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Motivation

Improvements in ab initio many-body
methods have led to precise calculations of
observables, especially energies and radii,
in light nuclei. This enabled us to look at
the underlying interactions as a source for
deviations from experimental data.
One present frontier is the inclusion of
four-body forces, whose origins within
many-body calculations are hightlighted in
the panel to the right.
We explore the effects of a Gaussian four-
body interaction on the convergence
behavior in 4He and 6Li as well as its
impact on ground-state energies and
point-proton radii.
The Gaussian four-body interaction we
developed is designed to be calculated
on-the-fly during an NCSM calculation.

Origins of 4N Interactions

Four-body interactions arise in the initial
Hamiltonian derived from chiral effecive
field theory (chiral EFT)
• four-body force terms present at N3LO

• inclusion of 4N force necessary for a
consistent chiral order calculation

Another source is the similarity renormal-
ization group (SRG) transformation
• generates many-body interactions

beyond the initial Hamiltonian

• induced forces typically truncated at the
three-body level

Explicit inclusion of the above four-body
interactions is computationally not feasible
⇒ use phenomenological interaction to by-
pass partial-wave decomposition, relative
basis transformation, SRG calculation, . . .

Phenomenological Four-Body Interaction

We use a Gaussian four-body interaction because of its simple form that enables fast
calculations
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⇒ acts only in coordinate space, no spin or isospin dependence

We evaluate the Gaussian four-body matrix elements on-the-fly during the NCSM
calculation via the following steps:

• interaction and HO wave functions separate in cartesian coordinate space

V̂4N = V̂4N(x̂)V̂4N(ŷ)V̂4N(ẑ), with x= (x1, x2, x3, x4),y= . . .
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• the cartesian matrix element splits into three independent and equivalent integrals
with respect to the x, y and z components
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• these integrals contain the harmonic oscillator wave functions and the coordinate
space representation of the interaction and can be solved analytically [1, 2]

Ix =
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∏
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∗
nx i
(x i)ϕn′xi

(x i)V4N(x)

• transform back to spherical coordinates with harmonic oscillator overlap
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calculated via comparison of the respective HO generating functions [3]

• add spin and isospin components, perform a single-particle j-coupling and an explicit
antisymmetrization to obtain NCSM matrix element
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• all calculations were carried out using the N3LOEMN,500+N3LONL,500,cD4 interaction [4],
a NCSM HO frequency of ħhΩ= 20MeV and SRG with flow parameter α= 0.08 fm4

Systematics of Ground-State Energy and Point-Proton Radius

comparison with experiment [5] for 4He
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• Gaussian 4N interaction affects energy
and radius intuitively
– repulsive interaction increases the ra-

dius and decreases the binding energy,
and vice-versa for an attractive one

– varying range parameters change the
energy and the radius differently

• clear limitation of how a single Gaussian
4N interaction can influence energy and
radius independently
⇒ superposition of two Gaussians with
different parameters might lead to a more
accurate description

NCSM Convergence Behavior of Gaussian 4N Interaction

Nmax convergence in 4He
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Nmax convergence in 6Li
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• no significant effect of the Gaussian 4N interaction on the Nmax convergence

• 6Li much more sensitive to a four-body interaction than 4He

Parameter Variation of Gaussian 4N Interaction

effect of a4N on the energy
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effect of a4N on the radius
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Range parameter (a4N) effects ground-state
energy and point-proton radius differently:

• larger ranges eventually lead to nearly
constant potential across nucleus
⇒ increasing range therefore increases
the energy only up to a limit

• radius initially also increases with a4N
⇒ radius returns to original value since
it is insensitive to constant potentials

Effect of the strength parameter (C4N) is
rather simple:

• scales the interactions and switches
between attractive and repulsive

• has linear effect on energy (and radius)

Conclusion and Outlook

• no significant effect on Nmax convergence

• 6Li much more sensitive to 4N interaction

• clear limits on independent manipulation
of energy and radius

• explore other light nuclei and observables

• combine with importance truncation to
improve convergence

• test superposition of multiple Gaussians
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Motivation

Why look at four-body interactions?

I chiral effective field theory (EFT) at N3LO gives rise to 4N force terms
I similarity renormalization group (SRG) induces many-body forces

Why use a phenomenological 4N interaction?

I initial or induced 4N forces in general not computationally feasible in
many-body calculations

I use phenomenological interaction to bypass expensive calculation steps

⇒ develop a phenomenological four-body interaction that can be computed
on-the-fly during a NCSM calculation
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Many-Body Toolchain with Phenomenological
4N Interaction
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Initial Hamiltonian

SRG evolution

Add phenomenological
4N interaction

NCSM calculation

• start with two- and three-body interaction derived
from chiral EFT

• calculate SRG evolution and truncate induced
forces at the 3N level

• calculate phenomenological 4N matrix elements〈
{ni limi}i=1,...,4

∣∣V̂4N
∣∣{ni

′li
′mi

′}i=1,...,4
〉

• run many-body calculation in harmonic oscillator
basis



Gaussian Four-Body Interaction

Why use a Gaussian four-body interaction?
I more flexible than e.g. contact interaction
I comparatively intuitive to understand and simple to calculate
I completely different matrix element calculation without PWD, relative basis, …

V̂4N = C4N exp
{
− 1

a2
4N

4∑
i ,j=1
i<j

(
~̂ri − ~̂rj

)2
}

Interaction has two free parameters

I C4N: strength of the interaction, also determines if attractive/repulsive
I a4N: range of the interaction
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Nmax convergence behavior of
Gaussian 4N Interaction
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I h̄Ω = 20 MeV, N3LOEMN,500 + N3LONL,500,cD4 + Gaussian 4N
I no significant effect on Nmax convergence
I attractive interaction increases energy and reduces radius, repulsive vice-versa
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Outlook
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I explore other light nuclei

I combine with importance truncation to
improve convergence

I calculate other observables besides
ground-state energies and radii

I implement ability to use superposition of
two Gaussians

I mittigate SRG induced effects and correct
energy/radius
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• add spin and isospin components, perform a single-particle j-coupling and an explicit
antisymmetrization to obtain NCSM matrix element
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Nmax convergence in 6Li
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• no significant effect of the Gaussian 4N interaction on the Nmax convergence

• 6Li much more sensitive to a four-body interaction than 4He

Parameter Variation of Gaussian 4N Interaction

effect of a4N on the energy
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Range parameter (a4N) effects ground-state
energy and point-proton radius differently:

• larger ranges eventually lead to nearly
constant potential across nucleus
⇒ increasing range therefore increases
the energy only up to a limit

• radius initially also increases with a4N
⇒ radius returns to original value since
it is insensitive to constant potentials

Effect of the strength parameter (C4N) is
rather simple:

• scales the interactions and switches
between attractive and repulsive

• has linear effect on energy (and radius)

Conclusion and Outlook

• no significant effect on Nmax convergence

• 6Li much more sensitive to 4N interaction

• clear limits on independent manipulation
of energy and radius

• explore other light nuclei and observables

• combine with importance truncation to
improve convergence

• test superposition of multiple Gaussians
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Thank you for your attention!

I Thanks to my group and collaborators
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