Falling Cats and EFTs for Deformed Nuclei

ntific Discovery through Advanced Computing

From APS viewpoint

Thomas Papenbrock (UTK & ORNL)

TRIUMF Ab initio workshop, March 3–6, 2020 Work supported by the US Department of Energy

Falling Cat Problem

Q: How does a cat change its orientation, i.e. its angular momentum, without an external torque?

A: Changes in its shape (intrinsic degrees of freedom) induce a change in the external orientation.

Q: What does this has to do with odd-mass deformed nuclei?

A: In both cases, non-Abelian gauge potentials arise that describe the internal dynamics and couple it to the overall orientation. (In the nucleus, the odd nucleon causes the internal dynamics.)

\rightarrow Gauge theory of deformable bodies

Shapere & Wilzcek, *Geometric Phases in Physics* (1989); Littlejohn & Reinsch, Rev. Mod. Phys. (1997)

"Gauge theory of the falling cat," Montgomery (1993)

- 6. Some Specific Reorientations and Steering Strategies
- 6.1. A Cartoon. Probably the simplest path resulting in the cat flip is the one depicted below.

"Bend, twist, unbend" makes a closed loop in internal configuration space while leading to a rotation.

Effective field theories in the physics of nuclei

Vibrators: EFT based on linear (Wigner/Weyl) realization [Coello Pérez & TP 2015; 2016; Coello Pérez, Menéndez & Schwenk 2018]
Rotors: EFTs based on non-linear realization of SO(3)
Axially symmetric nuclei: [TP 2011; TP & Weidenmüller 2014; Coello Pérez & TP 2015]

Triaxial deformation: [Chen, Kaiser, Meißner, Meng 2017; 2018]

⁹Be as a neutron coupled to the rotor ⁸Be

Nucleon coupled to a deformed even-even nucleus

Rotor:

- Deformed, axially symmetric, even-even nucleus
- Symmetry axis defines bodyfixed z' axis
- Slow / heavy degree of freedom

Nucleon:

- Fast / light degree of freedom; "instantaneous" in the body-fixed frame
- Strongly coupled to the rotor
- Experiences axially symmetric forces in the body-fixed frame

Rotor: axially symmetric, even-even nucleus

- 1. Emergent symmetry breaking from SO(3) to SO(2): Nambu-Goldstone modes parametrize the sphere.
- Body-fixed frame ambiguous in axially symmetric nucleus → "gauge" freedom

Degrees of freedom: θ, ϕ $e_{z'}(\theta, \phi) = e_r(\theta, \phi) = \begin{pmatrix} \cos\phi \sin\theta \\ \sin\phi \sin\theta \\ \cos\theta \end{pmatrix}$

Angular velocity:

$$\mathbf{v} = \frac{de_r}{dt} = \dot{\theta}e_\theta + \dot{\phi}\sin\theta \ e_\phi$$

Simplest (leading order) Lagrangian:

$$L = \frac{C_0}{2} \mathbf{v} \cdot \mathbf{v} = \frac{C_0}{2} \left(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta \right)$$

Hamiltonian: $H = \frac{\hat{l}^2}{2C_0}$

Nucleon

 $I = I_{rot} + K_{z'}$

(in x'-y' plane)

Nucleon is two-component spinor $\widehat{\Psi}(x') = \begin{pmatrix} \psi_{+\frac{1}{2}}(x') \\ \widehat{\psi}_{-\frac{1}{2}}(x') \end{pmatrix}$, components along the z' axis.

Total nucleon spin $\hat{\mathbf{K}} = \int d^3 \mathbf{x}' \hat{\Psi}^{\dagger}(\mathbf{x}') \left(-i\mathbf{x}' \times \nabla' + \hat{\mathbf{S}}\right) \hat{\Psi}(\mathbf{x}')$

Coupling between the nucleon and the rotor via two mechanisms.

- 1. Axially symmetric potential *V* in body-fixed frame a. Lagrangian $L_{\Psi} = \int d^3 \mathbf{x}' \hat{\Psi}^{\dagger}(\mathbf{x}') \left(i \partial_t + \frac{\hbar^2 \Delta'}{2m} - V \right) \hat{\Psi}(\mathbf{x}')$
 - b. All nucleon states come in pairs $|\pm K, \alpha\rangle$ related by time-reversal invariance (Kramer's degeneracy); we have $\widehat{K}_{z'} |\pm K, \alpha\rangle = \pm K |\pm K, \alpha\rangle$

2. Gauge couplings, i.e. couplings to the rotor's angular velocity

Nucleon creates gauge field for rotor

Kinematics: Assume that the rotor's symmetry axis moves along a closed path C.

This induces a rotation of the body-fixed frame by an angle γ around the z' axis. This is a geometric effect.

Rotation of nucleon in the body-fixed system $\widehat{\Psi}(x') \rightarrow e^{-i\gamma \hat{J}_{z'}} \widehat{\Psi}(x')$ introduces a Berry phase [Berry 1984] in its wave function.

The angle γ is identical to the solid angle of the enclosed area.

