.606 �28.84(2) �8.482 1.608 �28.75(2)
2.6 2.5 �1.2 �0.75 1.606 �28.85(2) �8.482 1.609 �28.76(2)
2.4 2.5 �1.0 �0.725 1.607 �28.89(2) �8.482 1.610 �28.77(2)
2.2 2.5 �0.7 �0.675 1.609 �28.95(2) �8.481 1.613 �28.77(2)
2.0 2.5 [116] �0.292 �0.592 1.612 �29.05(2) �8.481 1.617 �28.77(2)
1.8 2.5 0.05 �0.503 1.617 �29.21(2) �8.480 1.625 �28.77(2)
1.6 2.5 0.55 �0.353 1.626 �29.48(2) �8.478 1.638 �28.77(2)

Table 7: Results for the cD and cE couplings, fit to E3H = �8.482 MeV and to the point charge radius r4He = 1.464 fm (based on Ref. [288]) for
the NN/3N cuto↵s and the EM ci values (c1 = �0.81 GeV�1, c3 = �3.2 GeV�1, c4 = +5.4 GeV�1) used, see Ref. [116] for details. The 3H point
charge radius r3H is calculated from the charge form factor solutions of the Faddeev equations and the energies E4He are computed via a Jacobi
NCSM harmonic oscillator diagonalization code (credits to Andreas Ekström for providing the code). For comparison, the experimental 3H point
charge radius is 1.5978 ± 0.040 [212]. The basis space truncations Jmax =

7
2 and Jmax = 5 have been used for the four-body calculations (see

Section 3.4). The slight violation of unitarity as seen in the 3H binding energy is mainly due to the treatment of the charge dependence of the NN
interaction in the SRG evolution (see main text and also discussion in Section 4.2.2 for details).
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5. Applications to nuclei and matter

In this chapter we present recent results of ab intio calculations of light nuclei, medium-mass nuclei as well as
dense matter based on state-of-the-art chiral NN and 3N interactions. The selection is not intended to be exhaustive,
but is rather supposed to illustrate the current status and open issues in nuclear structure theory. The discussed
results cover various observables of nuclei in di↵erent regimes of the nuclear chart and highlight the capabilities as
well as limitations of presently used interactions and many-body frameworks. The employed interactions include
di↵erent regularization schemes (see Section 3.7) and fitting strategies for the LECs of the NN and 3N interactions
(see Section 2.3).

5.1. SRG evolution of 3N interactions versus low-resolution fits
Many of the studies discussed in the following sections are based on the NN plus 3N interactions derived in

Ref. [116]. As already discussed in Section 2.3.1, these interactions consist of NN interactions evolved to di↵erent
SRG resolution scales �SRG plus 3N interactions fitted to the binding energy of 3H and the point-proton radius of
4He at each scale (see also Table 7). Even though the interactions are only fitted to NN and few-body observables,
the interactions exhibit realistic saturation properties of symmetric matter (see Figure 49). Furthermore, calculations
based on the interaction with �SRG/⇤3N = 1.8/2.0 (“1.8/2.0 (EM)”) show a remarkable agreement with experimental
binding energies for medium-mass nuclei (see also Figure 13). In Table 7 we give the specific values of the 3N
couplings cD and cE for the di↵erent values of the SRG resolution scale �SRG and the 3N cuto↵ scale ⇤3N. The listed
values include the results published in Ref. [116] as well as results for additional resolution scales. The fits at di↵erent
scales map out a continuous trajectory for the couplings cD and cE . We also provide results for the point charge radius
of 3H and the binding energy of 4He at the di↵erent scales. Given that there exists a correlation between the ground-
state energies of three- and four-body systems (“Tjon line”) [193, 194] we expect that the ground state energies for
4He should not change too much when varying �SRG, given that the binding energy of 3H is fixed by construction in
the fit. Still, the observed variation is about 800 keV over the the full range of scales, while all energies are slightly

