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What'’s neutrinoless double beta decay?

m At nuclear-structure level, it corresponds to the transition
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Schechter-Valle theorem (1982):
any diagram causing the Ov 30
decay will generate a Majorana
mass term for light neutrinos
Beyond SM physics:
nonzero neutrino mass
Nature of neutrinos:
Dirac or Majorana
Origin of the
matter-antimatter asymmetry:
Lepton-number violation
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What kind of nuclei to observe the 0v33? R

NSCL

pp decay (candidate) nuclei

m Single-beta decay is
energetically forbidden
m Experimental interest
Large Qg value
Large isotopic abundance
Low background in the
energy region of interest

Features of candidate nuclei

The nuclei evolved in the Ov33 are mostly medium-mass open-shell (deformed) nuclei.
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Current status on the studies of Ov35 decay

Based on the mechanism of exchange light Majorana neutrino, the inverse of half-life of
Ov [ can be factorized as

[T, = g4Go.
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A precise knowledge (from ab initio calculation) of the nuclear matrix element (NME)

MO is helpful to determine the neutrino effective mass (mgg), if the process is mea-
sured eventually.
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Nuclear matrix element for the 033 decay Rb®

= The NME for the Ov33 transition from |0;") to |0f)

M (0 — 0f) = (0£|0%|0}")

— the transition operator: exchange of light neutrinos and with closure approximation

47R 3G efﬁ(ﬁ%)
o = /d3 /d3 - TIF)TH(F
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= ZZHK(r127Ed)T1 75 Sk (1)
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where SK:{1,U1 '0’2,3(0’1 '?12)(0’2‘?12)—0'1 0‘2} for K = {F GT T}
respectively. The average excitation energy Ey = E — (E; + Ef)/2 ~ 1.12A1/2,
Only one-body current J* is taken into account in the present study.
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ab initio calculations of nuclear structure Rb®

NSCL

— The wave functions of initial and final nuclei require the calculation from ab initio
methods:
starts from a bare nucleon-nucleon interaction (fitted to data of NN scattering/few-body
systems)
solves Schroedinger equation (for the many-body system) with a controllable accuracy
of approximations

m Benchmark calculations in light nuclei:

\/ Variational Monte Carlo calculation starting from the Argonne v18 two-nucleon
potential and Illinois-7 three-nucleon interaction for light nuclei
S. Pastore et al. (2017)

v/ No-core shell model calculations starting from chiral NN+3N interactions for light
nuclei P. Gysbers et al., R. A. Basili et al. (2019)

m Extension to medium-mass candidate nuclei:

v/ Application of coupled-cluster (S. Novario, G. Hagen, T. Papenbrock et al.) and
valence-space in-medium similarity renormalization group (IMSRG)
(Antoine Belley, R. Stroberg, J. Holt et al.) method starting from chiral NN+3N interactions for
Ov33-candidate nuclei

v/ Merging the multi-reference IMSRG with generator coordinate method (GCM) starting from

chiral NN+3N interactions for Ov 33-candidate nuclei
JMY, B. Bally, J. Engel, R. Wirth, T. R. Rodriguez, H. Hergert, arXiv:1908.05424
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The method: basic idea of IMSRG (ol

m A set of continuous unitary
transformations onto the Hamiltonian

H(s) = U(s)Ho Ut (s)

n(s)
m Flow equation for the Hamiltonian
dH(s)
= Hi
o = [n(s). H(s)]
H(oco
where the n(s) = du(s) Uf(s)is the (c0)

so-called generator chosen to
decouple a given reference state from
its excitations.

m Computation complexity scales

. ) . Tsukiyama, Bogner, and Schwenk (2011)
polynomially with nuclear size

Hergert, Bogner, Morris, Schwenk, Tsukiyama (2016)

Not necessary to construct the H matrix elements in many-body basis !
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Extension of the IMSRG for the NMEs of 0v33: challenges (ol

m open-shell nuclei with collective correlations: mp-mh excitation configurations

¢ —————MR-IMSRG()) ————

MR-IMSRG: build correlations on top of
already correlated state (e.g., from a method that
describes static correlation well)

m different unitary transformation for the initial and final nuclei: U;(s) # Ug(s).
Computation of the following matrix element

M = (®F|U(5)0% Uj (s)|®)) = (0p|e () 0% e~ ()0 2
with truncation error controllable is challenge.

choose the reference state |®) as an ensemble of the initial and final nuclei
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The IMSRG+GCM method: procedure Riu®

NSCL

m Generation of a reference state with collective correlations

Constrained deformed HFB calculation with variation after particle-number projection
projection onto the right quantum numbers (NZ,J)
computing many-body density matrices of the reference state
= Normal-ordering all the operators with respect to the reference state and solve the
IMSRG flow equation
Ensemble normal-ordering (NO2B)
Computing all the RG evolved operators

m Diagonalization of the evolved Hamiltonian with GCM
Generate a set of non-orthogonal quantum-number projected HFB states with different
coll. correlations

mixing of these states with GCM

Computing observables with the GCM wave functions using the corresponding evolved
operators
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A benchmark of the method (ol

NSCL

= model space: pf shell
= KB3G interaction
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JMY.J. Engel. L.J. Wane. CF. Jiao. H. Hergert (2018)

Computation time for the many-body density matrices increases significantly while using
chiral interactions in full model space.
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Many-body density matrices in a small model space
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An illustrative calculation for deformed nuclei: 8Be
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converged to ground state.
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Applications to neutrinoless double beta decay (ol

