Ab initio treatment of collective correlations in neutrinoless double beta decay

Jiangming Yao

FRIB/NSCL, Michigan State University, East Lansing, Michigan 48824, USA

Progress in Ab Initio Techniques in Nuclear Physics, TRIUMF, Canada, March 6, 2020
What’s neutrinoless double beta decay?

- At nuclear-structure level, it corresponds to the transition

\[^A Z \rightarrow ^A (Z + 2) + 2e^- \]

V. Cirigliano+ (2020)

Schechter-Valle theorem (1982):
any diagram causing the $0\nu\beta\beta$ decay will generate a Majorana mass term for light neutrinos

1. Beyond SM physics: nonzero neutrino mass
2. Nature of neutrinos: Dirac or Majorana
3. Origin of the matter-antimatter asymmetry: Lepton-number violation
What kind of nuclei to observe the $0\nu\beta\beta$?

- Single-beta decay is energetically forbidden
- Experimental interest
 1. Large $Q_{\beta\beta}$ value
 2. Large isotopic abundance
 3. Low background in the energy region of interest

Features of candidate nuclei

The nuclei evolved in the $0\nu\beta\beta$ are mostly medium-mass open-shell (deformed) nuclei.
Contribution from the short-range operator

Current status on the studies of $0\nu\beta\beta$ decay

Based on the mechanism of exchange light Majorana neutrino, the inverse of half-life of $0\nu\beta\beta$ can be factorized as

$$[T_{1/2}^{0\nu}]^{-1} = g_A^4 G_{0\nu} \left| \frac{\langle m_{\beta\beta} \rangle}{m_e} \right|^2 \left| M^{0\nu} \right|^2, \quad \langle m_{\beta\beta} \rangle = \left| \sum_{i=1,2,3} U_{ei}^2 m_i \right|$$

A precise knowledge (from ab initio calculation) of the nuclear matrix element (NME) $M^{0\nu}$ is helpful to determine the neutrino effective mass $\langle m_{\beta\beta} \rangle$, if the process is measured eventually.
The NME for the $0\nu\beta\beta$ transition from $|0^+_I\rangle$ to $|0^+_F\rangle$

$$M^{0\nu}(0^+_I \rightarrow 0^+_F) = \langle 0^+_F | O^{0\nu} | 0^+_I \rangle$$

- the transition operator: exchange of light neutrinos and with closure approximation

$$O^{0\nu} = \frac{4\pi R}{g_A^2} \int d^3 \vec{r}_1 \int d^3 \vec{r}_2 \int d^3 \vec{q} \frac{e^{i\vec{q} \cdot (\vec{r}_1 - \vec{r}_2)}}{(2\pi)^3 q(q + E_d)} \mathcal{J}_\mu^\dagger(\vec{r}_1) \mathcal{J}_\mu^\dagger(\vec{r}_2)$$

$$= \sum_K \sum_{1,2} H_K(r_{12}, E_d) \tau_1^+ \tau_2^+ S_K$$

(1)

where $S_K = \{1, \sigma_1 \cdot \sigma_2, 3(\sigma_1 \cdot \hat{r}_{12})(\sigma_2 \cdot \hat{r}_{12}) - \sigma_1 \cdot \sigma_2\}$ for $K = \{F, GT, T\}$, respectively. The average excitation energy $E_d = \bar{E} - (E_i + E_f)/2 \sim 1.12A^{1/2}$. Only one-body current \mathcal{J}_μ is taken into account in the present study.
The wave functions of initial and final nuclei require the calculation from ab initio methods:

1. starts from a bare nucleon-nucleon interaction (fitted to data of NN scattering/few-body systems)
2. solves Schroedinger equation (for the many-body system) with a controllable accuracy of approximations

Benchmark calculations in light nuclei:

- Variational Monte Carlo calculation starting from the Argonne v18 two-nucleon potential and Illinois-7 three-nucleon interaction for light nuclei
 S. Pastore et al. (2017)
- No-core shell model calculations starting from chiral NN+3N interactions for light nuclei
 P. Gysbers et al., R. A. Basili et al. (2019)

Extension to medium-mass candidate nuclei:

- Application of coupled-cluster (S. Novario, G. Hagen, T. Papenbrock et al.) and valence-space in-medium similarity renormalization group (IMSRG) (Antoine Belley, R. Stroberg, J. Holt et al.) method starting from chiral NN+3N interactions for $0 \bar{\nu} \beta \beta$-candidate nuclei
- Merging the multi-reference IMSRG with generator coordinate method (GCM) starting from chiral NN+3N interactions for $0 \bar{\nu} \beta \beta$-candidate nuclei
Contribution from the short-range operator

The method: basic idea of IMSRG

- A set of continuous unitary transformations onto the Hamiltonian

\[H(s) = U(s)H_0U^\dagger(s) \]

- Flow equation for the Hamiltonian

\[\frac{dH(s)}{ds} = [\eta(s), H(s)] \]

where the \(\eta(s) = \frac{dU(s)}{ds} U^\dagger(s) \) is the so-called generator chosen to decouple a given reference state from its excitations.