NN SRG evolution + 3N fits NN+3N SRG evolution
�SRG (fm�1) ⇤3NF (fm�1) cD cE r3H (fm) E4He (MeV) E3H (MeV) r3H (fm) E4He (MeV)
1 2.0 +1.5 0.114 1.601 �28.64(4) �8.482 1.601 �28.64(4)
2.8 2.0 [116] +1.278 �0.078 1.604 �28.75(2) �8.482 1.605 �28.72(2)
2.6 2.0 +1.26 �0.099 1.605 �28.77(2) �8.481 1.606 �28.73(2)
2.4 2.0 +1.265 �0.115 1.606 �28.80(2) �8.481 1.608 �28.73(2)
2.2 2.0 [116] +1.214 �0.137 1.608 �28.86(2) �8.480 1.611 �28.74(2)
2.0 2.0 [116] +1.271 �0.131 1.612 �28.95(2) �8.479 1.615 �28.75(2)
1.8 2.0 [116] +1.264 �0.120 1.617 �29.11(2) �8.478 1.622 �28.76(2)
1.6 2.0 +1.25 �0.075 1.626 �29.42(2) �8.476 1.635 �28.79(2)
1 2.5 �1.45 �0.633 1.604 �28.65(4) �8.482 1.604 �28.65(4)
2.8 2.5 �1.35 �0.735 1.606 �28.84(2) �8.482 1.608 �28.75(2)
2.6 2.5 �1.2 �0.75 1.606 �28.85(2) �8.482 1.609 �28.76(2)
2.4 2.5 �1.0 �0.725 1.607 �28.89(2) �8.482 1.610 �28.77(2)
2.2 2.5 �0.7 �0.675 1.609 �28.95(2) �8.481 1.613 �28.77(2)
2.0 2.5 [116] �0.292 �0.592 1.612 �29.05(2) �8.481 1.617 �28.77(2)
1.8 2.5 0.05 �0.503 1.617 �29.21(2) �8.480 1.625 �28.77(2)
1.6 2.5 0.55 �0.353 1.626 �29.48(2) �8.478 1.638 �28.77(2)

Table 7: Results for the cD and cE couplings, fit to E3H = �8.482 MeV and to the point charge radius r4He = 1.464 fm (based on Ref. [288]) for
the NN/3N cuto↵s and the EM ci values (c1 = �0.81 GeV�1, c3 = �3.2 GeV�1, c4 = +5.4 GeV�1) used, see Ref. [116] for details. The 3H point
charge radius r3H is calculated from the charge form factor solutions of the Faddeev equations and the energies E4He are computed via a Jacobi
NCSM harmonic oscillator diagonalization code (credits to Andreas Ekström for providing the code). For comparison, the experimental 3H point
charge radius is 1.5978 ± 0.040 [212]. The basis space truncations Jmax =

7
2 and Jmax = 5 have been used for the four-body calculations (see

Section 3.4). The slight violation of unitarity as seen in the 3H binding energy is mainly due to the treatment of the charge dependence of the NN
interaction in the SRG evolution (see main text and also discussion in Section 4.2.2 for details).
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Consistent NN+3N evolutions versus low-resolution fits

overbound compared to the experimental ground-state energy Egs = �28.296 MeV [141]. The point charge radius of
3He changes only by about 0.025 fm for both values of ⇤3N.

For comparison, we present the corresponding results for consistently-evolved NN+3N interactions, using the
SRG framework presented in Section 4.2.1. The SRG evolution is performed using an isospin-averaged NN interac-
tion, i.e., the isospin T = 1 channels are treated as

VNN =
Vnn

NN + Vnp
NN + Vpp

NN

3
, (206)

where Vnn
NN, Vnp

NN and Vpp
NN represent the neutron-neutron, neutron-proton and proton-proton interactions, respectively.

We note that this approximation leads to a violation of unitarity for the 3H binding energy, which is determined
from the solutions of the Faddeev equations including the proper treatment of the charge dependence of NN inter-
actions [289]. For the calculations of nuclear matter (see next section) all Coulomb interactions are switched o↵ in
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Figure 50: The energy per particle of pure neutron matter for the interactions specified in Table 7. The plots show results of MBPT calculations
under consideration of all NN and 3N contributions, including residual terms up to 2nd order. The 3N contributions at 3rd order are treated in
normal-ordering approximation (using P = 0). The top panels show the NN-only results at di↵erent resolution scales, while the lower two rows
show the results based on the interactions defined in the left and right columns of Table 7.

