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Falling Cats and EFTs for Deformed Nuclei
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Falling Cat Problem

Q: How does a cat change its orientation, i.e. its angular momentum, 
without an external torque?
A: Changes in its shape (intrinsic degrees of freedom) induce a change in 
the external orientation. 
Q: What does this has to do with odd-mass deformed nuclei?
A: In both cases, non-Abelian gauge potentials arise that describe the 
internal dynamics and couple it to the overall orientation. (In the 
nucleus, the odd nucleon causes the internal dynamics.)  

à Gauge theory of deformable bodies

Shapere & Wilzcek, Geometric Phases in Physics (1989); Littlejohn & Reinsch, Rev. Mod. Phys.  (1997) 



“Gauge theory of the falling cat,” Montgomery (1993) 

“Bend, twist, unbend” makes a closed loop in internal configuration space while leading to a rotation. 



Effective field theories in the physics of nuclei

Fig.: Bertsch, Dean, Nazarewicz (2007)
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Rotors: E(4+)/E(2+) = 10/3
Vibrators: E(4+)/E(2+) = 2

Vibrators: EFT based on linear (Wigner/Weyl) realization 
[Coello Pérez & TP 2015; 2016; Coello Pérez, Menéndez & Schwenk 2018 ]

Rotors: EFTs based on non-linear realization of SO(3) 
Axially symmetric nuclei: [TP 2011; TP & Weidenmüller 2014; Coello
Pérez & TP 2015]
Triaxial deformation: [Chen, Kaiser, Meißner, Meng 2017; 2018]



9Be as a neutron coupled to the rotor 8Be
NNDC spectra: levels up to 12 MeV

8Be: 
• 0+, 2+, 4+ levels form rotational band 
𝐸 𝐼 = 𝐴 𝐼(𝐼 + 1) with 𝐴 ≈ 0.505 MeV

• 2+ state sets low-energy scale 𝜉 ≈ 3MeV
• First non-rotational state (at 16.6 MeV) 

sets breakdown scale Λ = 16.6MeV
• Small expansion parameter is 1

2
≈ 0.2

9Be:
• Spectrum looks complicated …
• However: All but one state below 12 MeV 

explained by three rotational bands built 
on band heads with 𝐾 = ⁄6 7

8 ,½;,½8

• Δ𝐸 𝐼 = 𝐴 𝐼 𝐼 + 1 + 𝑎 −1 ?;@A 𝐼 + B
7
𝛿D
@
A

à ab initio by Caprio et al., arXiv:1912.0008 
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Nucleon coupled to a deformed even-even nucleus
Rotor: 
• Deformed, axially symmetric, 

even-even nucleus 
• Symmetry axis defines body-

fixed z’ axis
• Slow / heavy degree of freedom

Nucleon:
• Fast / light degree of freedom; 

“instantaneous” in the body-fixed 
frame

• Strongly coupled to the rotor
• Experiences axially symmetric 

forces in the body-fixed frame



Rotor: axially symmetric, even-even nucleus
Degrees of freedom: 𝜃, 𝜙

𝑒HI 𝜃, 𝜙 = 𝑒J 𝜃, 𝜙 =
cos𝜙 sin𝜃
sin𝜙 sin𝜃
cos𝜃

Angular velocity:

𝐯 = QRS
QT
= �̇�𝑒V + �̇� sin𝜃 𝑒W

Simplest (leading order) Lagrangian:

𝐿 = YZ
7 𝐯 ⋅ 𝐯 =

YZ
7 �̇�7 + �̇�7sin7𝜃

Hamiltonian:
H = 

\?A

7YZ

1. Emergent symmetry breaking from SO(3) to SO(2): 
Nambu-Goldstone modes parametrize the sphere.

2. Body-fixed frame ambiguous in axially symmetric 
nucleus à “gauge” freedom
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x y



Nucleon is two-component spinor  ]Ψ 𝑥` =
a𝜓;@A

𝑥`

a𝜓8@A
(𝑥′)

, components along the z’ axis. 

Total nucleon spin

Coupling between the nucleon and the rotor via two mechanisms.

1. Axially symmetric potential 𝑽 in body-fixed frame
a. Lagrangian

b. All nucleon states come in pairs ±𝐾, 𝛼 related by time-reversal invariance 
(Kramer’s degeneracy); we have ]𝐾H` ±𝐾, 𝛼 = ±𝐾 ±𝐾, 𝛼

2. Gauge couplings, i.e. couplings to the rotor’s angular velocity

Nucleon
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Irot

(in x’-y’ plane)

I = Irot + Kz’



Nucleon creates gauge field for rotor
Kinematics: Assume that the rotor’s symmetry axis moves along a 
closed path C.

This induces a rotation of the body-fixed frame by an angle 𝛾
around the z’ axis. This is a geometric effect. 

Rotation of nucleon in the body-fixed system ]Ψ 𝑥` → 𝑒8ij \klI ]Ψ 𝑥`
introduces a Berry phase [Berry 1984] in its wave function.

The angle 𝛾 is identical to the solid angle of the enclosed area.

Dynamics: A magnetic monopole field changes the phase by an 
angle that is identical to the flux (area!) [Wu & Yang 1976]

Vector potential of monopole:

Corresponding “magnetic” field:

No parameter in singular gauge potential (Dirac’s quant. cond.)

Images: Zwanziger, Koenig & Pines (1990)Sphere = shape space; closed path in shape space induces rotation.