- Computation complexity scales polynomially with nuclear size

Tsukiyama, Bogner, and Schwenk (2011)
Hergert, Bogner, Morris, Schwenk, Tsukiyama (2016)

Not necessary to construct the H matrix elements in many-body basis!
open-shell nuclei with collective correlations: mp-mh excitation configurations

- different unitary transformation for the initial and final nuclei: $U_I(s) \neq U_F(s)$. Computation of the following matrix element

$$M^{0\nu} = \langle \Phi_F | U_F(s) O^{0\nu} U_I^\dagger(s) | \Phi_I \rangle = \langle \Phi_F | e^{\Omega_F(s)} O^{0\nu} e^{-\Omega_I(s)} | \Phi_I \rangle$$

with truncation error controllable is challenge.

choose the reference state $|\Phi\rangle$ as an ensemble of the initial and final nuclei
The IMSRG+GCM method: procedure

- Generation of a reference state with collective correlations
 1. Constrained deformed HFB calculation with variation after particle-number projection
 2. Projection onto the right quantum numbers (NZ,J)
 3. Computing many-body density matrices of the reference state

- Normal-ordering all the operators with respect to the reference state and solve the IMSRG flow equation
 1. Ensemble normal-ordering (NO2B)
 2. Computing all the RG evolved operators

- Diagonalization of the evolved Hamiltonian with GCM
 1. Generate a set of non-orthogonal quantum-number projected HFB states with different coll. correlations
 2. Mixing of these states with GCM
 3. Computing observables with the GCM wave functions using the corresponding evolved operators
A benchmark of the method

- model space: \(pf \) shell
- KB3G interaction

Computation time for the many-body density matrices increases significantly while using chiral interactions in full model space.
Contribution from the short-range operator

Many-body density matrices in a small model space

Prescription

- Construct density matrix elements in a small model space (defined by e_{max})
- Normal-order the H and solve the IMSRG flow in a large model space (e_{Max})
Contribution from the short-range operator

An illustrative calculation for deformed nuclei: 8Be

HFB potential energy surface by the SRG softened chiral interaction EM1.8/2.0($\hbar\Omega = 16$ MeV)

Starting from the reference state with two-α structure, the IMSRG(2) is converged to ground state.
Contribution from the short-range operator

Applications to neutrinoless double beta decay

Benchmark calculations of light nuclei:

1. transition between $\Delta T = 0$ states: 6He \rightarrow 6Be, and 10Be \rightarrow 10C
2. transition between $\Delta T = 2$ states: 8He \rightarrow 8Be, and 22O \rightarrow 22Ne

Application to candidate $0\nu\beta\beta$ process ($\Delta T = 2$):

1. 48Ca \rightarrow 48Ti
2. 76Ge \rightarrow 76Se
0$\nu\beta\beta$ from 6He and 6Be ($\Delta T = 0$)

- SRG softened two-body NN interaction: EM2.0/500
- make use of isospin symmetry in the wave functions of initial and final nuclei

Contribution from the short-range operator $\nu\beta\beta$ from 6He and 6Be ($\Delta T = 0$)

- Chiral 2N+3N interaction (EM1.8/2.0), isospin symmetry is NOT assumed in the wfs

- $M^{0\nu}$ is weakly sensitive to the shapes/deformations of concerned

- $M^{0\nu}(GT/F/TE) = 3.18/0.88/-0.05$

- VMC (AV18+IL17): $M^{0\nu}(GT/F/TE) = 3.688/0.946/-0.025$ [S. Pastore+(2018)]

 discrepancy contributed from both wfs and transition operators.
Contribution from the short-range operator

\[M^{0\nu} = \int_0^{\infty} C^{0\nu}(r_{12})dr_{12} \]

Note: A factor of \(-g_A^2\) has been multiplied into the Fermi part.