86

KH, arXiv: 2002.09548 (2020)



0.05 0.1 0.15 0.2 0.25

n (fm−3)

−35

−30

−25

−20

−15

−10

E
/A

(M
eV

)

symmetric nuclear matter (SNM)

NN− only
NN SRG evolution

λSRG = 2.8 fm−1

λSRG = 2.6 fm−1

λSRG = 2.4 fm−1

λSRG = 2.2 fm−1

λSRG = 2.0 fm−1

λSRG = 1.8 fm−1

λSRG = 1.6 fm−1

−20

−15

−10

E
/A

(M
eV

)

Λ3N = 2.0 fm−1

NN SRG evolution + 3N fit
Λ3N = 2.0 fm−1

NN+ 3N SRG evolution

0.05 0.1 0.15 0.2

n (fm−3)

−20

−15

−10

E
/A

(M
eV

)
Λ3N = 2.5 fm−1

NN SRG evolution + 3N fit

0.05 0.1 0.15 0.2 0.25

n (fm−3)

Λ3N = 2.5 fm−1

NN+ 3N SRG evolution

Figure 51: The energy per particle of symmetric nuclear matter for the interactions specified in Table 7. See caption of Figure 50 for details
regarding the many-body calculations and the shown results.

the SRG evolution, while for the few-body results in Table 7 the Coulomb contributions are included in Vpp
NN and are

evolved consistently. We emphasize that for the shown results for r3H in Table 7 we did not evolve the radius operator
for these calculations. Due to this and due to the isospin treatment, the radius varies by about 0.03 fm over the shown
resolution scale range. The energy of 4He exhibits a significantly smaller variation for the consistently-evolved 3N
interactions for both cuto↵ values ⇤3N compared to the low-resolution fits shown in the left column.

5.2. Nuclear matter based on consistently SRG-evolved 3N interactions
The consistent evolution of NN and 3N interactions within the SRG has opened new avenues that allowed to

push the scope of various ab initio frameworks for nuclei to heavier masses (see Sections 1 and 4.2). On the other
hand, SRG-evolved NN and 3N forces have not yet been applied to many-body frameworks for nuclear matter since
the SRG evolution of 3N interactions was always performed in an harmonic oscillator representation. Thanks to
the new developments discussed in Section 4.2 it is now possible to perform the SRG evolution in the plane-wave
momentum representation so that a given evolved interaction can now be applied to light nuclei, medium-mass nuclei
as well as nuclear matter. In this section we present first results for pure neutron matter as well as symmetric nuclear
matter based on consistently-evolved NN plus 3N interactions. To this end, we start from the set of interactions
derived in Ref. [116] plus the new fits as specified in Table 7. In particular, we perform matter calculations based

87

overbound compared to the experimental ground-state energy Egs = �28.296 MeV [141]. The point charge radius of
3He changes only by about 0.025 fm for both values of ⇤3N.

For comparison, we present the corresponding results for consistently-evolved NN+3N interactions, using the
SRG framework presented in Section 4.2.1. The SRG evolution is performed using an isospin-averaged NN interac-
tion, i.e., the isospin T = 1 channels are treated as

VNN =
Vnn

NN + Vnp
NN + Vpp

NN

3
, (206)

where Vnn
NN, Vnp

NN and Vpp
NN represent the neutron-neutron, neutron-proton and proton-proton interactions, respectively.

We note that this approximation leads to a violation of unitarity for the 3H binding energy, which is determined
from the solutions of the Faddeev equations including the proper treatment of the charge dependence of NN inter-
actions [289]. For the calculations of nuclear matter (see next section) all Coulomb interactions are switched o↵ in
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Figure 50: The energy per particle of pure neutron matter for the interactions specified in Table 7. The plots show results of MBPT calculations
under consideration of all NN and 3N contributions, including residual terms up to 2nd order. The 3N contributions at 3rd order are treated in
normal-ordering approximation (using P = 0). The top panels show the NN-only results at di↵erent resolution scales, while the lower two rows
show the results based on the interactions defined in the left and right columns of Table 7.
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Novel normal ordering framework for 3N interactions
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Figure 43: Memory required to store the T -coe�cients (u), as well as the three-body matrix elements in the antisymmetrized-Jacobi (⌅),
JT -coupled (s), and m-scheme (l) representation as function of the maximum three-body energy quantum number E3max. All quantities are
assumed to be single-precision floating point numbers. Figure taken from Rev. [20].