NSCL

m Benchmark calculations of light nuclei:

transition between AT = 0 states: °He — °Be, and '°Be — °C
transition between AT = 2 states: 8He — 8Be, and 20 — #Ne

m Application to candidate Ov 38 process (AT = 2):

8Ca — i
76Ge — "®Se
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Ov3p from 8He and 6Be (AT = 0)

m SRG softened two-body NN interaction: EM2.0/500
m make use of isospin symmetry in the wave functions of initial and final nuclei
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R.A. M Basili, JMY, J. Engel, H. Hergert, M. Lockner, P. Maris, J.P. Vary, arXiv:1909.06501
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Ov34 from 8He and ®Be (AT = 0) Rb®

m chiral 2N+3N interaction(EM1.8/2.0), isospin symmetry is NOT assumed in the wfs
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m MO is weakly sensitive to the shapes/deformations of concerned
m MO (GT/F/TE)= 3.18/0.88/-0.05

= VMC (AV18+IL17): MO (GT/F/TE)=3.688/0.946/-0.025 [S. Pastore+(2018)]
discrepancy contributed from both wfs and transition operators.
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Ov3p from 8He and 6Be (AT = 0)

M :/0 C% (riz)dri2

r r S. Pastore et al (2018)

16 —=— Total T i
.o e ]

- 12 - o
0 Fermi 2f - K R 4
E 08 -¥- Tensor | N PR ]
3 e T

o 0.0 ‘:‘:“«««
-0.4 SHe-%Be (EM1.8/2.0) | o4 J
0 2 4 6 : £ [fin] * ¢
nz [fm] Note: A factor of —g3 has been

multiplied into the Fermi part.

FRIB/MSU Ab initio calculation of 0



Summary of the NMEs in light nuclei
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m consistent with the findings in the “exact" calculations with VMC (AV18+IL17) S.
Pastore et al (2018); X.B. Wang (2019) and NCSM (EM1.8/2.0) P. Gysbers et al.
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Application: 0v34 from “8Ca to “8Ti
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Application: 0v34 from “8Ca to “8Ti

E, [MeV]
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= IMSRG+GCM: Low-energy structure of 48Ti is reasonably reproduced (spectrum
stretched). Inclusion of non-collective configurations from neutron-proton isoscalar

pairing fluctuation can compress the spectra further by about 6%.

m IMSRG+CI(TO — T1): the spectrum becomes more stretched in a larger model
space (more collective correlations).

FRIB/MSU
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Application: 0v33 from “8Ca to 4Ti = n’®
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Application: 0v34 from “8Ca to “8Ti

riz [fm]

FRIB/MSU

Mo = /df12 C%(ni2)

= The quadrupole deformation in 48Ti changes
both the short and long-range behaviors

= Neutron-proton isoscalar pairing is mainly a
short-range effect

Ab initio calculation of 0




Application: 0v33 from “8Ca to #8Ti (ol

NSCL
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m The value from Markov-chain Monte-Carlo extrapolation is M% = 0.6179.9%

= The neutron-proton isoscalar pairing fluctuation quenches ~17% further, which
might be canceled out partially by the isovector pairing fluctuation.

Ab initio calculation of 0



0vBp from 76Ge to 76Se (preliminary results)
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6 255(3) 1.03(4) 412(11) 0.73(1)
8 287(3) 1.17(7) 468(6) 0.70(1)
Exp. | 547(6) 0.563 864(22) 0.559

The above B(E2 : 2 — 0T) values are evaluated
with the evolved one-body E2 operator only.
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0v 373 from 76Ge to 76Se (preliminary results) (ol

NSCL

0w transition operator in IMSRG(2) . eMax06

. eMax08

0%/(s) = MOPe ) = O 1[0, 0] + S [0,12,0™]] + ..

e [ | E—
Hirlkeled ]

m renormalization effect on the transition operator:

The renormalization effect is mainly contributed from Q®
The pp/hh diagrams enhance the NME (GT)

IME

> 0% a6 Qb (1 — N — 1) + (2 ¢+ O) 3)
ab

while the ph diagrams quench the NME.

enhances the transition from *8Ca to “8Ti and quenches that from 76Ge to 76Se.
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Summary of NMEs from IMSRG calculations (& Bu
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m The unpublished results of VS-IMSRG are from (A. Belley, R. Stroberg, J. Holt et al.)

m Uncertainties from different sources (model truncation, chiral expansion, contact
operator, two-body currents) are to be included.
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Summary and outlook ﬁ& @

NSCL

m The mass ordering of neutrinos is expected to be disclosed with the development
of ton-scale Ov 33 decay experiments in the next few years, depending on the
values of the NMEs.

= The NMEs governing the Ov 33 are essential to determine the neutrino effective
mass. Several ab initio methods have begun to calculate the NMEs starting from
first principles.

= We develop a novel multi-reference framework of IMSRG+GCM which opens a
door to modeling deformed nuclei with realistic nuclear forces.

= The NMEs for several unphysical process in light nuclei and those for candidate
process in medium-mass nuclei “¢Ca and 76Ge(preliminary) are calculated. The
NMEs in both cases are smaller than the predictions by (most) phenomenological
models.

= More benchmarks among different ab initio calculations for the NMEs are
underway.

= Quantification of uncertainties from different sources: systematic and statistic
(open for comments/suggestions)
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	Contribution from the short-range operator