A non-Abelian gauge coupling also possible
Fermion states come in pairs (Kramer’s degeneracy).

Kinematics: As the rotor’s symmetry axis moves along a 
closed path on the sphere, the degenerate nucleon states 
might mix. Original and final states differ by a unitary 
transformation: ]Ψ 𝑥` → ]𝑈 ]Ψ 𝑥`

Dynamics: A non-Abelian gauge potential causes such a 
non-Abelian Berry phase [Wilczek & Zee 1984]. (The amount 
of SU(2) rotation is not quantized, the gauge potential is not 
singular, and has an adjustable dimensionless parameter 𝑔.) 

Non-Abelian gauge potential:

Corresponding “magnetic” field:

The non-Abelian gauge fields link deformed odd-mass nuclei to falling cats



Gauge potentials, Berry phases, and Coriolis forces
Different interpretations of the velocity–dependent rotor–nucleon couplings

1. Coriolis forces enter in rotating frames: Velocity-dependent forces are present in rotating 
nuclei [Bohr, Kerman, Mottelson, Nilsson 1950s].

2. Molecular Aharonov-Bohm effect: In rotating molecules, the nuclei are slow (and the 
electrons are fast), and the adiabatic decoupling (à la Born Oppenheimer) introduces Berry 
phases and gauge potentials [Mead & Truhlar 1979; Wilczek & Zee 1984; Kuratsuji & Iida 1985].

3. Covariant derivative: In presence of spontaneous symmetry breaking, the rotational 
symmetry is realized non-linearly for the rotor’s degrees of freedom. This introduces a covariant 
derivative 𝑖𝐷 ≡ 𝑖𝜕T + 𝐯 ⋅ 𝐴s [Weinberg 1968; Callan, Coleman, Wess & Zumino 1969].

4. Gauge invariance: The ambiguities in defining a body-fixed frame, i.e. separating rotational 
and intrinsic degrees of freedom, imply a gauge invariance [Littlejohn & Reinsch 1997]. Our 
case: ambiguities regarding rotations around the z’ axis. 

[Leutwyler 1994; Roman & Soto 1999; Hofmann 1999; Chandrasekharan et al. 2008; Brauner 2010; TP 2011, TP & Weidenmüller 2014; … ]



Leading order Lagrangian

Let us start with the most general Lagrangian quadratic in the velocities:

The nucleon part is 

Low energy constants are 𝐶u, 𝑔, and parameters of the axially symmetric potential 𝑉. 



Leading order Hamiltonian

Key: angular momenta

Hamiltonian

Rewrite Hamiltonian
(combines particle-rotor 
and Nilsson models) 

Solution is standard 
(e.g. via Nilsson orbitals) 



Q: How to turn this into an EFT?
A: Introduce a power counting! Guided by heavy rotors 238,239Pu (shown are all states below 800 keV).  

Rotational low energy scale in 238Pu set by 2+ state at 𝜉 ≈ 44 keV.
Breakdown scale in 238Pu set by 1- band head at Λ ≈ 606 keV.
Fermionic single-particle energy in 239Pu set by 5/2- band head at Ω ≈ 285 keV.

Separation of scales 𝜉 ≪ Ω ≪ Λ (last inequality only marginally fulfilled)

𝝃

𝚲

𝛀



Subleading corrections

Subleading corrections: terms quadratic in 𝐯 and ]𝐾. Independent terms are

Power counting implies that 𝑔s,~,� ∼ Λ8B and 𝐿Bs,B~,B� ∼
1A

2
≪ 𝐸 𝐼 , Δ𝐸(𝑔).

These corrections will make the moment of inertia dependent on the band head. Corrections 

are suppressed by 𝜉/Λ, compared to 1
2

7
for even-even nuclei [Jiang Zhang & TP 2013].

Leading-order LECs scale as Cu ∼ 𝜉8B, 𝑆� ∼ Ω , 𝑔 ∼ 𝑂 1 ; also have 𝐯 ∼ 𝜉.



Summary
Effective field theory for odd-mass deformed nuclei

1. Velocity-dependent terms can be viewed as gauge potentials that 
induce geometric (Berry) phases.

2. Abelian gauge potentials due to the geometry of the sphere; gauge 
transformations relate different (ambiguous) body-fixed frames.

3. Non-Abelian gauge potential due to Kramer’s degeneracy of the 
intrinsic nucleon degree of freedom. 

4. At leading order, the EFT combines the particle-rotor model and 
the Nilsson model.

5. Next-to-leading-order corrections account for variations in 
moments of inertia for different rotational bands.

When dropped from height, odd-mass deformed nuclei would land on their feet!





Traditional view in nuclear physics
Internal dynamics / shape space: Nilsson model (axially sym. nucleus)



Traditional view in nuclear physics
Overall dynamics: Particle-rotor model

𝐻 = �
��B

7
𝐼� − 𝑗� 7

2𝐶u
=

1
2𝐶u

𝐼7 − 𝐼67 −
1
2𝐶u

𝐼;𝑗8 ± 𝐼8𝑗; +
1
2𝐶u

𝑗7 − 𝑗67

I = total angular momentum
j = angular momentum of particle in a Nilsson orbital

First Equation: The overall system is a rigid rotor, and the rotor’s angular 
momentum is equal to the difference between total and the particle’s 
angular momentum.

Second equation: Expand out.