By inserting a complete set of two-body single-particle momentum states and projeting on these states this can be
rewritten in the form:

⌦
k
0
1k
0
2|V |k1k2

↵
=
X

n3l3m3

n3
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k
0
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0
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↵
, (190)

with
⌦
k|nlm

↵
= Rnl(k)Ylm(k̂). Here we used the completeness of the single-particle momentum states

R
dki|ki

↵⌦
ki| = 1

and projected on the momentum states of particles 1, 2, 10 and 20 on both sides by using the orthogonality of the HO
wave functions. As a next step we rewrite the single-particle momentum representation of V and Vas

3N in a Jacobi
representation by using Eq. (25):

⌦
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3
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3N|pq
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n̄3
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↵⌦
k3|�3

↵
. (191)

The e↵ective potential we expressed in terms of the Jacobi momentum p and the two-body center of mass momentum
P, i.e. P = k1 + k2 and P

0 = k
0
1 + k

0
2. The single particle momentum of particle 3 can be easily expressed in terms of

these momenta (see Table 2): k3 = 3/2q + P/2. Note that the two-body center of mass momentum P is in general not
conserved since k3 , k

0
3, in contrast to normal ordering with respect to a momentum eigenstate like for nuclear matter

(see Section 4.3.1). If the orbital occupation numbers n3 do not depend on m3 the sum can be performed immediately:

⌦
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Pl3 (k̂3 · k̂03) (192)

For the following we stick to this simplified case for illustration. However, the generalization poses no fundamental
problems.

Eventually we are interested in the partial wave matrix elements of the e↵ective potential V . Due to the non-
Galileian invariance the partial wave structure becomes more complex compared to a free-space NN interaction (see
discussion in Section 4.3). We extend the partial wave basis by the center of mass quantum numbers and project the
interaction in Eq. (192) onto these states:
D
p0P0L0M0L0cmM0cm|V |pPLMLcmMcm

E
=

Z
dp̂dP̂dp̂

0dP̂
0Y⇤L0cm M0cm

(P̂0)Y⇤L0M0 (p̂
0)
⌦
p
0
P
0|V |pP

↵
YLcm Mcm (P̂)YLM(p̂) . (193)
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Novel normal ordering framework for 3N interactions
new approach:

• at no stage single-particle 3N HO matrix elements needed
• straightforward generalization to spin-dependent 3N interactions 

(already implemented)
• significant recent improvements and optimizations (thanks Alex! :) )
• Nmax can be increased straightforwardly

• number of partial waves grows quickly with increasing L and Lcm, 

further optimizations and benchmarks needed
• currently implemented for HO reference state, generalization 

work in progress

4. transform matrix elements to Jacobi HO basis

5. transformation to single-particle HO basis via generalized Talmi 
transformation (taking into account Lcm dependence) 
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Novel normal ordering framework for 3N interactions:
Pure contact 3N interaction
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Figure 5: 3N interactions at N2LO in the chiral interactions. The long-range pion-nucleon couplings ci (blue circle) also enter the NN interactions
at this and higher orders and can hence be constrained by NN data and ⇡-N scattering data. The short-range couplings cD (green square) and cE
(red pentagon) need to be fixed in three- or higher-body systems.

