

Progress on coupled cluster calculations of electroweak nuclear properties

Sonia Bacca

Johannes Gutenberg Universität Mainz

March 5th, 2020

• How does the nucleus respond to external electroweak excitations?

• How does the nucleus respond to external electroweak excitations?

- Interesting in nuclear physics and useful in other fields of physics, where nuclear physics plays a crucial role:
 - Astrophysics:
 - Atomic physics
 - Particle physics

• How does the nucleus respond to external electroweak excitations?

- Interesting in nuclear physics and useful in other fields of physics, where nuclear physics plays a crucial role:
 - Astrophysics:
 - Atomic physics
 - Particle physics

• How does the nucleus respond to external electroweak excitations?

- Interesting in nuclear physics and useful in other fields of physics, where nuclear physics plays a crucial role:
 - Astrophysics:
 - Atomic physics
 - Particle physics

Electromagnetic sector

Stable Nuclei

From photoabsorption experiments

Unstable Nuclei

From Coulomb excitation experiments

Electromagnetic sector

Stable Nuclei $\sigma_{(\gamma xn)} \, (mb)$ Leistenschneider et al. ⁴⁰Ca 100 またが知 \triangle Ahrens *et al*. 8.0 80 [qul] (m) م 40_ (y,p) $\sigma_{(\gamma,xn)}\,(mb)$ ²²0 10 20 core (y,p) .¥ I 0<u></u> 20 40 60 80 100 20 ω[MeV] E (MeV) From Coulomb excitation experiments From photoabsorption experiments (p,p') experiments

Are we able to explain these and new data from first principles?

Sonia Bacca

Unstable Nuclei

Electroweak sector

In neutrino experiments, detectors are made by complex nuclei

T2K

Short and Long-baseline neutrino experiments

DUNE

See Bijaya's talk tomorrow

Electroweak sector

In neutrino experiments, detectors are made by complex nuclei

T2K

Short and Long-baseline neutrino experiments

DUNE

See Bijaya's talk tomorrow

Measuring the elusive neutrinos ...

Various materials including, ⁴⁰Ar

Can ab-initio nuclear theory impact this field?

Sonia Bacca

Continuum problem

 $R(\omega) \propto \left| \left\langle \Psi_f \right| \Theta \left| \Psi_0 \right\rangle \right|^2$

Exact knowledge limited in energy and mass number

Continuum problem

Reduce the continuum problem to a bound-state-like equation

In collaboration with ORNL group

In collaboration with ORNL group

SB et al., Phys. Rev. Lett. **111**, 122502 (2013)

$$(\bar{H} - E_0 - \sigma + i\Gamma) |\tilde{\Psi}_R\rangle = \bar{\Theta} |\Phi_0\rangle$$

In collaboration with ORNL group

CCSDT

SB et al., Phys. Rev. Lett. **111**, 122502 (2013)

$$(\bar{H} - E_0 - \sigma + i\Gamma) |\tilde{\Psi}_R\rangle = \bar{\Theta} |\Phi_0\rangle$$

 $\bar{H} = e^{-T} H e^{T}$

$$\bar{\Theta} = e^{-T} \Theta e^{T}$$

$$|\tilde{\Psi}_R\rangle = \hat{R}|\Phi_0\rangle$$

In collaboration with ORNL group

SB et al., Phys. Rev. Lett. 111, 122502 (2013)

$$(\bar{H} - E_0 - \sigma + i\Gamma) |\tilde{\Psi}_R\rangle = \bar{\Theta} |\Phi_0\rangle$$

$$\bar{H} = e^{-T} H e^{T}$$
$$\bar{\Theta} = e^{-T} \Theta e^{T}$$

 $|\tilde{\Psi}_R\rangle = \hat{R}|\Phi_0\rangle$

Results with implementation at CCSD level

$$T = T_1 + T_2$$
$$R = R_0 + R_1 + R_2$$

In collaboration with ORNL group

SB et al., Phys. Rev. Lett. 111, 122502 (2013)

$$(\bar{H} - E_0 - \sigma + i\Gamma) |\tilde{\Psi}_R\rangle = \bar{\Theta} |\Phi_0\rangle$$

$$\bar{H} = e^{-T} H e^{T}$$
$$\bar{\Theta} = e^{-T} \Theta e^{T}$$
$$\hat{\Theta} = \hat{e}^{-T} \Theta e^{T}$$