Dynamics: A magnetic monopole field changes the phase by an angle that is identical to the flux (area!) [Wu & Yang 1976]

 $\mathbf{A}_{\mathbf{a}}(\theta,\phi) \equiv \mathbf{e}_{\phi} \cot \theta \hat{K}_{z'}$ Vector potential of monopole: $\mathbf{B}_{\mathbf{a}}(\theta,\phi) \equiv \nabla \times \mathbf{A}_{\mathbf{a}} = -\mathbf{e}_r \hat{K}_{z'}$ Corresponding "magnetic" field:

No parameter in singular gauge potential (Dirac's quant. cond.)

Sphere = shape space; closed path in shape space induces rotation. Images: Zwanziger, Koenig & Pines (1990)

A non-Abelian gauge coupling also possible

Fermion states come in pairs (Kramer's degeneracy).

Kinematics: As the rotor's symmetry axis moves along a closed path on the sphere, the degenerate nucleon states might mix. Original and final states differ by a unitary transformation: $\widehat{\Psi}(x') \rightarrow \widehat{U} \widehat{\Psi}(x')$

Dynamics: A non-Abelian gauge potential causes such a non-Abelian Berry phase [Wilczek & Zee 1984]. (The amount of SU(2) rotation is not quantized, the gauge potential is not singular, and has an adjustable dimensionless parameter *g*.)

Non-Abelian gauge potential: Corresponding "magnetic" field:

$$\begin{aligned} \mathbf{A}_{n}(\theta,\phi) &= g\mathbf{e}_{r} \times \hat{\mathbf{K}} = g\left(\mathbf{e}_{\phi}\hat{K}_{x'} - \mathbf{e}_{\theta}\hat{K}_{y'}\right) \\ \mathbf{B}_{n}(\theta,\phi) &\equiv \nabla \times \mathbf{A}_{n} - i\mathbf{A}_{n} \times \mathbf{A}_{n} \\ &= g^{2}\mathbf{e}_{r}\hat{K}_{z'} \ . \end{aligned}$$

The non-Abelian gauge fields link deformed odd-mass nuclei to falling cats

Gauge potentials, Berry phases, and Coriolis forces

Different interpretations of the velocity-dependent rotor-nucleon couplings

- **1. Coriolis forces** enter in rotating frames: Velocity-dependent forces are present in rotating nuclei [Bohr, Kerman, Mottelson, Nilsson 1950s].
- **2. Molecular Aharonov-Bohm effect**: In rotating molecules, the nuclei are slow (and the electrons are fast), and the adiabatic decoupling (à la Born Oppenheimer) introduces Berry phases and gauge potentials [Mead & Truhlar 1979; Wilczek & Zee 1984; Kuratsuji & Iida 1985].
- **3.** Covariant derivative: In presence of spontaneous symmetry breaking, the rotational symmetry is realized non-linearly for the rotor's degrees of freedom. This introduces a covariant derivative $iD \equiv i\partial_t + \mathbf{v} \cdot A_a$ [Weinberg 1968; Callan, Coleman, Wess & Zumino 1969].
- **4. Gauge invariance**: The ambiguities in defining a body-fixed frame, i.e. separating rotational and intrinsic degrees of freedom, imply a gauge invariance [Littlejohn & Reinsch 1997]. Our case: ambiguities regarding rotations around the z' axis.

[Leutwyler 1994; Roman & Soto 1999; Hofmann 1999; Chandrasekharan et al. 2008; Brauner 2010; TP 2011, TP & Weidenmüller 2014; ...]

Leading order Lagrangian

Let us start with the most general Lagrangian quadratic in the velocities:

$$L = \frac{C_0}{2} \mathbf{v}^2 + \mathbf{v} \cdot (\mathbf{A}_a + \mathbf{A}_n) + L_{\Psi}$$
$$= \frac{C_0}{2} \left(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta \right) + g \left(\dot{\phi} \sin \theta \hat{K}_{x'} - \dot{\theta} \hat{K}_{y'} \right) + \dot{\phi} \cos \theta \hat{K}_{z'} + L_{\Psi}$$

The nucleon part is

$$L_{\Psi} = \int \mathrm{d}^{3}\mathbf{x}' \hat{\Psi}^{\dagger}(\mathbf{x}') \left(i\partial_{t} + \frac{\hbar^{2}\Delta'}{2m} - V \right) \hat{\Psi}(\mathbf{x}')$$

Low energy constants are C_0 , g, and parameters of the axially symmetric potential V.