S. Pastore et al (2018)
Summary of the NMEs in light nuclei

- Consistent with the findings in the "exact" calculations with VMC (AV18+IL17) S. Pastore et al (2018); X.B. Wang (2019) and NCSM (EM1.8/2.0) P. Gysbers et al.
Application: $0\nu\beta\beta$ from ^{48}Ca to ^{48}Ti

Extrapolation

$$E(e_{\text{Max}}) = E(\infty) + a \exp(-b \cdot e_{\text{Max}})$$
Application: $0\nu\beta\beta$ from 48Ca to 48Ti

- IMSRG+GCM: Low-energy structure of 48Ti is reasonably reproduced (spectrum stretched). Inclusion of non-collective configurations from neutron-proton isoscalar pairing fluctuation can compress the spectra further by about 6%.

- IMSRG+CI(T0 → T1): the spectrum becomes more stretched in a larger model space (more collective correlations).
Application: $0\nu\beta\beta$ from ^{48}Ca to ^{48}Ti

Contribution from the short-range operator

Application: $0\nu\beta\beta$ from ^{48}Ca to ^{48}Ti

J. M. Yao
FRIB/MSU
Ab initio calculation of $0\nu\beta\beta$
Contribution from the short-range operator

Application: $0\nu\beta\beta$ from ^{48}Ca to ^{48}Ti

\[M^{0\nu} = \int dr_{12} C^{0\nu}(r_{12}) \]

- The quadrupole deformation in ^{48}Ti changes both the short and long-range behaviors.
- Neutron-proton isoscalar pairing is mainly a short-range effect.
Contribution from the short-range operator

Application: $0\nu\beta\beta$ from 48Ca to 48Ti

The value from Markov-chain Monte-Carlo extrapolation is $M^{0\nu} = 0.61^{+0.05}_{-0.04}$.

The neutron-proton isoscalar pairing fluctuation quenches $\sim 17\%$ further, which might be canceled out partially by the isovector pairing fluctuation.
Contribution from the short-range operator

$0\nu\beta\beta$ from ^{76}Ge to ^{76}Se (preliminary results)

The above $B(E2 : 2^+ \rightarrow 0^+)$ values are evaluated with the evolved one-body E2 operator only.
$0^{\nu}\beta\beta$ from 76Ge to 76Se (preliminary results)

Contribution from the short-range operator

$0^{\nu}\nu\beta$ from 76Ge to 76Se

Renormalization effect on the transition operator:

1. The renormalization effect is mainly contributed from $\Omega^{(2)}$
2. The pp/hh diagrams enhance the NME (GT)

$$
\sum_{ab} O^{0\nu}_{pp',ab} \Omega_{abnn'} (1 - n_a - n_b) + (\Omega \leftrightarrow O^{0\nu})
$$

while the ph diagrams quench the NME.

enhances the transition from 48Ca to 48Ti and quenches that from 76Ge to 76Se.
The unpublished results of VS-IMSRG are from (A. Belley, R. Stroberg, J. Holt et al.)

Uncertainties from different sources (model truncation, chiral expansion, contact operator, two-body currents) are to be included.
Summary and outlook

- The mass ordering of neutrinos is expected to be disclosed with the development of ton-scale $0\nu\beta\beta$ decay experiments in the next few years, depending on the values of the NMEs.

- The NMEs governing the $0\nu\beta\beta$ are essential to determine the neutrino effective mass. Several ab initio methods have begun to calculate the NMEs starting from first principles.

- We develop a novel multi-reference framework of IMSRG+GCM which opens a door to modeling deformed nuclei with realistic nuclear forces.

- The NMEs for several unphysical process in light nuclei and those for candidate process in medium-mass nuclei 48Ca and 76Ge (preliminary) are calculated. The NMEs in both cases are smaller than the predictions by (most) phenomenological models.

- More benchmarks among different ab initio calculations for the NMEs are underway.

- Quantification of uncertainties from different sources: systematic and statistic (open for comments/suggestions)
Contribution from the short-range operator

Collaborators and acknowledgement

Michigan State University
- Scott Bogner
- Heiko Hergert
- Roland Wirth

University of North Carolina at Chapel Hill
- Jonanthan Engel

Universidad Autónoma de Madrid
- Benjamin Bally
- Tomas R. Rodríguez

Iowa State University
- Robert A. Basili
- M. Lockner
- P. Maris
- James P. Vary

Southwest University
- Longjun Wang

San Diego State University
- Changfeng Jiao

Thank your for your attention!