The 1⇡-exchange and contact interactions are given respectively by

V1⇡
3N = �

gA

8 f 2
⇡

cD

f 2
⇡⇤�

X

i, j,k

� j ·Q j

Q2
j + m2

⇡

(⌧i · ⌧ j) (�i ·Q j) , Vcont
3N =

cE

2 f 4
⇡⇤�

X

j,k

(⌧ j · ⌧k) , (3)

with gA = 1.29, f⇡ = 92.4 MeV, m⇡ = 138 MeV and ⇤� = 700 MeV. Similarly to the LO one-pion exchange interac-
tions the long-range two-pion exchange contribution V2⇡

3N resemble features of previously devoloed phenomenological
3N forces [135–137]. However, we stress that in contrast to these interactions the interactions V2⇡

3N formally do not
contain any new parameters since the subleading pion-nucleon couplings c1, c3 and c4 also appear in the NN in-
teraction at N2LO (see Fig. 4) and play also a key role in ⇡-nucleon scattering. In fact, currently the most robust
extraction of the values of these long-range couplings was achieved based on the Roy-Steiner-equation analysis of ⇡N
scattering [138, 139]. This demonstrates that contributions to NN and 3N interactions as well as terms determining
the pion-nucleon scattering dynamics are treated on equal footing in chiral EFT, in contrast to most phenomenological
approaches. The 3N interactions V1⇡

3N and Vcont
3N on the other hand depend on two low-energy couplings cD and cE

that encode pion interactions with short-range NN pairs and short-range three-body physics, respectively [131, 134].
These genuine three-body couplings do not appear in NN interactions and hence need to be fixed in few- or many-body
systems (see Section 2.3).

Even though 3N forces are not observable, there are natural sizes of two- and many-body-force contributions
that are made manifest in the EFT power counting (see Fig. 4) and which explain the phenomenological hierarchy
of contributions from NN and many-body forces to observables, i.e. schematically VNN > V3N > V4N [114, 116].
Although it might be tempting to neglect contributions from 3N interactions in cases when calculations based on only
NN forces already provide a good description of experimental data (see, e.g., Ref. [105]), EFT power counting dictates
the inclusion of all many-body forces up to a given order. In fact, explicit calculations show that 3N forces typically
provide important contributions in nuclei and matter [141].

The evaluation of the contributions to NN interactions at next-to-next-to-next-to-leading-order (N3LO) is quite
involved as they include two-loop pion contributions, three-pion exchange contributions as well as relativistic cor-
rections [142–145]. The 3N interactions at this order also include many new structures as shown in Fig. 6, but are
predicted in a parameter-free way since they only depend on the leading NN contact interactions CS ,CT [146, 147]
(see the 2⇡-contact contributions (f) and the relativistic corrections (g) in Fig. 6). In addition the first nonvanishing
contributions to 4N interactions appear at this order [148], which are also predicted in a parameter-free way. Re-
markably, for systems consisting of only neutrons, the N2LO 3N interactions V1⇡

3N and Vcont
3N do not contribute for

1/m

(a) (b) (c) (d) (e) (f) (g)

Figure 6: (color online) Di↵erent topologies that contribute to the chiral 3NF up to N3LO (and N4LO). Nucleons and pions are represented by solid
and dashed lines, respectively. The shaded vertices denote the amplitudes of the corresponding interaction. Specifically, the individual diagrams
are: (a) 2⇡ exchange, (b) 1⇡-contact, (c) pure contact, (d) 2⇡-1⇡ exchange, (e) ring contributions, (f) 2⇡-contact and (g) relativistic corrections. See
main text for details. Figure taken from Ref. [140].
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only configurations with L=L’=0 contribute:

perfect agreement between results from both 
approaches up to given model space 

4
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Novel normal ordering framework for 3N interactions: 
Long-range 2pi interaction (c3)
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V2⇡
3N(c1, c3, c4)

⇡ ⇡

V1⇡
3N(cD)

⇡

Vcont
3N (cE)

Figure 5: 3N interactions at N2LO in the chiral interactions. The long-range pion-nucleon couplings ci (blue circle) also enter the NN interactions
at this and higher orders and can hence be constrained by NN data and ⇡-N scattering data. The short-range couplings cD (green square) and cE
(red pentagon) need to be fixed in three- or higher-body systems.