 $|\tilde{\Psi}_R\rangle = \hat{R}|\Phi_0\rangle$

Results with implementation at CCSD level

$$T = T_1 + T_2$$

$$R = R_0 + R_1 + R_2$$
and triples as well
and

Addressing medium-mass nuclei

SB et al., PRC 90, 064619 (2014)

Electric dipole polarizability

$$\alpha_D = 2\alpha \int_{\omega_{ex}}^{\infty} d\omega \frac{R(\omega)}{\omega}$$

Can be calculated:

- (1) by integrating the strength obtained from LIT inversion
- (2) Directly from the Lanczos coefficients (not going via the inversion)

$$\alpha_D \rightarrow \left\{ \frac{1}{(a_0 + \sigma) - \frac{b_0^2}{(a_1 + \sigma) - \frac{b_1^2}{(a_2 + \sigma) - \cdots}}} \right\}$$

Phys. Rev. C 94, 034317 (2017)

⁴⁸Ca electric dipole polarizability

M. Miorelli et al., PRC 98, 014324 (2018)

⁴⁸Ca electric dipole polarizability

M. Miorelli et al., PRC 98, 014324 (2018)

Higher order correlations are important

They improve the comparison with experiment

⁶⁸Ni from first principles

NNLOsat $\alpha_D = 3.60 \text{ fm}^3$ F. Raimondi and C. Barbieri, Phys. Rev. C 99, 054327 (2019)

⁶⁸Ni from first principles

NNLOsat $\alpha_D = 3.60 \text{ fm}^3$ F. Raimondi and C. Barbieri, Phys. Rev. C **99**, 054327 (2019)

Coherent elastic neutrino scattering

The neutrino exchanges a Z-boson with the nucleus, that recoils as a whole (no internal excitation).

This is valid for neutrino energies up to 50 MeV

Experimental signature: tiny energy deposited by nuclear recoils in the target material

COHERENT@SNS-ORNL

Science

REPORTS

Cite as: D. Akimov *et al.*, *Science* 10.1126/science.aao0990 (2017).

Observation of coherent elastic neutrino-nucleus scattering

CEvNS cross section

$$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} Q_W^2 M \left(1 - \frac{MT}{2E_\nu^2}\right) F_W^2(Q^2) \quad \text{Weak form factor}$$

$$F_W(Q) = \frac{1}{Q_W} \int d^3 r \, \frac{\sin Qr}{Qr} \left[\rho_n(r) - (1 - 4\sin^2\theta_W)\rho_p(r)\right]$$

$$Q_W \equiv N - Z(1 - 4\sin^2\theta_W) \implies \frac{d\sigma}{dT} \propto N^2$$

$$Q_{R} < 1 \implies Q_{\text{max}} = \frac{1}{1.2(40)^{1/3}} = 0.24 \,\text{fm}^{-1} \approx 50 \,\text{MeV}$$

Nuclear structure information needed: elastic weak form factor

CEvNS cross section

Cross section (10⁻⁴⁰ cm²)

⁴⁰Ar Charge Form Factor

exp: in Mainz, Ottermann et. al., Nucl. Phys. A **379**, 396 (1982)

Sonia Bacca

⁴⁰Ar Weak Form Factor

C. Payne et al., Phys. Rev. C 100, 061304(R) (2019)

Not much Hamiltonian dependence is seen at low q. Confirmed by DFT (Phys. Rev. C 100, 054301 (2019)) and RPA calculations (arXiv:2001.04684). C. Payne et al., Phys. Rev. C 100, 061304(R) (2019)

Perhaps Rn and Rskin can be extracted from coherent elastic neutrino scattering

Amanik and McLaughlin, J. Phys. G: Nucl. Part. Phys. **36** 015105 (2009) Cadeddu et al., Phys. Rev. Lett. **120**, 072501 (2018)

DFT from N. Schunk, private communication, HFB9, SKI3, SKM*, SKO, SKX, SLY4, SLY5, UNEDF0, UNEDF1

Outlook

- Triples corrections cannot be neglected in computing dipole polarizability
- CEvNS is not sensitive to details of the nuclear interactions

Outlook

- Triples corrections cannot be neglected in computing dipole polarizability
- CEvNS is not sensitive to details of the nuclear interactions

Thanks to all my collaborators

B. Acharya, N. Barnea, G. Hagen, W. Jiang, M. Miorelli, G. Orlandini, T. Papenbrock, C. Payne, J. Simonis, A. Schwenk and many more

Outlook

- Triples corrections cannot be neglected in computing dipole polarizability
- CEvNS is not sensitive to details of the nuclear interactions

Thanks to all my collaborators

B. Acharya, N. Barnea, G. Hagen, W. Jiang, M. Miorelli, G. Orlandini, T. Papenbrock, C. Payne, J. Simonis, A. Schwenk and many more

Thanks for your attention!