Leading order Hamiltonian

Hamiltonian

$$H = \int d^3 \mathbf{x}' \hat{\Psi}^{\dagger}(\mathbf{x}') \left(-\frac{\hbar^2 \Delta'}{2m} + V \right) \hat{\Psi}(\mathbf{x}') + \frac{1}{2C_0} \left(p_{\theta} + g \hat{K}_{y'} \right)^2 + \frac{1}{2C_0} \left(\frac{p_{\phi}}{\sin \theta} - \cot \theta \hat{K}_{z'} - g \hat{K}_{x'} \right)^2$$

Key: angular momenta

 $\mathbf{I}_{z'}$

$$= \mathbf{e}_{z'} \hat{K}_{z'} \qquad \mathbf{I}_{\perp} = p_{\theta} \mathbf{e}_{y'} - \left(\frac{p_{\phi}}{\sin \theta} - \cot \theta \hat{K}_{z'}\right) \mathbf{e}_{x'}$$

Rewrite Hamiltonian (combines particle-rotor and Nilsson models)

$$H = \int d^{3}\mathbf{x}' \hat{\Psi}^{\dagger}(\mathbf{x}') \left(-\frac{\hbar^{2}\Delta'}{2m} + V \right) \hat{\Psi}(\mathbf{x}') + \frac{g^{2}}{2C_{0}} \left(\hat{K}_{x'}^{2} + \hat{K}_{y'}^{2} \right) \\ + \frac{\mathbf{I}^{2} - \hat{K}_{z'}^{2}}{2C_{0}} + \frac{g}{C_{0}} \left(I_{x'}\hat{K}_{x'} + I_{y'}\hat{K}_{y'} \right)$$

Solution is standard (e.g. via Nilsson orbitals) $E(I) = -S_n - \frac{|K|}{2C_0} + \frac{I(I+1) - K^2}{2C_0} \qquad \Delta E(g) = -\frac{g}{C_0} \delta_{|K|}^{\frac{1}{2}} (-1)^{I+\frac{1}{2}} \left(I + \frac{1}{2}\right)$

Q: How to turn this into an EFT?

A: Introduce a power counting! Guided by heavy rotors ^{238,239}Pu (shown are all states below 800 keV).

Rotational low energy scale in ²³⁸Pu set by 2⁺ state at $\xi \approx 44$ keV.

Breakdown scale in ²³⁸Pu set by 1⁻ band head at $\Lambda \approx 606$ keV.

Fermionic single-particle energy in ²³⁹Pu set by $5/2^{-}$ band head at $\Omega \approx 285$ keV.

Separation of scales $\xi \ll \Omega \ll \Lambda$ (last inequality only marginally fulfilled)

Subleading corrections

Leading-order LECs scale as $C_0 \sim \xi^{-1}$, $S_n \sim \Omega$, $g \sim O(1)$; also have $\mathbf{v} \sim \xi$.

$$E(I) = -S_n - \frac{|K|}{2C_0} + \frac{I(I+1) - K^2}{2C_0} \qquad \Delta E(g) = -\frac{g}{C_0} \delta_{|K|}^{\frac{1}{2}} (-1)^{I+\frac{1}{2}} \left(I + \frac{1}{2}\right)$$

Subleading corrections: terms quadratic in **v** and \widehat{K} . Independent terms are

$$L_{1a} = \frac{g_a}{2} \mathbf{v}^2 \left(K_{x'}^2 + K_{y'}^2 \right) ,$$

$$L_{1b} = \frac{g_b}{2} \mathbf{v}^2 K_{z'}^2 ,$$

$$L_{1c} = \frac{g_c}{2} \left(\mathbf{v} \cdot \mathbf{K} \right)^2 .$$

Power counting implies that $g_{a,b,c} \sim \Lambda^{-1}$ and $L_{1a,1b,1c} \sim \frac{\xi^2}{\Lambda} \ll E(I)$, $\Delta E(g)$. These corrections will make the moment of inertia dependent on the band head. Corrections are suppressed by ξ/Λ , compared to $\left(\frac{\xi}{\Lambda}\right)^2$ for even-even nuclei [Jiang Zhang & TP 2013].

Summary

Effective field theory for odd-mass deformed nuclei

- 1. Velocity-dependent terms can be viewed as gauge potentials that induce geometric (Berry) phases.
- 2. Abelian gauge potentials due to the geometry of the sphere; gauge transformations relate different (ambiguous) body-fixed frames.
- 3. Non-Abelian gauge potential due to Kramer's degeneracy of the intrinsic nucleon degree of freedom.
- 4. At leading order, the EFT combines the particle-rotor model and the Nilsson model.
- 5. Next-to-leading-order corrections account for variations in moments of inertia for different rotational bands.

Vhen dropped from height, odd-mass deformed nuclei would land on their feet!

Traditional view in nuclear physics

Internal dynamics / shape space: Nilsson model (axially sym. nucleus)

Traditional view in nuclear physics

Overall dynamics: Particle-rotor model

$$H = \sum_{k=1}^{2} \frac{(I_k - j_k)^2}{2C_0} = \frac{1}{2C_0} (I^2 - I_3^2) - \frac{1}{2C_0} (I_+ j_- \pm I_- j_+) + \frac{1}{2C_0} (j^2 - j_3^2)$$

I = total angular momentum j = angular momentum of particle in a Nilsson orbital

First Equation: The overall system is a rigid rotor, and the rotor's angular momentum is equal to the difference between total and the particle's angular momentum.

Second equation: Expand out.