The 1⇡-exchange and contact interactions are given respectively by

V1⇡
3N = �

gA

8 f 2
⇡

cD

f 2
⇡⇤�

X

i, j,k

� j ·Q j

Q2
j + m2

⇡

(⌧i · ⌧ j) (�i ·Q j) , Vcont
3N =

cE

2 f 4
⇡⇤�

X

j,k

(⌧ j · ⌧k) , (3)

with gA = 1.29, f⇡ = 92.4 MeV, m⇡ = 138 MeV and ⇤� = 700 MeV. Similarly to the LO one-pion exchange interac-
tions the long-range two-pion exchange contribution V2⇡

3N resemble features of previously devoloed phenomenological
3N forces [135–137]. However, we stress that in contrast to these interactions the interactions V2⇡

3N formally do not
contain any new parameters since the subleading pion-nucleon couplings c1, c3 and c4 also appear in the NN in-
teraction at N2LO (see Fig. 4) and play also a key role in ⇡-nucleon scattering. In fact, currently the most robust
extraction of the values of these long-range couplings was achieved based on the Roy-Steiner-equation analysis of ⇡N
scattering [138, 139]. This demonstrates that contributions to NN and 3N interactions as well as terms determining
the pion-nucleon scattering dynamics are treated on equal footing in chiral EFT, in contrast to most phenomenological
approaches. The 3N interactions V1⇡

3N and Vcont
3N on the other hand depend on two low-energy couplings cD and cE

that encode pion interactions with short-range NN pairs and short-range three-body physics, respectively [131, 134].
These genuine three-body couplings do not appear in NN interactions and hence need to be fixed in few- or many-body
systems (see Section 2.3).

Even though 3N forces are not observable, there are natural sizes of two- and many-body-force contributions
that are made manifest in the EFT power counting (see Fig. 4) and which explain the phenomenological hierarchy
of contributions from NN and many-body forces to observables, i.e. schematically VNN > V3N > V4N [114, 116].
Although it might be tempting to neglect contributions from 3N interactions in cases when calculations based on only
NN forces already provide a good description of experimental data (see, e.g., Ref. [105]), EFT power counting dictates
the inclusion of all many-body forces up to a given order. In fact, explicit calculations show that 3N forces typically
provide important contributions in nuclei and matter [141].

The evaluation of the contributions to NN interactions at next-to-next-to-next-to-leading-order (N3LO) is quite
involved as they include two-loop pion contributions, three-pion exchange contributions as well as relativistic cor-
rections [142–145]. The 3N interactions at this order also include many new structures as shown in Fig. 6, but are
predicted in a parameter-free way since they only depend on the leading NN contact interactions CS ,CT [146, 147]
(see the 2⇡-contact contributions (f) and the relativistic corrections (g) in Fig. 6). In addition the first nonvanishing
contributions to 4N interactions appear at this order [148], which are also predicted in a parameter-free way. Re-
markably, for systems consisting of only neutrons, the N2LO 3N interactions V1⇡

3N and Vcont
3N do not contribute for

1/m

(a) (b) (c) (d) (e) (f) (g)

Figure 6: (color online) Di↵erent topologies that contribute to the chiral 3NF up to N3LO (and N4LO). Nucleons and pions are represented by solid
and dashed lines, respectively. The shaded vertices denote the amplitudes of the corresponding interaction. Specifically, the individual diagrams
are: (a) 2⇡ exchange, (b) 1⇡-contact, (c) pure contact, (d) 2⇡-1⇡ exchange, (e) ring contributions, (f) 2⇡-contact and (g) relativistic corrections. See
main text for details. Figure taken from Ref. [140].
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Novel normal ordering framework for 3N interactions
First benchmark calculations for 16O
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comparison of 3N contributions to the energy (left) and charge radius (right):

systematic convergence towards results based on 
traditional normal ordering approach with increasing L/Lcm 



Summary and Outlook

Development and calculation of 3N matrix elements used in QMC 
frameworks, new cross-benchmarks and extended applications?

First calculations of nuclear matter based on consistently SRG-
evolved NN+3N interactions, comparison with ‘magic’ interactions                 

Novel normal ordering framework for 3NF that avoids the need to 
represent 3NF in single-particle coordinates, first benchmarks 
promising, further optimizations and benchmarks in progress 
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