⁶⁸Ni convergence

Sonia Bacca

Validation in 4He

Dipole response function

Comparison of CCSD with exact hyperspherical harmonics with NN forces at N³LO

SB et al., Phys. Rev. Lett. 111, 122502 (2013)

⁴⁸Ca electric dipole polarizability

$$\alpha_D = 2\alpha \int_{\omega_{ex}}^{\infty} d\omega \frac{R(\omega)}{\omega}$$

Can be calculated:

- (1) by integrating the strength obtained from LIT inversion
- (2) Directly from the Lanczos coefficients (not going via the inversion) Phys. Rev. C 94, 034317 (2017)

$$\alpha_D \rightarrow \left\{ \frac{1}{(a_0 + \sigma) - \frac{b_0^2}{(a_1 + \sigma) - \frac{b_1^2}{(a_2 + \sigma) - \cdots}}} \right\}$$

J.Birkhan, et al., Phys. Rev. Lett. 118, 252501 (2017)

JG U

⁴⁸Ca electric dipole polarizability

$$\alpha_D = 2\alpha \int_{\omega_{ex}}^{\infty} d\omega \frac{R(\omega)}{\omega}$$

Can be calculated:

- (1) by integrating the strength obtained from LIT inversion
- (2) Directly from the Lanczos coefficients (not going via the inversion) Phys. Rev. C **94**, 034317 (2017)

$$\alpha_D \to \left\{ \frac{1}{(a_0 + \sigma) - \frac{b_0^2}{(a_1 + \sigma) - \frac{b_1^2}{(a_2 + \sigma) - \dots}}} \right\}$$

140nat. Ca (a) 120 ^{48}Ca 100 $\sigma_{\gamma}~({\rm mb})$ 80 60 40200 (b) 2.5CCSD (fm^3) 2.01.5βD 1.0 $\square \chi EFT$ 0.50.0 203040501060 $E_{\rm x}$ (MeV)

> Theory tends to overestimate experiment Can we improve the theoretical prediction?

Hamiltonian	$\alpha_{\rm D}$	$R_{ m p}$	$R_{ m n}$	$R_{ m skin}$	$R_{ m c}$
1.8/2.0 (EM)	3.58(18)	3.62(1)	3.82(1)	0.201(1)	3.70(1)
$2.0/2.0~({ m EM})$	3.83(23)	3.69(2)	3.89(2)	0.202(3)	3.77(1)
$2.2/2.0~({ m EM})$	4.04(28)	3.74(2)	3.94(2)	0.203(4)	3.82(2)
2.0/2.0 (PWA)	4.87(40)	3.97(2)	4.17(3)	0.204(8)	4.05(2)
$\mathrm{NNLO}_{\mathrm{sat}}$	4.65(49)	3.93(4)	4.11(5)	0.183(8)	4.00(4)

NNLOsat $\alpha_D = 3.60 \text{ fm}^3$ F. Raimondi and C. Barbieri, Phys. Rev. C **99**, 054327 (2019)

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

$$L(\sigma,\Gamma) = \int d\omega \frac{R(\omega)}{(\omega-\sigma)^2 + \Gamma^2} = \left\langle \tilde{\psi} | \tilde{\psi} \right\rangle < \infty$$

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

$$L(\sigma,\Gamma) = \int d\omega \frac{R(\omega)}{(\omega-\sigma)^2 + \Gamma^2} = \left\langle \tilde{\psi} | \tilde{\psi} \right\rangle < \infty$$

$$R(\omega) = \int_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

$$L(\sigma, \Gamma) = \int d\omega \frac{R(\omega)}{(\omega - \sigma)^{2} + \Gamma^{2}} = \left\langle \tilde{\psi} \right| \tilde{\psi} \right\rangle < \infty$$

$$(\omega - \sigma - i\Gamma)(\omega - \sigma + i\Gamma)$$

$$\begin{split} \mathbf{R}(\omega) &= \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(\mathbf{E}_{f} - E_{0} - \omega) \\ \mathbf{L}(\sigma, \Gamma) &= \int d\omega \frac{R(\omega)}{(\omega - \sigma)^{2} + \Gamma^{2}} = \left\langle \tilde{\psi} \right| \tilde{\psi} \right\rangle < \infty \\ &= \sum_{f} \left\langle \psi_{0} \left| \Theta \frac{1}{\mathbf{E}_{f} - E_{0} - \sigma - i\Gamma} \left| \psi_{f} \right\rangle \left\langle \psi_{f} \right| \frac{1}{\mathbf{E}_{f} - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \\ &= \sum_{f} \left\langle \psi_{0} \left| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{f} \right\rangle \left\langle \psi_{f} \right| \frac{1}{H - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \right\rangle \end{split}$$

$$\begin{split} R(\omega) &= \int_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega) \\ L(\sigma, \Gamma) &= \int d\omega \frac{R(\omega)}{(\omega - \sigma)^{2} + \Gamma^{2}} = \left\langle \tilde{\psi} \right| \tilde{\psi} \right\rangle < \infty \\ &= \int_{f} \left\langle \psi_{0} \right| \Theta \frac{1}{E_{f} - E_{0} - \sigma - i\Gamma} \left| \psi_{f} \right\rangle \left\langle \psi_{f} \right| \frac{1}{E_{f} - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \\ &= \int_{f} \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{f} \right\rangle \left\langle \psi_{f} \right| \frac{1}{H - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \frac{1}{H - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \end{split}$$

$$\begin{split} \mathbf{R}(\omega) &= \int_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega) \\ \mathbf{L}(\sigma, \Gamma) &= \int d\omega \frac{R(\omega)}{(\omega - \sigma)^{2} + \Gamma^{2}} = \left\langle \tilde{\psi} \right| \tilde{\psi} \right\rangle < \infty \\ &= \int_{f} \left\langle \psi_{0} \right| \Theta \frac{1}{E_{f} - E_{0} - \sigma - i\Gamma} \left| \psi_{f} \right\rangle \left\langle \psi_{f} \right| \frac{1}{E_{f} - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \\ &= \int_{f} \left\langle \psi_{0} \left| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{f} \right\rangle \left\langle \psi_{f} \right| \frac{1}{H - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \frac{\psi_{f}}{H - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \frac{H - E_{0} - \sigma + i\Gamma}{H - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \frac{H - E_{0} - \sigma + i\Gamma}{H - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \frac{H - E_{0} - \sigma + i\Gamma}{H - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \frac{H - E_{0} - \sigma + i\Gamma}{H - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \frac{H - E_{0} - \sigma + i\Gamma}{H - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \frac{H - E_{0} - \sigma + i\Gamma}{H - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \frac{H - E_{0} - \sigma + i\Gamma}{H - E_{0} - \sigma + i\Gamma} \Theta \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle \psi_{0} \right| \Theta \frac{1}{H - E_{0} - \sigma - i\Gamma} \left| \psi_{0} \right\rangle \\ &= \left\langle$$

Inversion of the LIT

The inversion is performed numerically with a regularization procedure needed for the solution of an ill-posed problem

Ans

satz
$$R(\omega) = \sum_{i}^{I_{\max}} c_i \chi_i(\omega, \alpha)$$
 \longrightarrow $L(\sigma, \Gamma) = \sum_{i}^{I_{\max}} c_i \mathcal{L}[\chi_i(\omega, \alpha)]$

Inversion of the LIT

The inversion is performed numerically with a regularization procedure needed for the solution of an ill-posed problem

Ansatz

$$R(\omega) = \sum_{i}^{I_{\max}} c_i \chi_i(\omega, \alpha) \quad \Longrightarrow \quad L(\sigma, \Gamma) = \sum_{i}^{I_{\max}} c_i \mathcal{L}[\chi_i(\omega, \alpha)]$$

Least square fit of the coefficients c_i to reconstruct the response function

Inversion of the LIT

The inversion is performed numerically with a regularization procedure needed for the solution of an ill-posed problem

Ansatz

Least square fit of the coefficients c_i to reconstruct the response function

Message: using bound-states techniques to calculate the LIT is correct and inversions are stable If the LIT is calculated precisely enough